—~ Yl =~

A =)
/ ._.x_J__A‘.._.- - e

Vrsreramryvr — _:
;‘\..__/_a_:. - R e N R

EMBEDDED SYSTEMS:

REAL-TIME OPERATING SYSTEMS FOR
ARM CORTEX-M MICROCONTROLLERS

Volume 3
Fourth Edition,
January 2017

Jonathan W. Valvano

Fourth edition
January 2017

ARM and uVision are registered trademarks of ARM Limited.

Cortex and Keil are trademarks of ARM Limited.

Stellaris and Tiva are registered trademarks Texas Instruments.

Code Composer Studio is a trademark of Texas Instruments.

All other product or service names mentioned herein are the trademarks of their respective
Owners.

In order to reduce costs, this college textbook has been self-published. For more
information about my classes, my research, and my books, see
http://users.ece.utexas.edu/~valvano/

For corrections and comments, please contact me at: valvano@mail.utexas.edu.
Please cite this book as: J. W. Valvano, Embedded Systems: Real-Time Operating
Systems for ARM ® Cortex - -M Microcontrollers, Volume 3,
http://users.ece.utexas.edu/~valvano/, ISBN: 978-1466468863.

Copyright © 2017 Jonathan W. Valvano

All rights reserved. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored, or used in any form or by any means graphic,
electronic, or mechanical, including but not limited to photocopying, recording,
scanning, digitizing, taping, web distribution, information networks, or
information storage and retrieval, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without the prior written permission of the
publisher.

ISBN-13: 978-1466468863

ISBN-10: 1466468866

Table of Contents

Preface to The Fourth Edition

Preface to Volume 3

Acknowledgements

1. Computer Architecture

1.1. Introduction to Real-Time Operating Systems

1.1.1. Real-time operating systems
1.1.2. Embedded Systems
1.2. Computer Architecture
1.2.1. Computers, processors, and microcontrollers
1.2.2. Memory
1.3. Cortex-M Processor Architecture

1.3.1. Registers
1.3.2. Stack

1.3.3. Operating modes
1.3.4. Reset
1.3.5. Clock system
1.4. Texas Instruments Cortex-M Microcontrollers
1.4.1. Introduction to 1/0
1.4.2. Texas Instruments TM4C123 L.aunchPad I/0O pins
1.4.3. Texas Instruments TM4C1294 Connected L.aunchPad I/0 pins
1.4.4. Texas Instruments MSP432 [.aunchPad I/0O pins

1.4.5. Interfacing to a LaunchPad
1.5. ARM Cortex-M Assembly [.anguage
1.5.1. Syntax

1.5.2. Addressing modes and operands
1.5.3. List of twelve instructions

1.5.4. Accessing memory

1.5.5. Functions
1.5.6. ARM Cortex Microcontroller Software Interface Standard
1.5.7. Conditional execution

1.5.8. Stack usage

1.5.9. Floating-point math
1.5.10. Keil assembler directives

1.6. Pointers in C
1.6.1. Pointers
1.6.2. Arrays
1.6.3. Linked lists
1.7. Memory Management
1.7.1. Use of the heap
1.7.2. Simple fixed-size heap
1.7.3. Memory manager: malloc and free

1.8. Introduction to debugging
1.9. Exercises

2. Microcontroller Input/Output
2.1. Parallel I/0

2.1.1. TM4C 1/O programming
2.1.2. MSP432 1/0O programming
2.2. Interrupts
2.2.1. NVIC
2.2.2. SysTick periodic interrupts
2.2.3. Periodic timer interrupts
2.2.4. Critical sections
2.2.5. Executing periodic tasks
2.2.6. Software interrupts
2.3. First in First Out (FIFO) Queues

2.4. Edge-triggered Interrupts
2.4.1. Edge-triggered interrupts on the TM4C123
2.4.2. Edge-triggered Interrupts on the MSP432

2.5. UART Interface

2.5.1. Transmitting in asynchronous mode

2.5.2. Receiving in asynchronous mode
2.5.3. Interrupt-driven UART on the TM4C123

2.5.4. Interrupt-driven UART on the MSP432

2.6. Synchronous Transmission and Receiving using the SSI
2.7. Input Capture or Input Edge Time Mode

2.7.1. Basic principles
2.7.2. Period measurement on the TM4C123

2.7.3. Period measurement on the MSP432
2.7.4. Pulse width measurement

2.7.5. Ultrasonic distance measurement

2.8. Pulse Width Modulation
2.8.1. Pulse width modulation on the TM4C123
2.8.2. Pulse width modulation on the MSP432

2.9. Analog Output

2.10. Analog Input
2.10.1. ADC Parameters

2.10.2. Internal ADC on TM4C

2.10.3. Internal ADC on MSP432

2.10.4. IR distance measurement
2.11. OS Considerations for I/0 Devices

2.11.1 Board Support Package
2.11.2 Path Expression
2.12. Debugging
2.12.1. Functional Debugging
2.12.2. Performance Debugging (FFT analysis)
2.12.3. Debugging heartbeat
2.12.4. Profiling
2.13. Exercises

3. Thread Management

3.1. Introduction to RTOS
3.1.1. Motivation
3.1.2. Parallel, distributed and concurrent programming
3.1.3. Introduction to threads
3.1.4. States of a main thread

3.1.5. Real-time systems

3.1.6. Producer/Consumer problem using a mailbox
3.1.7. Scheduler

3.2. Function pointers

3.3. Thread Management

3.3.1. Two types of threads
3.3.2. Thread Control Block (TCB)

3.3.3. Creation of threads

3.3.4. Launching the OS
3.3.5. Switching threads
3.3.6. Profiling the OS

3.3.7. Linking assembly to C
3.3.8. Periodic tasks

3.4. Semaphores

3.5. Thread Synchronization
3.5.1. Resource sharing, nonreentrant code or mutual exclusion

3.5.2. Condition variable

3.5.3. Thread communication between two threads using a mailbox
3.6. Process Management

3.7. Dynamic loading and linking
3.8. Exercises

4. Time Management
4.1. Cooperation

4.1.1. Spin-lock semaphore implementation with cooperation
4.1.2. Cooperative Scheduler

4.2. Blocking semaphores

4.2.1. The need for blocking
4.2.2. The blocked state

4.2.3. Implementation
4.2.4. Thread rendezvous
4.3. First In First Out Queue
4.3.1. Producer/Consumer problem using a FIFO
4.3.2. Little’s Theorem
4.3.3. FIFO implementation
4.3.4. Three-semaphore FIFO implementation

4.3.5. Two-semaphore FIFO implementation

4.3.6. One-semaphore FIFO implementation
4.3.7. Kahn Process Networks

4.4. Thread sleeping

4.5. Deadlocks

4.6. Monitors

4.7. Fixed Scheduling
4.8. Exercises

5. Real-time Systems
5.1. Data Acquisition Systems

5.1.1. Approach
5.1.2. Performance Metrics

5.1.3. Audio Input/Output
5.2. Priority scheduler

5.2.1. Implementation

5.2.2. Multi-level Feedback Queue

5.2.3. Starvation and aging

5.2.4. Priority inversion and inheritance on Mars Pathfinder
5.3. Debouncing a switch

5.3.1. Approach to debouncing

5.3.2. Debouncing a switch on TM4C123

5.3.3. Debouncing a switch on MSP432

5.4. Running event threads as high priority main threads
5.5. Available RTOS

5.5.1. Micrium uC/OS-I1
5.5.2. Texas Instruments RTOS

5.5.3. ARM RTX Real-Time Operating System
5.5.4. FreeRTOS

5.5.5. Other Real Time Operating Systems
5.6. Exercises

6. Digital Signal Processing

6.1. Basic Principles
6.2. Multiple Access Circular Queue

6.3. Using the Z-Transform to Derive Filter Response
6.4. 1IR Filter Design Using the Pole-Zero Plot

6.5. Discrete Fourier Transform

6.6. FIR Filter Design

6.7. Direct-Form Implementations.

6.8. Exercises
7. High-Speed Interfacing
7.1. The Need for Speed

7.2. High-Speed I/0O Applications

7.3. General Approaches to High-Speed Interfaces
7.3.1. Hardware FIFO

7.3.2. Dual Port Memory
7.3.3. Bank-Switched M emory
7.4. Fundamental Approach to DMA
7.4.1. DMA Cycles
7.4.2. DMA Initiation
7.4.3. Burst versus Single Cycle DMA
7.4.4. Single Address versus Dual Address DMA

7.4.5. DM A programming on the TM4C123
7.6. Exercises

8. File system management
8.1. Performance Metrics

8.1.1. Usage

8.1.2. Specifications

8.1.3. Fragmentation
8.2. File System Allocation

8.2.1. Contiguous allocation

8.2.2. Linked allocation

8.2.3. Indexed allocation

8.2.4. File allocation table (FAT)
8.3. Solid State Disk

8.3.1. Flash memory

8.3.2. Flash device driver

8.3.3. eDisk device driver

8.3.4. Secure digital card interface
8.4. Simple File System

8.4.1. Directory

8.4.2. Allocation

8.4.3. Free space management
8.5. Write-once File System

8.5.1. Usage
8.5.2. Allocation
8.5.3. Directory

8.5.4. Append

8.5.5. Free space management
8.6. Readers-Writers Problem

8.7. Exercises
9. Communication Systems
9.1. Fundamentals

9.1.1. The network
9.1.2. Physical Channel

9.1.3. Wireless Communication

9.1.4. Radio
9.2. Controller Area Network (CAN)

9.2.1. The Fundamentals of CAN

9.2.2. Texas Instruments TM4C CAN
9.3. Embedded Internet

9.3.1. Abstraction

9.3.2. Message Protocols

9.3.3. Ethernet Physical L.ayer

9.3.4. Ethernet on the TM4C1294
9.4. Internet of Things

9.4.1. Basic Concepts

9.4.2. UDP and TCP Packets

9.4.3. Web server

9.4.4. UDP communication over WiFi

9.4.5. Other CC3100 Applications
9.4. Bluetooth Fundamentals

9.4.1. Bluetooth Protocol Stack

9.4.2. Client-server Paradigm
9.5. CC2650 Solutions

9.5.1. CC2650 Microcontroller

9.5.2. Single Chip Solution, CC2650 LaunchPad
9.6. Network Processor Interface (NPI)

9.6.1. Overview

9.6.2. Services and Characteristics
9.6.3. Advertising
9.6.4. Read and Write Indications
9.7. Application Layer Protocols for Embedded Systems
9.7.1. CoAP
9.7.2 MQTT
9.8. Exercises

10. Robotic Systems

10.1. Introduction to Digital Control Systems
10.2. Binary Actuators
10.2.1. Electrical Interface
10.2.2. DC Motor Interface with PWM
10.3. Sensors
10.4. Odometry
10.5. Simple Closed-L.oop Control Systems.
10.6. PID Controllers
10.6.1. General Approach to a PID Controller
10.6.2. Design Process for a PID Controller
10.7. Fuzzy Logic Control
10.8. Exercises

Appendix 1. Glossary
Appendix 2. Solutions to Checkpoints

Reference Material

Preface to The Fourth Edition

There are two major additions to this fourth edition. First, this version supports both
the TM4C and the MSP432 architectures. The material for the LM3S series has been
removed. Volumes 1 and 2 focused on the hardware and software aspects I/O
interfacing. In this volume we provide a set of low level device drivers allowing this
volume to focus on real-time operating systems, digital signal processing, control
systems, and the internet of things. The second addition is Bluetooth Low Energy
(BLE), which will be implemented by interfacing a CC2650, in a similar manner
with which IEEE802.11b wifi is implemented in this book using the CC3100.
Running on the CC2650 will be an application programmer interface called Simple
Network Processor (SNP). SNP allows the TM4C123/MSP432 microcontroller to
implement BLE using a simple set of UART messaging. Off-loading the BLE
functions to the CC2650 allows the target microcontroller to implement system level
functions without the burden of satisfying the real-time communication required by
Bluetooth.

Preface to Volume 3

Embedded systems are a ubiquitous component of our everyday lives. We interact
with hundreds of tiny computers every day that are embedded into our houses, our
cars, our toys, and our work. As our world has become more complex, so have the
capabilities of the microcontrollers embedded into our devices. The ARM Cortex-M
family represents the new class of microcontrollers much more powerful than the
devices available ten years ago. The purpose of this book is to present the design
methodology to train young engineers to understand the basic building blocks that
comprise devices like a cell phone, an MP3 player, a pacemaker, antilock brakes,
and an engine controller.

This book is the third in a series of three books that teach the fundamentals of
embedded systems as applied to the ARM Cortex-M family of microcontrollers. This
third volume is primarily written for senior undergraduate or first-year graduate
electrical and computer engineering students. It could also be used for professionals
wishing to design or deploy a real-time operating system onto an ARM platform. The

first book Embedded Systems: Introduction to ARM Cortex-M Microcontrollers is an
introduction to computers and interfacing focusing on assembly language and C

programming. The second book Embedded Systems: Real-Time Interfacing to ARM
Cortex-M Microcontrollers focuses on interfacing and the design of embedded
systems. This third book is an advanced book focusing on operating systems, high-
speed interfacing, control systems, and robotics.

An embedded system is a system that performs a specific task and has a computer
embedded inside. A system is comprised of components and interfaces connected
together for a common purpose. This book presents components, interfaces and
methodologies for building systems. Specific topics include microcontrollers, design,
verification, hardware/software synchronization, interfacing devices to the computer,
timing diagrams, real-time operating systems, data collection and processing, motor
control, analog filters, digital filters, and real-time signal processing.

In general, the area of embedded systems is an important and growing discipline
within electrical and computer engineering. In the past, the educational market of
embedded systems has been dominated by simple microcontrollers like the PIC, the
9S12, and the 8051. This is because of their market share, low cost, and historical
dominance. However, as problems become more complex, so must the systems that
solve them. A number of embedded system paradigms must shift in order to
accommodate this growth in complexity. First, the number of calculations per second
will increase from millions/sec to billions/sec. Similarly, the number of lines of
software code will also increase from thousands to millions. Thirdly, systems will
involve multiple microcontrollers supporting many simultaneous operations. Lastly,
the need for system verification will continue to grow as these systems are deployed
into safety critical applications. These changes are more than a simple growth in size
and bandwidth. These systems must employ parallel programming, high-speed
synchronization, real-time operating systems, fault tolerant design, priority interrupt

handling, and networking. Consequently, it will be important to provide our students
with these types of design experiences. The ARM platform is both low cost and
provides the high performance features required in future embedded systems.
Although the ARM market share is large and will continue to grow. Furthermore,
students trained on the ARM will be equipped to design systems across the complete
spectrum from simple to complex. The purpose of writing these three books at this
time is to bring engineering education into the 21°* century.

This book employs many approaches to learning. It will not include an exhaustive
recapitulation of the information in data sheets. First, it begins with basic
fundamentals, which allows the reader to solve new problems with new technology.
Second, the book presents many detailed design examples. These examples illustrate
the process of design. There are multiple structural components that assist learning.
Checkpoints, with answers in the back, are short easy to answer questions providing
immediate feedback while reading. Homework problems, which typically are
simpler than labs, provide more learning opportunities. The book includes an index
and a glossary so that information can be searched. The most important learning
experiences in a class like this are of course the laboratories. More detailed lab
descriptions are available on the web. Specifically for Volume 1, look at the lab
assignments for EE319K. For Volume 2 refer to the EE445L labs, and for this
volume, look at the lab assignments for EE445M/EE380L.6.

There is a web site accompanying this book
http://users.ece.utexas.edu/~valvano/arm. Posted here are ARM Keil™ uVision®
and Texas Instruments Code Composer Studio™ projects for each of the example
programs in the book. You will also find data sheets and Excel spreadsheets relevant
to the material in this book.

The book will cover embedded systems for ARM ® Cortex™-M microcontrollers
with specific details on the TM4C123, TM4C1294, and MSP432. Most of the topics
can be run on any Texas Instruments Cortex M microcontroller. In these books the
terms MSP432 and TM4C will refer to any of the Texas Instruments ARM Cortex-M
based microcontrollers. Although the solutions are specific for the MSP432 and
TMAC families, it will be possible to use these books for other ARM derivatives.

Acknowledgements

I owe a wonderful debt of gratitude to Daniel Valvano. He wrote and tested most of
the software examples found in these books. Secondly, he maintains the example web
site, http://users.ece.utexas.edw/~valvano/arm. Lastly, he meticulously proofread
this manuscript.

Many shared experiences contributed to the development of this book. First I would
like to acknowledge the many excellent teaching assistants I have had the pleasure of
working with. Some of these hard-working, underpaid warriors include Pankaj
Bishnoi, Rajeev Sethia, Adson da Rocha, Bao Hua, Raj Randeri, Santosh Jodh,
Naresh Bhavaraju, Ashutosh Kulkarni, Bryan Stiles, V. Krishnamurthy, Paul Johnson,
Craig Kochis, Sean Askew, George Panayi, Jeehyun Kim, Vikram Godbole, Andres
Zambrano, Ann Meyer, Hyunjin Shin, Anand Rajan, Anil Kottam, Chia-ling Wei,
Jignesh Shah, Icaro Santos, David Altman, Nachiket Kharalkar, Robin Tsang, Byung
Geun Jun, John Porterfield, Daniel Fernandez, Deepak Panwar, Jacob Egner, Sandy
Hermawan, Usman Tariq, Sterling Wei, Seil Oh, Antonius Keddis, Lev Shuhatovich,
Glen Rhodes, Geoffrey Luke, Karthik Sankar, Tim Van Ruitenbeek, Raffaele Cetrulo,
Harshad Desai, Justin Capogna, Arindam Goswami, Jungho Jo, Mehmet Basoglu,
Kathryn Loeffler, Evgeni Krimer, Nachiappan Valliappan, Razik Ahmed, Sundeep
Korrapati, Song Zhang, Zahidul Haq, Matthew Halpern, Cruz Monrreal II, Pohan
Wu, Saugata Bhattacharyya, Dayo Lawal, Abhishek Agarwal, Sparsh Singhai,
Nagaraja Revanna, Mahesh Srinivasan, Victoria Bill, Alex Hsu, Dylan Zika, Chun-
Kai Chang, Zhao Zheng, Ce Wei, Kelsey Taylor Ball, Brandon Nguyen, Turan Vural,
Schuyler Christensen, Danny Vo, Justin Nguyen, Danial Rizvi, Armand Behroozi,
Vivian Tan, Anthony Bauer, Jun Qi Lau, Corey Cormier, Cody Horton, Youngchun
Kim, Ryan Chow, Cody Horton, Corey Cormier, and Dylan Zika. These teaching
assistants have contributed greatly to the contents of this book and particularly to its
laboratory assignments. Since 1981, I estimate I have taught embedded systems to
over 5000 students. My students have recharged my energy each semester with their
enthusiasm, dedication, and quest for knowledge. I have decided not to acknowledge
them all individually. However, they know I feel privileged to have had this
opportunity.

Next, I appreciate the patience and expertise of my fellow faculty members here at
the University of Texas at Austin. From a personal perspective Dr. John Pearce
provided much needed encouragement and support throughout my career. Over the
last few years, I have enjoyed teaching embedded systems with Drs. Ramesh
Yerraballi, Mattan Erez, Andreas Gerstlauer, and William Bard. Bill has contributed
to both the excitement and substance of our laboratory based on this book. Many of
the suggestions and corrections from Chris Shore and Drew Barbier of ARM about
Volume 1 applied equally to this volume. Austin Blackstone created and debugged the
Code Composer Studio™ versions of the example programs posted on the web.
Austin also taught me how to run the CC3000 and CC3100 Wifi examples on the
LaunchPad.

Ramesh Yerraballi and I have created two MOOCSs, which have had over 110,000
students, and delivered to 110 countries. The new material in this book was
developed under the watchful eye of Professor Yerraballi. It has been an honor and
privilege to work with such a skilled and dedicated educator.

Andreas Gerstlauer has taught a course based on this book multiple times, and I have
incorporated many of his ideas into this edition of the book. Furthermore, you will
find a rich set of material if you search with these keywords Gerstlauer RTOS
utexas.

Sincerely, I appreciate the valuable lessons of character and commitment taught to me
by my parents and grandparents. I recall how hard my parents and grandparents
worked to make the world a better place for the next generation. Most significantly, I
acknowledge the love, patience and support of my wife, Barbara, and my children,
Ben Dan and Liz. In particular, Dan designed and tested most of the MSP432 and
TMA4C software presented in this book.

By the grace of God, I am truly the happiest man on the planet, because I am
surrounded by these fine people.

Jonathan W. Valvano

Good luck

1. Computer Architecture

Chapter 1 objectives are to:
* Present a brief review of computer architecture

* Overview the ARM ® Cortex ™ -M processor including assembly
language

* Introduce the Texas Instruments MSP432/TM4C family of
microcontrollers

The overall objective of this book is to teach the design of real-time operating
systems for embedded systems. We define a system as real time if there is a
small and bounded delay between the time when a task should be completed
and when it is actually completed. We will present both fundamental principles
and practical solutions. Interfacing to the microcontroller was presented in
detail in Volume 2 and reviewed in the first two chapters of this book. The
overlap allows this book to stand alone as a text to teach embedded real time
operating systems. This first chapter will review the architecture of the Texas
Instruments MSP432/TM4C family of microcontrollers. When designing
operating systems, we need to understand the details of the architecture. In
particular, we must perform many functions in assembly language. Furthermore,
managing memory will require an intimate understanding of how the processor
accesses memory at the most basic level.

1.1. Introduction to Real-Time Operating Systems

1.1.1. Real-time operating systems

A computer system has many types of resources such as memory, I/O, data, and
processors. A real-time operating system (RTOS) is software that manages these
resources, guaranteeing all timing constraints are satisfied. Figure 1.1 illustrates the
relationship between hardware and software. On the left is a basic system without an
operating system. Software is written by a single vendor for a specific
microcontroller. As the system becomes more complex (middle figure), an operating
system facilitates the integration of software from multiple vendors. By providing a
hardware abstraction layer (HAL) an operating system simplifies porting
application code from one microcontroller to another. In order to provide additional
processing power, embedded systems of the future will require multiple
microcontrollers, processors with specialized coprocessors and/or a microcontroller
with multiple cores (right figure). Synchronization and assigning tasks across
distributed processors are important factors. As these systems become more
complex, the role of the operating system will be increasingly important.

Bast Svshm ' om p Ex Sysim Fubire Svstm s
Application Softw are Application Softw are
Sofflware | Application Softw are 0 perating System 0 perating System
Hardware| M rocontoller | | M erocontroller | |Core |Core|Core[Core
Extemal circuits Externalcircuits Externalcircuits

Figure 1.1. An operating system is a software layer between the application
software and the hardware.

The RTOS must manage resources like memory, processor and I/O. The RTOS will
guarantee strict timing constraints and provide reliable operation. The RTOS will
support synchronization and communication between tasks. As complex systems are
built the RTOS manages the integration of components. Evolution is the notion of a
system changing to improve performance, features and reliability. The RTOS must
manage change. When designing a new system, it is good design practice to build a
new system by changing an existing system. The notion of portability is the ease at
which one system can be changed or adapted to create another system.

The response time or latency is the delay from a request to the beginning of the
service of that request. There are many definitions of bandwidth. In this book we
define bandwidth as the number of information bytes/sec that can be transferred or

processed. We can compare and contrast regular operating systems with real-time
operating systems.

Regular OS Real-time OS

Complex Simple

Best effort Guaranteed response

Fairness Strict timing constraints

Average bandwidth Minimum and maximum
limits

Unknown components Known components

Unpredictable behavior Predictable behavior

Plug and play Upgradable

Table 1.1. Comparison of regular and real-time operating systems.

From Table 1.1 we see that real-time operating systems have to be simple so they may be
predictable. While traditional operating systems gauge their performance in terms of
response time and fairness, real-time operating systems target strict timing constraints and
upper, lower bounds on bandwidth. One can expect to know all the components of the
system at design time and component changes happen much more infrequently.

Checkpoint 1.1: What does real time mean?

1.1.2. Embedded Systems

An embedded system is a smart device with a processor that has a special and
dedicated purpose. The wuser wusually does not or cannot upgrade the
hardware/software or change what the system does. Real time means that the
embedded system must respond to critical events within a strictly defined time,
called the deadline. A guarantee to meet all deadlines can only be made if the
behavior of the operating system can be predicted. In other words the timing must be
deterministic. There are five types of software functions the processor can perform in
an embedded system. Similar to a general-purpose computer, it can perform
mathematical and/or data processing operations. It can analyze data and make
decisions based on the data. A second type involves handling and managing time: as
an input (e.g., measure period), an output (e.g., output waveforms), and a means to
synchronize tasks (e.g., run 1000 times a second). A third type involves real-time
input/output for the purpose of measurement or control. The fourth type involves
digital signal processing (DSP), which are mathematical calculations on data
streams. Examples include audio, video, radar, and sonar. The last type is
communication and networking. As embedded systems become more complex, how
the components are linked together will become increasingly important.

There are two classifications of embedded systems as shown in Figure 1.2. A
transformative system collects data from inputs, makes decisions, and affects its
environment by driving actuators. The robot systems presented in Chapter 10 are

examples of transformative systems. A reactive system collects data in a continuous
fashion and produce outputs also in a continuous fashion. Digital signal processing
algorithms presented in Chapter 6 are examples of reactive systems.

Transform ative System Environm ent

el
E m bedded
_&enmrg_interfmg_bsﬁm __Lntafa:::g_ich.m bors|

| |

R eactive Syskm

Contnuous :: Embedded | Continuous

Inputs _N SysiEm _: Qutputs
Environment I

Figure 1.2. Embedded systems can transform or react to the environment.

Six constraints typify an embedded system. First, they are small size. For example,
many systems must be handheld. Second, they must have low weight. If the device is
deployed in a system that moves, e.g., attached to a human, aircraft or vehicle, then
weight incurs an energy cost. Third, they often must be low power. For example, they
might need to operate for a long time on battery power. Low power also impacts the
amount of heat they are allowed to generate. Fourth, embedded systems often must
operate in harsh environments, such as heat, pressure, vibrations, and shock. They
may be subject to noisy power, RF interference, water, and chemicals. Fifth,
embedded systems are often used in safety critical systems. Real-time behavior is
essential. For these systems they must function properly at extremely high levels of
reliability. Lastly, embedded systems are extremely sensitive to cost. Most
applications are profit-driven. For high-volume systems a difference in pennies can
significantly affect profit.

Checkpoint 1.2: What is an embedded system?
Checkpoint 1.3: List the six constraints typically found in an embedded system?

1.2. Computer Architecture

1.2.1. Computers, processors, and microcontrollers

Given that an operating system is a manager of resources provided by the underlying
architecture, it would serve the reader well to get acquainted with the architecture the
OS must manage. In this section we will delve into these details of the building
blocks of computer architecture, followed by the specifics of the ARM Cortex M4
processor architecture, in particular TI's implementation of the ARM ISA found on
the TM4C and MSP432.

A computer combines a central processing unit (CPU), random access memory
(RAM), read only memory (ROM), and input/output (I/O) ports. The common bus in
Figure 1.3 defines the von Neumann architecture. Software is an ordered sequence
of very specific instructions that are stored in memory, defining exactly what and
when certain tasks are to be performed.

C om puter ILIE}ua
& 3
P rocessor JI_
Input [< < :..:Elljput
ports [|Exiemal| |Physical[” s&nals
RAM | circuits dev ices
! 0 utput = = ~r 0 utput
ports ™ — — signaks
ROM
L 3 ¥
A ddress ¥ Contol
D ata

Figure 1.3. The basic components of a computer system include processor,
memory and I/0.

The CPU or processor executes the software by retrieving (from memory) and
interpreting these instructions one at a time. An ARM Cortex-M microcontroller
includes a processor, memory and input/output. The processor, memory and
peripherals are connected via multiple buses. Because instructions are fetched via
the ICode bus and data are fetched via the System bus, the Cortex M is classified as a
Harvard architecture. Having multiple busses allows the system to do several things
simultaneously. For example, the processor could be reading an instruction from
ROM using the ICode bus and writing data to RAM using the System bus.

The ARM Cortex-M processor has four major components, as illustrated in Figure
1.4. There are bus interface units (BIU) that read data from the bus during a read

cycle and write data onto the bus during a write cycle. The BIU always drives the
address bus and the control signals of the bus. The effective address register (EAR)
contains the memory address used to fetch the data needed for the current instruction.
Cortex-M microcontrollers execute Thumb instructions extended with Thumb-2
technology. An overview of these instructions will be presented in Section 1.5. Many
functions in an operating system will require detailed understanding of the
architecture and assembly language.

The control unit (CU) orchestrates the sequence of operations in the processor. The
CU issues commands to the other three components. The instruction register (IR)
contains the operation code (or op code) for the current instruction. When extended
with Thumb-2 technology, op codes are either 16 or 32 bits wide.

The arithmetic logic unit (ALU) performs arithmetic and logic operations. Addition,
subtraction, multiplication and division are examples of arithmetic operations.
Examples of logic operations are, and, or, exclusive-or, and shift. Many processors
used in embedded applications support specialized operations such as table lookup,
multiply and accumulate, and overflow detection.

1

Processor = [Codebus
Reiir?hers B us inferface unit[* gfscgﬁ tﬁ,ﬂi
R1 £ Privat peripheralbus

R Controlunit] |ALU

SP
Be (]

* A dvanced h gh-perform ance bus

Figure 1.4. The four basic components of a processor.

A very small microcomputer, called a microcontroller, contains all the components
of a computer (processor, memory, I/O) on a single chip. The Atmel ATtiny and the
TI TM4C123 are examples of microcontrollers. Because a microcomputer is a small
computer, this term can be confusing because it is used to describe a wide range of
systems from a 6-pin ATtiny4 running at 1 MHz with 512 bytes of program memory to
a personal computer with state-of-the-art 64-bit multi-core processor running at
multi-GHz speeds having terabytes of storage.

An application-specific integrated circuit (ASIC) is digital logic that solves a very
specific problem. See Figure 1.5. A field-programmable gate array (FPGA) is one
approach to ASIC prototyping, allowing you to program and reprogram the digital
logic. Verilog and VHDL are example FPGA programming environments. ASIC
design is appropriate for problems defined with logic and/or numerical equations.
On the other hand, microcontrollers are appropriate for problems solved with
algorithms or sequential processes. Mature problems with high volume can create
ASIC solutions directly as digital logic integrated circuits. On the other hand,
microcontrollers can be used for low-volume problems and have the advantage of
having a shorter time to market. Microcontrollers, because they are programmed with
software, allow a flexibility to upgrade features, provide user-tailored performance,

and solve problems with uncertain or changing requirements. Some systems have
both microcontrollers and ASICs.

ASIC Input

o . Externall [Physical
D lgital logic | circuits devices

% Input
~signals

EEE]
ARR

:;D_umut
—signals

Hi
H

Figure 1.5. A system implemented with an ASIC and I/0.

In an embedded system the software is converted to machine code, which is a list of
instructions, and stored in nonvolatile flash ROM. As instructions are fetched, they
are placed in a pipeline. This allows instruction fetching to run ahead of execution.
Instructions on the Cortex-M processor are fetched in order and executed in order.
However, it can execute one instruction while fetching the next. Many high-speed
processors allow out of order execution, support parallel execution on multiple
cores, and employ branch prediction.

On the ARM Cortex-M processor, an instruction may read memory or write memory,
but does not read and write memory in the same instruction. Each of the phases may
require one or more bus cycles to complete. Each bus cycle reads or writes one
piece of data. Because of the multiple bus architecture, most instructions execute in
one or two cycles. For more information on the time to execute instructions, see
Table 3.1 in the Cortex-M Technical Reference Manual.

Figure 1.6 shows a simplified block diagram of a microcontroller based on the ARM
Cortex-M processor. It is a Harvard architecture because it has separate data and

instruction buses.
M icrocontroller System bus
Ak A . i
ARM ®Corex™ M
roCessor
b - FEINYYY |I'I=put ":-l::
FFB | J: J: Pm:l_s e
Infemal 4
. A dvanced

peripherals H igh-perf 0 utput 5
Bus ports —

Instructions A A

e L Flash ROM A Data

IC ode bus D Codebus RAM

Figure 1.6. Harvard architecture of an ARM Cortex-M-based
microcontroller.

The instruction set combines the high performance typical of a 32-bit processor with
high code density typical of 8-bit and 16-bit microcontrollers. Instructions are
fetched from flash ROM using the ICode bus. Data are exchanged with memory and

I/O via the system bus interface. There are many sophisticated debugging features
utilizing the DCode bus. An interrupt is a hardware-triggered software function,
which is extremely important for real-time embedded systems. The latency of an
interrupt service is the time between hardware trigger and software response. Some
internal peripherals, like the nested vectored interrupt controller (NVIC),
communicate directly with the processor via the private peripheral bus (PPB). The
tight integration of the processor and interrupt controller provides fast execution of
interrupt service routines (ISRs), dramatically reducing the interrupt latency.

Checkpoint 1.4: Why do you suppose the Cortex M has so many busses?

Checkpoint 1.5: Notice the debugger exists on the DCode bus. Why is this a good
idea?

1.2.2. Memory

One kibibyte (KiB) equals 1024 bytes of memory. The TM4C123 has 256 kibibytes
(2'8 bytes) of flash ROM and 32 kibibytes (2'> bytes) of RAM. The MSP432 also has
256 kibibytes (2'® bytes) of flash ROM but has 64 kibibytes (2'® bytes) of RAM. We
view the memory as continuous virtual address space with the RAM beginning at
0x2000.0000, and the flash ROM beginning at 0x0000.0000.

The microcontrollers in the Cortex-M family differ by the amount of memory and by
the types of I/O modules. There are hundreds of members in this family; some of them
are listed in Table 1.2. The memory maps of TM4C123 and MSP432 are shown in
Figure 1.7. Although this course focuses on two microcontrollers from Texas
Instruments, all ARM Cortex-M microcontrollers have similar memory maps. In
general, Flash ROM begins at address 0x0000.0000, RAM begins at 0x2000.0000,
the peripheral I/O space is from 0x4000.0000 to Ox5FFF.FFFF, and I/O modules on
the private peripheral bus exist from 0xE000.0000 to OXEOOF.FFFF. In particular, the
only differences in the memory map for the various members of the Cortex-M family
are the ending addresses of the flash and RAM.

Part number RAM | Flash| I/O | I/O modules

MSP432P401RIPZ | 64 | 256 | 84 | floating point, DMA

TM4C123GH6PM | 32 | 256 | 43 | floating point, CAN, DMA,
USB, PWM

TM4C1294NCPDT | 256 | 1024 | 90 | floating point, CAN, DMA,
USB, PWM, Ethernet

STM32F051R8T6 8 64 55 | DAC, Touch sensor, DMA,
12S, HDMI, PWM

MKE027264VQH2 4 64 | 53 | PWM

KiB | KiB | pins

Table 1.2. Memory and I/O modules (all have SysTick, RTC, timers, UART, I’C, SSI, and

ADC).

Having multiple buses means the processor can perform multiple tasks in parallel.
On the TM4C123, general purpose input/output (GPIO) ports can be accessed using
either the PPB or AHPB. The following is some of the tasks that can occur in parallel

ICode bus Fetch opcode from ROM

DCode bus Read constant data from ROM

Systembus Read/write data from RAM or I/O, fetch opcode from RAM

PPB Read/write data from internal peripherals like the NVIC

AHPB Read/write data from internal peripherals like the USB

Instructions and data are accessed using a common bus on a von Neumann machine.
The Cortex-M processor is a Harvard architecture because instructions are fetched
on the ICode bus and data accessed on the system bus. The address signals on the
ARM Cortex-M processor include 32 lines, which together specify the memory
address (0x0000.0000 to OxFFFE.FFFF) that is currently being accessed. The
address specifies both which module (input, output, RAM, or ROM) as well as
which cell within the module will communicate with the processor. The data signals
contain the information that is being transferred and also include 32 bits. However,
on the system bus it can also transfer 8-bit or 16-bit data. The control signals specify
the timing, the size, and the direction of the transfer.

ROM_ | 0x0003 FFFF ROM | 0x0003FFFF
SOKRAM_| 0+200p.0000 GikRAN | 0720090000
0x2000.FFF 0x2000 FFFF

10 ports | Px409.0000 10 porss | 0x4009.0000
Ox400F FFFF Ox41FF FFFF

memal 10| O€0%p 0000 emal 10| O<€000 0000
PPB | 0xE004.1FFF BPB | 0xE004 0FFF

Figure 1.7. Memory map of the TM4C123 with 256k ROM and 32k RAM and
the MSP432 with 256k ROM and 64k RAM.

Checkpoint 1.6: What do we put in RAM and what do we put in ROM?
Checkpoint 1.7: Can software write into the ROM of our microcontroller?

The ARM Cortex-M processor uses bit-banding to allow read/write access to
individual bits in RAM and some bits in the I/O space. There are two parameters that
define bit-banding: the address and the bit you wish to access. Assume you wish to
access bit b of RAM address 0x2000.0000+n, where b is a number 0 to 7. The
aliased address for this bit will be

0x2200.0000 + 32*n + 4*b

Reading this address will return a O or a 1. Writing a 0 or 1 to this address will
perform an atomic read-modify-write modification to the bit.

If we consider 32-bit word-aligned data in RAM, the same bit-banding formula still
applies. Let the word address be 0x2000.0000+n. n starts at 0 and increments by 4.
In this case, we define b as the bit from 0 to 31. In little-endian format, bit 1 of the
byte at 0x2000.0001 is the same as bit 9 of the word at 0x2000.0000.The aliased
address for this bit will still be

0x2200.0000 + 32*n + 4*b

Examples of bit-banded addressing are listed in Table 1.3. Writing a 1 to location
0x2200.0018 will set bit 6 of RAM location 0x2000.0000. Reading location
0x2200.0024 will return a 0 or 1 depending on the value of bit 1 of RAM location

0x2000.0001.

RAM Offset | Bit b | Bit-banded
address n alias
0x2000.0000 0 0 | 0x2200.0000
0x2000.0000 0 1 | 0x2200.0004
0x2000.0000 0 2 | 0x2200.0008
0x2000.0000 0 3 | 0x2200.000C
0x2000.0000 0 4 | 0x2200.0010
0x2000.0000 0 5 |0x2200.0014
0x2000.0000 0 6 |0x2200.0018
0x2000.0000 0 7 | 0x2200.001C
0x2000.0001 1 0 | 0x2200.0020
0x2000.0001 1 1 |0x2200.0024

Table 1.3. Examples of bit-banded addressing.

Checkpoint 1.8: What address do you use to access bit 3 of the byte at
0x2000.10107?

Checkpoint 1.9: What address do you use to access bit 22 of the word at
0x2001.00007?

The other bit-banding region is the I/O space from 0x4000.0000 through
0x400F.FFFFE. In this region, let the I/O address be 0x4000.0000+n, and let b
represent the bit O to 7. The aliased address for this bit will be 0x4200.0000 + 32*n
+4*b

Checkpoint 1.10: What address do you use to access bit 7 of the byte at
0x4000.00307?

1.3. Cortex-M Processor Architecture

1.3.1. Registers

The registers on an ARM Cortex-M processor are depicted in Figure 1.8. RO to R12
are general purpose registers and contain either data or addresses. Register R13
(also called the stack pointer, SP) points to the top element of the stack. Actually,
there are two stack pointers: the main stack pointer (MSP) and the process stack
pointer (PSP). Only one stack pointer is active at a time. In a high-reliability
operating system, we could activate the PSP for user software and the MSP for
operating system software. This way the user program could crash without disturbing
the operating system. Most of the commercially available real-time operating systems
available on the Cortex M will use the PSP for user code and MSP for OS code.
Register R14 (also called the link register, LR) is used to store the return location for
functions. The LR is also used in a special way during exceptions, such as interrupts.
Register R15 (also called the program counter, PC) points to the next instruction to
be fetched from memory. The processor fetches an instruction using the PC and then
increments the PC by the length (in bytes) of the instruction fetched.

Checkpoint 1.11: How are registers R13 R14 and R15 special?

B
Bl
B2 S 5 E
T oecéa | g slers
B4 PSR Program sttus register
General BS PR IM & SK
purpose BE (FALLLTM A SK | FException m ask regsters
reg iskers B BASFPR |
B8 CONTROI CONTROL register
B9
B10
B11
B12
Stack pointer_ R13 M sP) | RI13(PSP) |
Linkregister_RI4A (IR)
Program counter __R15 (PC)

Figure 1.8. The registers on the ARM Cortex-M processor.

The ARM Architecture Procedure Call Standard, AAPCS, part of the ARM
Application Binary Interface (ABI), uses registers R0, R1, R2, and R3 to pass input
parameters into a C function or an assembly subroutine. Also according to AAPCS
we place the return parameter in Register RO. The standard requires functions to
preserve the contents of R4-R11. In other words, functions save R4-R11, use R4-

R11, and then restore R4-R11 before returning. Another restriction is to keep the
stack aligned to 64 bits, by pushing and popping an even number of registers.

There are three status registers named Application Program Status Register (APSR),
the Interrupt Program Status Register (IPSR), and the Execution Program Status
Register (EPSR) as shown in Figure 1.9. These registers can be accessed
individually or in combination as the Program Status Register (PSR).

3 30 29 28 27 0
aPsk [nlzlcvla] Resrved |
3 g {0
PSR Resttued ISR_NUM BER
H 26 25 24 15 10 0
EPSR |_Reserved |1 AT |T Reserved] LT | Ressrved |
31 30 29 28 27 a5 a5 94 15 10 g {0
psk [N]z Jc v Ja [ic i [T Reserved] i v ISR_NUM BER

Figure 1.9. The program status register of the ARM Cortex-M processor.

The N, Z, V, C, and Q bits signify the status of the previous ALU operation. Many
instructions set these bits to signify the result of the operation. In general, the N bit is
set after an arithmetical or logical operation signifying whether or not the result is
negative. Similarly, the Z bit is set if the result is zero. The C bit means carry and is
set on an unsigned overflow, and the V bit signifies signed overflow. The Q bit is the
sticky saturation flag, indicating that “saturation” has occurred, and is set by
the SSAT and USAT instructions.

The T bit will always be 1, indicating the ARM Cortex-M processor is executing
Thumb instructions. The ICIIT bits are used by interrupts and by IF-THEN
instructions. The ISR_NUMBER indicates which interrupt if any the processor is
handling. Bit 0 of the special register PRIMASK is the interrupt mask bit, or I bit. If
this bit is 1 most interrupts and exceptions are not allowed. If the bit is 0, then
interrupts are allowed. Bit 0 of the special register FAULTMASK is the fault mask
bit. If this bit is 1 all interrupts and faults are disallowed. If the bit is 0, then
interrupts and faults are allowed. The nonmaskable interrupt (NMI) is not affected by
these mask bits. The BASEPRI register defines the priority of the executing
software. It prevents interrupts with lower or equal priority from interrupting the
current execution but allows higher priority interrupts. For example if BASEPRI
equals 3, then requests with level 0, 1, and 2 can interrupt, while requests at levels 3
and higher will be postponed. The details of interrupt processing will be presented in
detail, later in the book.

Checkpoint 1.12: Where is the I bit and what does it mean?

1.3.2. Stack

The stack is a last-in-first-out temporary storage. Managing the stack is an important
function for the operating system. To create a stack, a block of RAM is allocated for
this temporary storage. On the ARM Cortex-M processor, the stack always operates
on 32-bit data. The stack pointer (SP) points to the 32-bit data on the top of the stack.
The stack grows downwards in memory as we push data on to it so, although we
refer to the most recent item as the “top of the stack” it is actually the item stored at
the lowest address! To push data on the stack, the stack pointer is first decremented
by 4, and then the 32-bit information is stored at the address specified by SP. To pop
data from the stack, the 32-bit information pointed to by SP is first retrieved, and then
the stack pointer is incremented by 4. SP points to the last item pushed, which will
also be the next item to be popped. The processor allows for two stacks, the main
stack and the process stack, with independent copies of the stack pointer. The boxes
in Figure 1.10 represent 32-bit storage elements in RAM. The grey boxes in the
figure refer to actual data stored on the stack, and the white boxes refer to locations
in memory that do not contain stack data. This figure illustrates how the stack is used
to push the contents of Registers RO, R1, and R2 in that order. Assume Register RO
initially contains the value 1, R1 contains 2 and R2 contains 3. The drawing on the
left shows the initial stack. The software executes these six

PUSH {R0}
PUSH {R1}
PUSH {R2}
POP {R3}
POP {R4}
POP {R5}

PUSH {R0} PUSH {R1} __PUSH {R2}
4 e ™S T __0%2000.000

SP — g
5P —E 2
Sp —ptl]]
SP 1 EEPOP {R5) | | POP {R4} 4 POP {R3} |

0x2000 FFFC

Figure 1.10. Stack picture showing three numbers first being pushed, then
three numbers being popped.

We can push and pop multiple registers; these six instructions could be replaced with

PUSH {R0-R2}
POP {R3-R5}

The instruction PUSH {R0} saves the value of RO on the stack. It first decrements SP
by 4, and then it stores the contents of RO into the memory location pointed to by SP.
The right-most drawing shows the stack after the push occurs three times. The stack
contains the numbers 1 2 and 3, with 3 on top. The instruction POP{R3} retrieves

data from the stack. It first moves the value from memory pointed to by SP into R3,
and then it increments SP by 4. After the pop occurs three times the stack reverts to
its original state and registers R3, R4 and R5 contain 3 2 1 respectively. We define
the 32-bit word pointed to by SP as the top entry of the stack. If it exists, we define
the 32-bit data immediately below the top, at SP+4, as next to top. Proper use of the
stack requires following these important rules

1. Functions should have an equal number of pushes and pops

2. Stack accesses (push or pop) should not be performed outside the
allocated area

3. Stack reads and writes should not be performed within the free
area

4. Stack push should first decrement SP, then store the data

5. Stack pop should first read the data, and then increment SP

Functions that violate rule number 1 will probably crash when incorrect data are
popped off at a later time. Violations of rule number 2 can be caused by a stack
underflow or overflow. Overflow occurs when the number of elements became larger
than the allocated space. Stack underflow is caused when there are more pops than
pushes, and is always the result of a software bug. A stack overflow can be caused
by two reasons. If the software mistakenly pushes more than it pops, then the stack
pointer will eventually overflow its bounds. Even when there is exactly one pop for
each push, a stack overflow can occur if the stack is not allocated large enough. The
processor will generate a bus fault when the software tries read from or write to an
address that doesn’t exist. If valid RAM exists below the stack then further stack
operations will corrupt data in this memory.

First, we will consider the situation where the allocated stack area is placed at the
beginning of RAM. For example, assume we allocate 4096 bytes for the stack from
0x2000.0000 to 0x2000.0FFF; see the left side of Figure 1.11. The SP is initialized
to 0x2000.1000, and the stack is considered empty. If the SP becomes less than
0x2000.0000 a stack overflow has occurred. The stack overflow will cause a bus
fault because there is nothing at address Ox1FFF.FFFC. If the software tries to read
from or write to any location greater than or equal to 0x2000.1000 then a stack
underflow has occurred. At this point the stack and global variables exist at
overlapping addresses. Stack underflow is a very difficult bug to recognize, because
the first consequence will be unexplained changes to data stored in global variables.

Stack starting at the first RAM location Stk mu’hg'aa the lastRAM location
ong

Noting | O verflow RAM 0 verflow
0x2000.0000 0x2000.,7000
A llbcated A llbcated
SP T stack SP T stack
area area
0x2000 .0FFC (x2000.7FFC
E o8 U nderflow Nothing | Underflow

Figure 1.11. Drawings showing two possible ways to allocate the stack area

in RAM.

Next, we will consider the situation where the allocated stack area is placed at the
end of RAM. The TM4C123 has 32 KiB of RAM from 0x2000.0000 to
0x2000.7FFF. So in this case we allocate the 4096 bytes for the stack from
0x2000.7000 to 0x2000.7FFF, shown on the right side of Figure 1.11. The SP is
initialized to 0x2000.8000, and the stack is considered empty. If the SP becomes less
than 0x2000.7000 a stack overflow has occurred. The stack overflow will not cause
a bus fault because there is memory at address 0x2000.6FFC. Stack overflow in this
case is a very difficult bug to recognize, because the first consequence will be
unexplained changes to data stored below the stack region. If the software tries to
read from or write to any location greater than or equal to 0x2000.8000 then a stack
underflow has occurred. In this case, stack underflow will cause a bus fault.

Executing an interrupt service routine will automatically push eight 32-bit words
ontothe stack. Since interrupts are triggered by hardware events, exactly when they
occur is not under software control. Therefore, violations of rules 3, 4, and 5 will
cause erratic behavior when operating with interrupts. Rules 4 and 5 are followed
automatically by the PUSH and POP instructions.

1.3.3. Operating modes

The ARM Cortex-M processor has two privilege levels called privileged and
unprivileged. Bit 0 of the CONTROL register is the thread mode privilege level
(TPL). If TPL is 1 the processor level is privileged. If the bit is 0, then processor
level is unprivileged. Running at the unprivileged level prevents access to various
features, including the system timer and the interrupt controller. Bit 1 of the
CONTROL register is the active stack pointer selection (ASPSEL). If ASPSEL is 1,
the processor uses the PSP for its stack pointer. If ASPSEL is 0, the MSP is used.
When designing a high-reliability operating system, we will run the user code at an
unprivileged level using the PSP and the OS code at the privileged level using the
MSP.

The processor knows whether it is running in the foreground (i.e., the main program)
or in the background (i.e., an interrupt service routine). ARM defines the foreground
as thread mode, and the background as handler mode. Switching between thread

and handler modes occurs automatically. The processor begins in thread mode,
signified by ISR_NUMBER=0. Whenever it is servicing an interrupt it switches to
handler mode, signified by setting ISR_INUMBER to specify which interrupt is being
processed. All interrupt service routines run using the MSP. In particular, the context
is saved onto whichever stack pointer is active, but during the execution of the ISR,
the MSP is used. For a high reliability operation all interrupt service routines will
reside in the operating system. User code can be run under interrupt control by
providing hooks, which are function pointers. The user can set function pointers
during initialization, and the operating system will call the function during the
interrupt service routine.

Observation: Processor modes and the stack are essential components of
building a reliable operating system. In particular the processor mode is an
architectural feature that allows the operating system to restrict access to critical
system resources.

1.3.4. Reset

A reset occurs immediately after power is applied and can also occur by pushing the
reset button available on most boards. After a reset, the processor is in thread mode,
running at a privileged level, and using the MSP stack pointer. The 32-bit value at
flash ROM location 0 is loaded into the SP. All stack accesses are word aligned.
Thus, the least significant two bits of SP must be 0. A reset also loads the 32-bit
value at location 4 into the PC. This value is called the reset vector. All instructions
are halfword aligned. Thus, the least significant bit of PC must be 0. However, the
assembler will set the least significant bit in the reset vector, so the processor will
properly initialize the Thumb bit (T) in the PSR. On the Cortex-M processor, the T
bit should always be set to 1. On reset, the processor initializes the LR to
OxFFFFFFFFE.

1.3.5. Clock system

Normally, the execution speed of a microcontroller is determined by an external
crystal. The Texas Instruments MSP-EXP432P401R board has a 48 MHz crystal. The
Texas Instruments EK-TM4C123GXL and EK-TM4C1294-XL boards have a 16
MHz crystal. The TM4C microcontrollers have a phase-lock-loop (PLL) that allows
the software to adjust the execution speed of the computer. Typically, the choice of
frequency involves the tradeoff between software execution speed and electrical
power. In other words, slowing down the bus clock will require less power to
operate and generate less heat. Speeding up the bus clock obviously allows for more
calculations per second.

The default bus speed of the MSP432 and TM4C microcontrollers is that of the

internal oscillator. For example, the default bus speed for the MSP432 is 3 MHz
+0.5%. The default bus speed for the TM4C internal oscillator is 16 MHz +1%. The
internal oscillator is significantly less precise than the crystal, but it requires less
power and does not need an external crystal. This means for most applications we
will activate the main oscillator using the crystal so we can have a stable bus clock.
We will call library functions to select the clock source and bus frequency. In this
book, we will assume the MSP432 is running at 48 MHz, the TM4C123 is running at
80 MHz, and the TM4C1294 is running at 120 MHz. For more details on the clock
systems refer to Volume 2 of this series.

1.4. Texas Instruments Cortex-M Microcontrollers

1.4.1. Introduction to IO

I/O is an important part of embedded systems in general. One of the important
features of an operating system is to manage I/O. Input and output are the means of an
embedded system to interact with its world. The external devices attached to the
microcontroller provide functionality for the system. These devices connect to the
microcontroller through ports. A pin is a specific wire on the microcontroller through
which we perform input or output. A collection of pins grouped by common
functionality is called a port. An input port is hardware on the microcontroller that
allows information about the external world to enter into the computer. The
microcontroller also has hardware called an output port to send information out to
the external world. The GPIO (General Purpose Input Output) pins on a
microcontroller are programmable to be digital input, digital output, analog input or
complex and protocol (like UART etc.) specific.

Microcontrollers use most of their pins for I/O (called GPIO), see Figure 1.12. Only
a few pins are not used for I/O. Examples of pins not used for I/O include power,
ground, reset, debugging, and the clock. More specifically, the TM4C123 uses 43 of
its 64 pins for I/O. The TM4C1294 uses 90 of its 128 pins for I/O. Similarly, the
MSP432 uses 84 of its 100 pins for I/O.

10 T4mm
mm 84 [0 pins
100 bialpins

(il LTl

bbt Hbbt Hbbt Bty Bt b b

input/output.

An interface is defined as the collection of the I/O port, external electronics,
physical devices, and the software, which combine to allow the computer to
communicate with the external world. An example of an input interface is a switch,
where the operator toggles the switch, and the software can recognize the switch
position. An example of an output interface is a light-emitting diode (LED), where
the software can turn the light on and off, and the operator can see whether or not the
light is shining. There is a wide range of possible inputs and outputs, which can exist

in either digital or analog form. In general, we can classify I/O interfaces into four
categories

Parallel/Digital - binary data are available simultaneously on a
group of lines

Serial - binary data are available one bit at a time on a single
line

Analog - data are encoded as an electrical voltage, current or
power

Time - data are encoded as a period, frequency, pulse width or
phase shift

In a system with memory-mapped I/O, as shown in Figure 1.13, the I/O ports are
connected to the processor in a manner similar to memory. I/O ports are assigned
addresses, and the software accesses 1/O using reads and writes to the specific /O
addresses. These addresses appear like regular memory addresses, except accessing
them results in manipulation of a functionality of the mapped I/O port, hence the term
memory-mapped I/O. As a result, the software inputs from an input port using the
same instructions as it would if it were reading from memory. Similarly, the software
outputs from an output port using the same instructions as it would if it were writing
to memory.

M icrocontrofler, Syskm bus
ARM ®Corex™ M .

s _ — Input =
ports [%
0 utput ==
ports [

Instructions ¥oor ¥

i FlashROM D ata

IC ode bus RAM

Figure 1.13. Memory-mapped input/output.

e UART

Most pins on Cortex M microcontrollers can be used for general purpose I/O
(GPIO) called regular functions or for more complex functions called alternate
functions. For example, port pins PA1 and PAO on the TM4C123 can be either
regular parallel port pins, or an asynchronous serial port called universal
asynchronous receiver/transmitter (UART).

Some of the alternative functions used in this book are:

Universal asynchronous receiver/transmitter

e SSI or SPI Synchronous serial interface or serial peripheral

interface
e I2C

e Timer
 PWM
« ADC

Inter-integrated circuit
Periodic interrupts
Pulse width modulation
Analog to digital converter, measurement analog signals

The UART can be used for serial communication between computers. It is
asynchronous and allows for simultaneous communication in both directions. The SSI
(also called SPI) is used to interface medium-speed I/O devices. In this class, we
will use SSI to interface a graphics display. I*C is a simple I/O bus that we will use
to interface low speed peripheral devices. In this class we use I°C to interface a light
sensor and a temperature sensor. We will use the timer modules to create periodic
interrupts. PWM outputs could be used to apply variable power to motor interfaces.
However, in this class we use PWM to adjust the volume of the buzzer. The ADC
will be used to measure the amplitude of analog signals, and will be important in
data acquisition systems. In this class we will connect the microphone, joystick and
accelerometer to the ADC.

Joint Test Action Group (JTAG), standardized as the IEEE 1149.1, is a standard test
access port used to program and debug the microcontroller board. Each
microcontroller uses four port pins for the JTAG interface.

Checkpoint 1.13: What is the difference between a pin and a port?
Checkpoint 1.14: List four types of input/output.

1.4.2. Texas Instruments TM4C123 LaunchPad I/O pins

Figure 1.14 draws the I/O port structure for the TM4C123GH6PM. This
microcontroller is used on the EK-TM4C123GXL LaunchPad. Pins on the TM4C
family can be assigned to as many as eight different I/O functions. Pins can be
configured for digital I/O, analog input, timer I/O, or serial I/O. For example PB4
can be a digital I/O, ADC, SSI, PWM, timer or CAN pin. There are two buses used
for I/0. The digital I/O ports are connected to both the advanced peripheral bus and
the advanced high-performance bus (runs faster). Because of the multiple buses, the
microcontroller can perform I/O bus cycles simultaneous with instruction fetches
from flash ROM. The TM4C123GH6PM has eight UART ports, four SSI ports, four
I2C ports, two 12-bit ADCs, twelve timers, two PWMs, a CAN port, and a USB
interface. There are 43 I/O lines. There are twelve ADC inputs; each ADC can
convert up to 1M samples per second. Table 1.4 lists the regular and alternate names
of the port pins.

Each pin has one configuration bit in the GPIOAMSEL register. We set this bit to
connect the port pin to the ADC or analog comparator. For digital functions, each pin

also has four bits in the GPIOPCTL register, which we set to specify the alternative
function for that pin (0 means regular I/O port). Not every pin can be connected to
every alternative function. See Table 1.4.

Pins PC3 — PCO were left off Table 1.4 because these four pins are reserved for the
JTAG debugger, and should not be used for regular I/O. Notice, most alternate
function modules (e.g., UORx) only exist on one pin (PAO). While other functions
could be mapped to two or three pins (CANORx could be mapped to PB4, PE4 or
PF3.)

The two pins PD7 and PFO are associated with NMI; these two pins are initially
locked. This means if you plan to use PD7 or PFO you will need to unlock it by first
writing 0x4C4F434B to the lock register and then setting bits in the commit register.

This code unlocks PFO
GPIO_PORTF_LOCK R =0x4C4F434B; // unlock GPIO Port F
GPIO_PORTF_CR_R = 0x1F; // allow changes to PF4-0
A
CortexM 4 el | 32kRAM
o GPIO Porth [>[*™[cPo PoriB
ﬁ; E igh Four [8
= uakTs [s s
— Four Ll | CAN 20 -
—[aPioPortc I* ™™ [cPio Portd =
4 _] Tw ek [
‘ USB 20 - Tmeke - 8
25 S .-
e TTAG Bi-bitw ide —
GPIO PortE ¢ > T*™[GPb PortF
6 TwoAnalo -
—— 2cﬁ5n?1el5 g {:‘;ﬁnar:-jbfs — ?
=il 12 inputs a— I
- Two PH M
8 12bits - Two Pl M -
Y
System Bus

Figure 1.14. 1/0 port pins for the TM4C123GH6PM microcontroller.

For example, if we wished to use UART7 on pins PEO and PE1, we would set bits
1,0 in the digital enable register (enable digital), clear bits 1,0 in
the GPIO_PORTE_AMSEL_R register (disable analog) and set the PMCx bits in
the for r PEO PE1 to 0001 (enable alternate function) in
the GPIO_PORTE_PCTL_R register. If we wished to sample an analog signal on
PDO, we would clear bit 0 in the digital enable register (disable digital), and set bit

0 in the GPIOAMSEL (enable analog), and activate one of the ADCs to sample
channel 7.

The TM4C LaunchPad evaluation board (Figure 1.15) is a low-cost development
board available as part number EK-TM4C123GXL from www.ti.com and from
regular electronic distributors like Digikey, Mouser, and Avnet. The kit provides an
integrated Stellaris In-Circuit Debug Interface (ICDI), which allows programming
and debugging of the onboard TM4C microcontroller. One USB cable is used by the
debugger (ICDI), and the other USB allows the user to develop USB applications
(device). The user can select board power to come from either the debugger (ICDI)
or the USB device (device) by setting the Power selection switch.

The LaunchPad board can also be used as a JTAG debugger for another target by
removing the VDD jumper and connecting the target to PCO=TCK, PC1=TMS,
PC2=TDI, and PC3=TDO

10 Ain 0 1 2 3 4 5 6 7 8 9 14
PAO Port| UORx CANI1Rx
PA1 Port| U0OTx CAN1Tx
PA2 Port SSIOCIKk
PA3 Port SSIOFss
PA4 Port SSIORx
PAS Port SSI0Tx
PAG6 Port [,C1SCL M1PWM?2
PA7 Port ,C1ISDA M1PWM3
PB0O| USBOID [Port] UIRx T2CCPO
PB1 |\USBOVBUS|Port| UlTx T2CCP1
PB2 Port I,COSCL T3CCPO
PB3 Port [,COSDA T3CCP1
PB4| Ainl0 |Port SSI2CIk MOPWM?2 T1CCPO | CANORx
PB5| Ainll |Port SSI2Fss MOPWM3 T1CCP1 | CANOTx
PB6 Port SSI2Rx MOPWMO TOCCPO
PB7 Port SSI2Tx MOPWM1 TOCCP1
PC4 Cl1- Port| U4Rx | UlRx MOPWM6 IDX1|WTOCCPO| U1RTS
PC5 Cl+ Port| U4Tx | UlTx MOPWM?7 PhA1|WTOCCP1| UICTS
PC6 COo+ Port| U3Rx PhB1{WT1CCP0O|USBOepen
PC7 CO0- Port| U3Tx WT1CCP1| USBOpflt
PDO Ain7 Port|SSI3CIk|SSI1CIk|I,C3SCL |MOPWM6[M1PWMO WT2CCPO
PD1 Ain6 Port|SSI3Fss|SSI1Fss|[,C3SDAMOPWM7|M1PWM1 WT2CCP1
PD2 Ain5 Port|SSI3Rx|SSI1Rx MOFaultO 'WT3CCPO|USBOepen|
PD3 Aind Port|SSI3Tx|SSI1Tx IDX0|WT3CCP1{ USBOpflt
PD4| USBODM |Port| U6Rx WT4CCPO
PD5(USBODP |Port| U6Tx WT4CCP1
PD6 Port| U2Rx MOFaultO PhAOWT5CCPO
PD7 Port| U2Tx PhBO[WT5CCP1| NMI
PEO Ain3 Port| U7Rx
PE1 Ain2 Port| U7Tx
PE2 Ainl Port

PE3 Ain0 |Port

PE4 An9 |Port| USRx [,C2SCL|MOPWM4M1PWM?2 CANORx

PES An8 |Port| U5Tx [,C2SDAMOPWM5|M1PWM3 CANOTx

PFO Port|U1RTS [SSI1Rx|CANORx M1PWM4(PhA(O| TOCCPO NMI | CO0o

PF1 Port|U1CTS|SSI1Tx M1PWMS5(PhBO| TOCCP1 Clo| TRD1
PE2 Port SSI1CIK| MOFaultO M1PWM6 T1CCPO TRDO
PEF3 Port SSI1Fss|CANOTx M1PWM7 T1CCP1 TRCLK
PF4 Port M1Fault0 |IDX0| T2CCPO |USBOepen

Table 1.4. PMCx bits in the GPIOPCTL register on the LM4F/TMA4C specify alternate
functions. PB1, PB0, PD4 and PD5 are hardwired to the USB device. PAO and PA1 are
hardwired to the serial port. PWM is not available on LM4F120.

USE ICDI

Power selection

ur

SWl

Figure 1.15. Tiva TM4C123 Launchpad Evaluation Board based on the
TM4C123GH6PM.

Pins PA1 — PAO create a serial port, which is linked through the debugger cable to the
PC. The serial link is a physical UART as seen by the TM4C and mapped to a virtual
COM port on the PC. The USB device interface uses PD4 and PD5. The JTAG
debugger requires pins PC3 — PCO. The LaunchPad connects PB6 to PD0, and PB7 to
PD1. If you wish to use both PB6 and PDO you will need to remove the R9 resistor.
Similarly, to use both PB7 and PD1 remove the R10 resistor.

The TM4C123 LaunchPad evaluation board has two switches and one 3-color LED.
See Figure 1.16. The switches are negative logic and will require activation of the
internal pull-up resistors. In particular, you will set bits 0 and
4in GPIO_PORTF_PUR_R register. The LED interfaces on PF3 — PF1 are
positive logic. To use the LED, make the PF3 — PF1 pins an output. To activate the
red color, output a one to PF1. The blue color is on PF2, and the green color is
controlled by PF3. The 0-Q resistors (R1, R2, R11, R12, and R13) can be removed
to disconnect the corresponding pin from the external hardware.

The LaunchPad has four 10-pin connectors, labeled as J1 J2 J3 J4 in Figures 1.15
and 1.17, to which you can attach your external signals. The top side of these
connectors has male pins and the bottom side has female sockets. The intent is to
stack boards together to make a layered system see Figure 1.17. Texas Instruments

also supplies Booster Packs, which are pre-made external devices that will plug into
this 40-pin connector. The Booster Packs for the MSP430 LaunchPad are compatible
(one simply plugs these 20-pin connectors into the outer two rows) with this board.
The inner 10-pin headers (connectors J3 and J4) are not intended to be compatible
with other TT LaunchPads. J3 and J4 apply only to Tiva Booster Packs.

There are a number of good methods to connect external circuits to the LaunchPad.
One method is to purchase a male to female jumper cable (e.g., item number 826 at
www.adafruit.com). A second method is to solder a solid wire into a female socket
(e.g., Hirose DF11-2428SCA) creating a male to female jumper wire.

T™ 4G 123 PFO AL
_l"\-

PF4
Seral [IPA] R130 *

PAD @ reen

PB 1
PD5
PD 4
i PF3

PD 0
PB6 PF2

PD 1 e r2 = DTC114EET1G
PB7 0 ‘“[;E

Figure 1.16. Switch and LED interfaces on the Texas Instruments TM4C123
LaunchPad Evaluation Board. The zero ohm resistors can be removed so the
corresponding pin can be used for its regular purpose.

t5
USB

B lue !Red
330 * 33&-5\“@ swg

E| [E

il

J B A J2
3w — 1 1 —5&v PF2— 1 1 F—and
PB5—| 2 2 —Gnd PF3—] 2 2 |—PB2
PBO— 3 3 —PDO PB3— 3 3 —pFE0
PB1— 4 4 —PD1 PC4—] 4 4 —FFO0
PE4— 5 5 —PD2 PC5—] 5 5 |—Reset
PE5— & 6 —FD3 PC6E— 6 6 —PR7
PB4—] 7 F.—PE1 PC7T—1 7 7 |—rB6
PA5—] 8 8 —PE2 PD6—] 8 8 —pPad4
PA6—] 9 9 —PE3 P7— 9 9 —PA3
PA7T— 10 10 —PF1 PF4—1 10 10 —PA2

Figure 1.17. Interface connectors on the Texas Instruments TM4C123
LaunchPad Evaluation Board.

1.4.3. Texas Instruments TM4C1294 Connected LaunchPad
I/0 pins

Figure 1.18 shows the 90 I/O pins available on the TM4C1294NCPDT, which is the
microcontroller used on the Connected LaunchPad. Pins on the TM4C family can be
assigned to as many as seven different I/O functions, see Table 1.5. Pins can be
configured for digital I/O, analog input, timer I/O, or serial I/O. For example PAQ can

Figure 1.

be digital I/O, serial input, 12C clock, Timer I/O, or CAN receiver. There are two
buses used for I/O. Unlike the TM4C123, the digital I/O ports are only connected to
the advanced high-performance bus. The microcontroller can perform I/O bus cycles
simultaneous with instruction fetches from flash ROM. The TM4C1294NCPDT has
eight UART ports, four SSI ports, ten 12C ports, two 12-bit ADCs, eight timers, two
CAN ports, a USB interface, 8 PWM outputs, and an Ethernet port. Of the 90 I/O
lines, twenty pins can be used for analog inputs to the ADC. The ADC can convert up
to 1M samples per second. Table 1.5 lists the regular and alternate functions of the
port pins.

A
1024k 256k
Ron. [CortexM 4 | |- Al
A A
8 4
— PortA |-t - | =3 FortH
Eight |egee- foothmite] en
1 P UARTs 2 w=Port) |2
Four Two
4 | SS|s na et PR «»|Portk -
_ﬁL PortC —
JTAG E ight w—wportl &
. &
B lportD || Tin ers
N 05820 o ler] Evemet | [Pt -
PortE |-
«—»|Porth F&-
i T hree & nalog
i 2 channels | lagepe] | nree A na
PortF |-—» i C o
0 g?zmbpigg om parators PortP _9,_
. EightPW M
Zlporte |« Sl
Advanced H igh System Advanced H igh
Perform ance Bus Bus Perform ance Bus

18. I/0 port pins for the TM4C1294NCPDT microcontroller.

Figure 1.19 shows the pin locations of the two Booster Pack connectors. There are
three methods to connect external circuits to the Connected LaunchPad. One method
uses male to female jumper cable (e.g., item number 826 at www.adafruit.com) or
solder a solid wire into a female socket (e.g., Hirose DF11-2428SCA) creating a
male-to-female jumper wire. In this method, you connect the female socket to the top
of the LaunchPad and the male pin into a solderless breadboard. The second method
uses male-to-male wires interfacing to the bottom of the LaunchPad. The third method
uses two 49-pin right-angle headers so the entire LaunchPad can be plugged into a
breadboard. You will need one each of Samtec parts TSW-149-09-L-S-RE and
TSW-149-08-L-S-RA. This configuration is shown in Figure 1.20, and directions can
be found at http://users.ece.utexas.edu/~valvano/arm/TM4C1294soldering.pdf

The Connected LaunchPad has two switches and four LEDs. Switch SW1 is
connected to pin PJO, and SW2 is connected to PJ1. These two switches are negative
logic and require enabling the internal pull up (PUR). A reset switch will reset the

microcontroller and your software will start when you release the switch. Positive
logic LEDs D1, D2, D3, and D4 are connected to PN1, PNO, PF4, and PFO
respectively. A power LED indicates that 3.3 volt power is present on the board.
R19 is a 0 Q resistor connecting PA3 and PQ2. Similarly, R20 is a 0 Q resistor
connecting PA2 and PQ3. You need to remove R19 if you plan to use both PA3 and
PQ2. You need to remove R20 if you plan to use both PA2 and PQ3. See Figures 1.20

and 1.21.
BoosterPack 1 BoosterPack 2
X8 X9 X6 X7

341 25 PF1I4 1 2 |Gnd w41 25 PG1—4 1 21HGmd
PE4— 3 4 —Gnd PF2—4 3 4 [-PM3 PD2— 3 4 —Gnd PK4— 3 4 [-PM7
PC4— 5 & —PED PF3I—4| 5 6 [—PH2 PPO— 5 6 —PB4 PK5—H 5 6 PP5
PC5— 7 8 —PEI PGO— 7 8 PH3 PP14 7 8 1—PB5 PO 7 8 -PAT
PC6— 9 10—PE2 PL4— 9 10 [Re=xt 4= 9 10—PKO PM1— 9 10 —Re=xt
PE5— 11 12 —PE3 PL5— 11 12 —PD1 JPE— 11 12—-PK1 PM2—4 11 12 P22
PD3— 13 14—PFPD7 PLO— 13 14 —PDO PQO— 13 14—PK2 PHO— 13 14 PR3
PC7T— 15 16 —PA6 PL1— 15 16 —PN2 PP4— 15 16 —PK3 PH1— 15 16 —PP3
PBE2— 17 18—PM4 PLZ17 18PN3 PN5— 17 18—PA4 PKE— 17 18 [PQ1
PE3I—19 20—PM5 PL3I—{ 19 20 [—PP2 PHN4— 19 20—PAS PK719 20PME

chs=e b JTAG clo= 1o E themet

Figure 1.19. Interface connectors on the EK-TM4C1294-XL LaunchPad
Evaluation Board.

TM4C1294

Ethernet Reset

!
esTarget USE r £
e "“gr'ﬂu
¥ T

TExas
INSTF . W]
Bopie oy g o

s s oL
SLEURERELERRRRE

Figure 1.20. EK-TM4C1294-XL Connected LaunchPad.

Jumper JP1 has six pins creating three rows of two. Exactly one jumper should be
connected in the JP1 block, which selects the power source. The top position is for
BoosterPack power. The middle position draws power from the USB connector,
labeled OTG, on the left side of the board near the Ethernet jack. We recommend
placing the JP1 jump in the bottom position so power is drawn from the ICDI
(Debug) USB connection. Under normal conditions, you should place jumpers in both
J2 and J3. Jumpers J2 and J3 facilitate measuring current to the microcontroller. We
recommend you place JP4 and JP5 in the “UART” position so PA1 and PAO are
connected to the PC as a virtual COM port. Your code runs on the 128-pin
TM4C1294 microcontroller. There is a second TM4C microcontroller on the board,

which acts as the JTAG debugger for your TM4C1294. You connect the Debug USB
to a PC in order to download and debug software on the board. The other USB is for
user applications.

Pin |Analog 1 2 3 5 6 7 1 13 14 15
PAOQ|- UORx [[2C9SCL [TOCCPO |- - CANORx |[- - - -
PA1|- UOTx [[2C9SDA|TOCCP1 |- - CANOTx |- - - -
PA2|- U4Rx [[2C8SCL [T1CCPO |- - - - - - SSIO
PA3|- U4Tx [[2C8SDA|T1CCP1 |- - - - - - SSI0!
PA4|- U3Rx [[2C7SCL [T2CCPO |- - - - - - SSI0.
PA5|- U3Tx [[2C7SDA|T2CCP1 |- - - - - - SSI0.
PAG |- U2Rx [[2C6SCL [T3CCPO |[USBOEPEN- - - SSIOXDAT?2|- EPIO
PA7|- U2Tx |[2C6SDA(T3CCP1 |USBOPFLT |- - USBOEPEN|SSIOXDATS3)|- EPIO
PB0|USBOID UlRx [[2C5SCL [T4CCPO |- - CANIRx |[- - - -
PB1|USBOVBUS|U1Tx |I2C5SDA|T4CCP1 |- - CANI1Tx |- - - -
PB2|- - [2COSCL [T5CCPO |- - - - - USBOSTP [EPIO
PB3|- - [2COSDA|T5CCP1 |- - - - - USBOCLK [EPIO
PB4|AIN10 UOCTS [[2C5SCL |- - - - - - - SSI1!
PB5|AIN11 UORTS [[2C5SDA|- - - - - - - SSI
PC4|C1- U7Rx |- - - - - - - - EPIO
PC5|C1+ U7Tx |- - - - RTCCLK |- - - EPIO
PC6|CO+ USRx |- - - - - - - - EPIO
PC7|CO0- USTx |- - - - - - - - EPIO
PDO|AIN15 - [2C7SCL [TOCCPO |COo - - - - - SSI12.
PD1|AIN14 - [2C7SDA|TOCCP1 |Clo - - - - - SSI2.
PD2|AIN13 - [2C8SCL |[T1CCPO |C20 - - - - - SSI2]
PD3|AIN12 - [2C8SDA|T1CCP1 |- - - - - - SSI2
PD4|AIN7 U2Rx |- T3CCPO |- - - - - - SSI1.
PDS5S|AING U2Tx |- T3CCP1 |- - - - - - SSI1.
PD6|AINS U2RTS |- T4CCPO [USBOEPEN]|- - - - - SSI2.
PD7|AIN4 U2CTS |- T4CCP1 [USBOPFLT |- - - - - SSI12.
PEO |AIN3 UI1RTS |- - - - - - - - -
PE1 |AIN2 U1DSR |- - - - - - - - -
PE2 |AIN1 U1DCD|- - - - - - - - -
PE3 [AINO U1DTR|- - - - - - - - -
PE4 |AINS UIRI |- - - - - - - - SSI1.
PES [AINS - - - - - - - - - SSI1.
PFO |- - - - ENOLEDO MOPWMO |- - - SSI3XDAT1|TRD
PF1 |- - - - ENOLED2 MOPWM1 |- - - SSI3XDATO[TRD
PF2 |- - - - - MOPWM?2 |- - - SSI3Fss TRD
PE3 |- - - - - MOPWM3 |- - - SSI3Clk TRC
PF4 |- - - - ENOLED1 [MOFAULTO|- - - SSI3XDAT2|TRD
PGO|- - [2C1SCL |- ENOPPS MOPWM4 |- - - - EPIO
PG1|- - [2C1SDA|- - MOPWMS |- - - - EPIO
PHO|- UORTS |- - - - - - - - EPIO
PH1|- UOCTS |- - - - - - - - EPIO
PH2|- UODCDI- - - - - - - - EPIO
PH3|- UODSR |- - - - - - - - EPIO
PJO |- U3Rx |- - ENOPPS |- - - - - -
PJ1 |- U3Tx |- - - - - - - - -
PKO|AIN16 U4Rx |- - - - - - - - EPIO

PK1|AIN17 U4Tx |- - - - - - - - EPI0
PK2|AIN18 U4RTS |- - - - - - - - EPIO
PK3|AIN19 UA4CTS |- - - - - - - - EPIO
PK4|- - [2C3SCL |- ENOLEDO [MOPWM6 |- - - - EPIO
PK5|- - [2C3SDA|- ENOLED2 MOPWM?7 |- - - - EPIO
PK6|- - [2C4SCL |- ENOLED1 [MOFAULT1|- - - - EPIO
PK7|- UORI [[2C4SDA|- RTCCLK [MOFAULT2[- - - - EPIO
PLO |- - [12C2SDA|- - MOFAULT3|- - - USBODO [EPIO
PL1|- - [2C2SCL |- - PhAO - - - USBOD1 [EPIO
PL2 |- - - - COo PhBO - - - USBOD2 [EPIO
PL3 |- - - - Clo IDX0 - - - USBOD3 [EPIO
PL4 |- - - TOCCPO |- - - - - USBOD4 [EPIO
Pin |Analog 1 2 3 5 6 7 1 13 14 15
PL5 |- - - TOCCP1 |- - - - - USBODS5 [EPIO
PL6 ([USBODP |- - T1CCPO |- - - - - - -
PL7 [USBODM |- - T1CCP1 |- - - - - - -
PMO|- - - T2CCPO |- - - - - - EPIO
PM1|- - - T2CCP1 |- - - - - - EPIO
PM2|- - - T3CCPO |- - - - - - EPIO
PM3|- - - T3CCP1 |- - - - - - EPIO
PM4TMPR3 UOCTS |- T4CCPO |- - - - - - -
PM5(TMPR2 UODCDI- T4CCP1 |- - - - - - -
PM6/TMPR1 UODSR |- T5CCPO |- - - - - - -
PM7|TMPRO UORI |- T5CCP1 |- - - - - - -
PNO|- UI1RTS |- - - - - - - - -
PN1|- U1CTS |- - - - - - - - -
PN2|- U1DCD|U2RTS |- - - - - - - EPIO
PN3|- U1DSR [U2CTS |- - - - - - - EPIO
PN4|- UIDTR|U3RTS [I2C2SDA|- - - - - - EPIO
PN5|- U1RI |U3CTS [I2C2SCL |- - - - - - EPIO
PPO|C2+ U6Rx |- - - - - - - - SSI3.
PP1|C2- uUeTx |- - - - - - - - SSI3.
PP2 |- UODTR |- - - - - - - USBONXT (EPIO
PP3 |- U1CTS [UODCD |- - - RTCCLK |- - USBODIR (EPIO
PP4 |- U3RTS [UODSR |- - - - - - USBOD7 |-
PP5 |- U3CTS [[2C2SCL |- - - - - - USBOD6 |-
PQO|- - - - - - - - - SSI3Clk EPIO
PQ1}|- - - - - - - - - SSI3Fss EPIO
PQ2|- - - - - - - - - SSI3XDATO|EPIO
PQ3|- - - - - - - - - SSI3XDAT1|EPIO
PQ4|- UlRx |- - - - DIVSCLK]- - - -

Table 1.5. PMCx bits in the GPIO_PORTx_PCTL_R register on the TM4C1294 specify
alternate functions. PD7 can be NMI by setting PCTL bits 31-28 to 8. PL6 and PL7 are
hardwired to the USB.

Each pin has one configuration bit in the AMSEL register. We set this bit to connect
the port pin to the ADC or analog comparator. For digital functions, each pin also has
four bits in the PCTL register, which we set to specify the alternative function for
that pin (0O means regular I/O port). Table 1.5 shows the 4-bit PCTL configuration
used to connect each pin to its alternate function. For example, column “3” means set

4-bit field in PCTL to 0011.

Pins PC3 — PCO were left off Table 1.5 because these four pins are reserved for the
JTAG debugger and should not be used for regular I/O. Notice, some alternate
function modules (e.g., UORx) only exist on one pin (PAO), while other functions
could be mapped to two or three pins. For example, TOCCPO could be mapped to
one of the following: PAO, PDO, or PLA4.

The PCTL bits in Table 1.5 can be tricky to understand. For example, if we wished to
use UART6 on pins PPO and PP1, we would set bits 1,0 in the DEN register
(enable), clear bits 1,0 in the AMSEL register (disable), write a 0001,0001 to bits
7-0 in the PCTL register (UART) GPIO_PORTP_PCTL_R =
(GPIO_PORTP_PCTL_R&O0xFFFFFFFF)+0x00000011; and set bits 1,0 in the
AFSEL register (enable alternate function). If we wished to sample an analog signal
on PD0O, we would set bit O in the alternate function select register AFSEL, clear bit
0 in the digital enable register DEN (disable digital), set bit O in the analog mode
select register AMSEL (enable analog), and activate one of the ADCs to sample
channel 15.

Jumpers JP4 and JP5 select whether the serial port on UARTO (PA1 — PAO) or on
UART?2 (PD5 — 4) is linked through the debugger cable to the PC. The serial link is a
physical UART as seen by the TM4C1294 and is mapped to a virtual COM port on
the PC. The USB device interface uses PL6 and PL7. The JTAG debugger requires

pins PC3 — PCO.
L TM 4C 1294
Tl |PAT PJ1
Serall = _lpps PO
—E & —1pp S
¥6-9 ing‘&an_ PN]‘W
s—PB1 ?D'

PBO PN O) = \
M, sl e
PA3 F‘FdJWjjﬂ—%?’
PQ 2 D3 GreenLEDs
] = Ye=28Y
PFO —WE“” : L)
PQ 3 D4

Figure 1.21. Switch and LED interfaces on the Connected LaunchPad
Evaluation Board. The zero ohm resistors can be removed so all the pins can
be used. See Chapter 9 for Ethernet connections.

=
7]
m

=3 =

=

% }

To use the negative logic switches, make the pins digital inputs, and activate the
internal pull-up resistors. In particular, you will activate the Port J clock, clear bits 0
and 1lin GPIO_PORTJ DIR R register, set bits 0 and
1lin GPIO_PORTJ_DEN_R register, and set bits 0 and
1lin GPIO_PORTJ_PUR_R register. The LED interfaces are positive logic. To use
the LEDs, make the PN1, PNO, PF4, and PFO pins an output. You will activate the

Port N clock, set bits 0 and 1in GPIO_PORTN_DIR_R register, and set bits 0 and
1lin GPIO_PORTN_DEN_R register. You will activate the Port F clock, set bits 0
and 4in GPIO_PORTF _DIR_R register, and set bits 0 and
4in GPIO_PORTF_DEN_R register.

1.4.4. Texas Instruments MSP432 LaunchPad I/O pins

Figure 1.22 draws the I/O port structure for the MSP432P401R. This microcontroller
is used on the MSP-EXP432P401R LaunchPad. Pins can be configured for digital
I/O, analog input, timer I/O, or serial I/O. For example P1.2 can be digital I/O or
serial receive input.

Because of the multiple buses, the microcontroller can perform I/O bus cycles
simultaneous with instruction fetches from flash ROM. The MSP432P401R has four
UART ports, eight SPI ports, four I2C ports, a 14-bit ADC, and four timers. There
are 84 1/0O lines. There are 24 ADC inputs, and the ADC can convert up to 1 million
samples per second.

CortecM 4 ok
Sydem Bus Inlerface MY IC
]
GP I Porl e |3 | P10 Pl
P17 ACBOSCL— | : | —Pg3TA 24/UCEISEL
PIEACBOSDA — [| Tmert [T —P& 6,4 23 AICBASDA
i b P D B e = =
1 441 5TE — — PG4 0 150 &
PladlcadTan — |+ WSCl L) rssncaicik
I;Ilﬂlfé.ﬁ{lﬂﬂc}:ﬁ_ =5 =4 —ggzgcalm
1.1 AUCLE — _ 14 14
P00 CAOSTE ——+—= %] ADCIA lo | | pegnis
GF 0 Port? = 5 PI0 Port?
e = - =] B
TR = —ir — JdR1 '
P25TAQ2—| [+ Them e [—P75TA13L04
p2ateh taD —| [| Tmeeh [0} A ThGL
PAIfCAIRAD — [|+—* i e —P7 30100 TTAICLE
FIIUCAICLY — [ew| 301 [| —P71L00U TTAOCLE
Panlca1STE —le—= ==l | —p70sMcLK DM AED
GP I Portd - || GPI0 Portd
Hpes) = ; ==
Y S0 — —= 5 - LR
FISAICRICLE — | ADC14 o |—pasam
PIAUCBISTE—| |en| SC1 |ygp ~— [P8iA2
S 2 T [T Bl
1 2CLE — --—- . A —F4.1 LETAZ
PR00CA2STE —L_|e— WSC| |e—we| |—pao0cRIETETAD
GF I Portd = | | P10 Pord
PaIAE— |— | PO TMCAITAD
i | w0l [) s
= el i
Padmd— | ADCIA [| —PaNCAISTE
PLARTCCLE A 10— [—= [Tt |<7| [CPI3TA34
PAZTAZLKAN— [+ L.] Pa2TA
41 h 12— —— [F9.1.41
Pals 13— — == ADCI le 1 Fpayaiy
GP I Ports - | = | PO Port 10
PR [them jwom fes[Tmem [T RIOSTAZAE0E
g;.s,-na— e e —glggﬁgggugl_
S4B — b= - Alsc| [PRI S04
psan—| [—= . - | P10 AICRACLE
gsz-r.s— [| [—P100ACBISTE
5144 — — e :
PEORS—__ =
PerpheralBusy €™ 81C |

Figure 1.22. 1/0 port pins for the MSP432P401R microcontroller. (Six pins
on Port J not shown).

The MSP432 LaunchPad evaluation board (Figure 1.23) is a low-cost development
board available as part number MSP-EXP432P401R from www.ti.com and from
regular electronic distributors like Digikey, Mouser, elementl4, and Avnet. The
board includes XDS110-ET, an open-source onboard debugger, which allows
programming and debugging of the MSP432 microcontroller. The USB interface is
used by the debugger and includes a serial channel.

Debugger

Figure 1.23. LaunchPad based on the MSP432P401RIPZ.

The MSP432 LaunchPad evaluation board has two switches, one 3-color LED and
one red LED, as shown in Figure 1.24. The switches are negative logic and will
require activation of the internal pull-up resistors. In this class we will not use the
switches and LEDs on the LaunchPad, but rather focus on the hardware provided by
the MK-II BoosterPack.

MSP432 P14 |

L (P 1 2050 i;'g T '
SEHKP].S_H:-H} ~ o Pl S'i'ﬁ_ SW Eﬁ_
= |P3IRTS 53;_ = =
T4CTS
& Fil 26 - 24 - o=
B reen ad

- EL-18-337F

& _|1_ -
P10 & LTST-C190CK T
W | 65V 3.5m A

Figure 1.24. Switch and LED interfaces on the LaunchPad Evaluation
Board. The jumpers can be removed so the corresponding pin can be used
without connection to the external circuits.

The LaunchPad has four 10-pin connectors, labeled as J1 J2 J3 J4 in Figure 1.25, to
which you can attach your external signals. The top side of these connectors has male
pins, and the bottom side has female sockets.

n B '] 12
W31 1 |—5v P27—| 1 i | —Gnd
P6O—| 2 2 | Gnd P26 2 2 [_p2s
P32—1 3 3 P61 P24 3 3 P30
P33_| 4 41 Pap P56_| 4 4 P57
PA1_] 5 5 | P42 PEH—]| 5 5 | Rest
Pe3_] 6 6 [Pis P67 6 6 P16
PI5_—] 7 7 [P45 P2a_1 7 7 P17
PA6—| 8 8 P47 P5.1—1| 8 8 [—p50
P65 9 9 [P54 P35—| 9 9 P52
P64 10 10| —P55 P3T—| 10 10 P36

85 90 84 82 92 62 73 7.1 94 96 80 74 76100102104 5 3v3 Gnd

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5

86 87 91 83539363 72709597 75 77101143105 v 303 @ nd

Figure 1.25. Interface connectors on the MSP432 LaunchPad Evaluation
Board, 67 1/0 pins.

1.4.5. Interfacing to a LaunchPad

The LaunchPad ecosystem allows boards to stack together to make a layered system,
see Figure 1.26. The engineering community has developed BoosterPacks, which are
pre-made external devices that will plug into this 40-pin connector. In addition to the
40-pin header on all LaunchPads, the MSP432 and TM4C1294 LaunchPads have
additional headers on the end.

Figure 1.26. An embedded system with MSP432 LaunchPad and a Grove
BoosterPack from Seeedstudio.

There are a number of good methods to connect external circuits to the LaunchPad.
One method is to purchase a male to female jumper cable (e.g., item number 826 at
www.adafruit.com). A second method is to solder a solid wire into a female socket
(e.g., Hirose DF11-2428SCA) creating a male to female jumper wire. The third
method is to use BoosterPacks, so you will not need to connect individual wires to
the LaunchPad. Figure 1.27 shows the MSP432 with a CC2650 BoosterPack.

Figure 1.27. A MSP432 LaunchPad with a BOOSTXL-CC2650MA
BoosterPack.

1.5. ARM Cortex-M Assembly Language

This section focuses on the ARM Cortex-M assembly language. There are many
ARM processors, and this book focuses on Cortex-M microcontrollers, which
executes Thumb instructions extended with Thumb-2 technology. This section does
not present all the Thumb instructions. Rather, we present a few basic instructions. In
particular, we will show only twelve instructions, which will be both necessary and
sufficient to construct your operating system. For further details, please refer to the
appendix or to the ARM Cortex-M Technical Reference Manual.

1.5.1. Syntax

Assembly instructions have four fields separated by spaces or tabs as illustrated in
Figure 1.28.

Labels: The label field is optional and starts in the first column and is used to
identify the position in memory of the current instruction. You must choose a unique
name for each label.

Opcodes or pseudo-ops: The opcode field specifies which processor command to
execute. The twelve op codes we will present in this bookare LDR STR MOV
PUSH POP B BL BXADD SUB CPSID and CPSIE . If there is a label there must
be at least one space or one tab between the label and the opcode. If there is no label
then there must be at least one space or one tab at the beginning of the line. There are
also pseudo-ops that the assembler uses to control features of the assembly process.
Examples of pseudo-ops you will encounter in this class are AREA EQU IMPORT
EXPORT and ALIGN . An op code generates machine instructions that get executed
by the processor at run time, while a pseudo-op code generates instructions to the
assembler that get interpreted at assembly time.

Operands: The operand field specifies where to find the data to execute the
instruction. Thumb instructions have 0, 1, 2, 3, or more operands, separated by
commas.

Comments: The comment field is optional and is ignored by the assembler, but
allows you to describe the software, making it easier to understand. You can add
optional spaces between operands in the operand field. However, a semicolon must
separate the operand and comment fields. Good programmers add comments to
explain what you are doing, why you are doing it, how it was tested, and how to
change it in the future. Everything after the semicolon is a comment.

fobml1l xjiyudoﬂpemtbn

AREA |.text|, CODE, READONLY, ALIGN=2
:1) input parameter is old count in RO
:2) increments count in RO
:3) returns the new count in RO

ncr ADD RO,RO,#1 : increment the count
BKk\‘LR = B return =
Label Opcodes O perands Comm ents

Figure 1.28. Assembly instructions have four fields: labels, opcodes,
operands, and comments.

Address

The assembler translates assembly source code into object code, which are the
machine instructions executed by the processor. All object code is halfword-aligned.
With Thumb-2, instructions can be 16 or 32 bits wide, and the program counter bit 0
will always be 0. The listing is a text file containing a mixture of the object code
generated by the assembler together with our original source code.

Object code Label Opcode Operand comment

0000006A F100 0001 Incr ADD RO,R0,#1 ; increment the count
0000006E 4770 BX LR ; return

When we build a project all files are assembled or compiled, then linked together.
The address values shown in the listing are the relative to the particular file being
assembled. When the entire project is built, the files are linked together, and the
linker decides exactly where in memory everything will be. After building the
project, it can be downloaded, which programs the object code into flash ROM.

In general, the assembler creates for each label an entry in the symbol table that maps
the symbolic label to the address in memory of that line of code. The exception to this
rule is when a label is used with the EQU pseudo-op. The result of an EQU pseudo-
op is to place an entry in the symbol table mapping the symbolic label with the value
of the operand.

1.5.2. Addressing modes and operands

A fundamental issue in software design is the differentiation between data and
addresses. Another name for address is pointer. It is in assembly language
programming in general and addressing modes in specific that this differentiation
becomes clear. When we put the number 1000 into Register RO, whether this is data
or address depends on how the 1000 is used.

The addressing mode is the format the instruction uses to specify the memory
location to read or write data. We will see five addressing modes in this class:

Immediate Data within the instruction MOV RO0,#1

Indexed Data pointed to by register LDR RO,[R1]

Indexed with offset Data pointed to by register =~ LDR RO0,[R1,#4]
PC-relative Location is offset relative to PC BL Incr
Register-list List of registers PUSH {R4,LR}

No addressing mode:Some instructions operate completely within the processor and
require no memory data fetches. For example, the ADD R1,R2,R3 instruction
performs R2+R3 and stores the sum into R1.

Immediate addressing mode:If the data is found in the instruction itself, like MOV
RO0,#1 , the instruction uses immediate addressing mode.

Indexed addressing mode: A register that contains the address or location of data is
called a pointer or index register. Indexed addressingmode uses a register pointer to
access memory. There are many variations of indexed addressing. In this class, you
will use two types of indexed addressing. The form [Rx] uses Register Rx as a
pointer, where Rxis any of the Registers from RO to R12. The second type you will
need is called indexed with offset, which has the form [Rx,#n] , where n is a number
from -255 to 4095. This addressing mode will access memory at Rx+n, without
modifying Rx.

PC-relative addressing mode: The addressing mode that uses the PC as the pointer is
called PC-relative addressing mode. It is used for branching, for calling functions,
and accessing constant data stored in ROM. The addressing mode is called PC-
relative because the machine code contains the address difference between where the
program is now and the address to which the program will access.

There are many more addressing modes, but for now, these few addressing modes, as
illustrated below, are enough to get us started.

Checkpoint 1.15: What does the addressing mode specify?

Checkpoint 1.16: How does the processor differentiate between data and
addresses?

1.5.3. List of twelve instructions

We will only need 12 assembly instructions in order to design our own real-time
operating system. The following lists the load and store instructions we will need.

LDR Rd, [Rn] ; load 32-bit memory at [Rn] to Rd
STR Rt, [Rn] ; store Rt to 32-bit memory at [Rn]
LDR Rd, [Rn, #n] ; load 32-bit memory at [Rn+n] to Rd
STR Rt, [Rn, #n] ; store Rt to 32-bit memory at [Rn+n]

Let M be the 32-bit value specified by the 12-bit constant #imm12 . When Rd is
absent for add and subtract, the result is placed back in Rn. The following lists a
few more instructions we will need.

MOV Rd, Rn ;Rd=Rn

MOV Rd, #imml2 ;Rd=M

ADD Rd,Rn, Rm ;Rd=Rn+Rm
ADD Rd, Rn, #imml2 ;Rd=Rn+M
SUB Rd, Rn,Rm ;Rd=Rn-Rm
SUB Rd, Rn, #imml12 ;Rd=Rn-M
CPSID I ;disable interrupts, I=1
CPSIE 1 ;enable interrupts, 1=0

Normally the computer executes one instruction after another in a linear fashion. In
particular, the next instruction to execute is typically found immediately following the
current instruction. We use branch instructions to deviate from this straight line path.
These branches use PC-relative addressing.

B label ;branch to label
BX Rm ;branch indirect to location specified by Rm
BL label ;branch to subroutine at label

These are the push and pop instructions we will need

PUSH {Rn,Rm} ; push Rn and Rm onto the stack

PUSH {Rn-Rm} ; push all registers from Rn to Rm onto stack
POP {Rn,Rm} ; pop two 32-bit numbers off stack into Rn, Rm
POP {Rn-Rm} ; pop multiple 32-bit off stack to Rn- Rm

When pushing and popping multiple registers, it does not matter the order specified
in the instruction. Rather, the registers are stored in memory such that the register
with the smaller number is stored at the address with a smaller value. For example,
consider the execution of PUSH {R1,R4-R6} . Assume the registers R1, R4, R5, and
R6 initially contain the values 1, 4, 5, and 6 respectively. Figure 1.29shows the value
from lowest-numbered R1 is positioned at the lowest stack address. If four entries
are popped with the POP {R0,R2,R7,R9} instruction, the value from the lowest
stack address is loaded into the lowest-numbered RO.

Observation: To push 32-bit data on the stack, first the SP is decremented by 4,
and then the data are stored from a register to the RAM location pointed to by SP.

Observation: To pop 32-bit data from the stack, first the data are read from the
RAM location pointed to by the SP into a register, and then the SP is incremented
by 4.

PUSH {R1,R4-R6} POP {RO,R2,R7.R9}
et - 0%2000 0000

J; 4
S S
S 4 K
,r! - 5 \‘1.
£ -‘.LII"'I.
P —F i W sp—F
NE i"\\\x
":‘:II: ‘ul'\“"- \ : 4
R1 1" “RE T OxFFFFFFFC
i -
R4 [4 1 g‘ah 4
RS [& RAL 5
R6 L6 ROT A

Figure 1.29. Stack drawings showing how multiple registered are pushed and

popped.

Checkpoint 1.17: How is the SP modified by the PUSH {R1,R4-R6} instruction?

1.5.4. Accessing memory

One of the basic operations we must perform is reading and writing global variables.
Since all calculations are performed in registers, we must first bring the value into a
register, modify the register value, and then store the new value back into memory.
Consider a simple operation of incrementing a global variable in both C and
assembly language. Variables can exist anywhere in RAM, however for this
illustration assume the variable count is located in memory at 0x20000100. The
first LDR instruction gets a pointer to the variable in RO as illustrated in Figure
1.30. This means RO will have the value 0x20000100. This value is a pointer to the
variable count . The way it actually works is the assembler places a constant
0x20000100 in code spaceand translates the =count into the correct PC-relative
access to the constant (e.g., LDR RO,[PC,#28]). The second LDR dereferences the
pointer to fetch the value of the wvariable into R1. More specifically, the
second LDR will read the 32-bit contents at 0x20000100 and put it in RI.
The ADD instruction increments the value, and the STR instruction writes the new
value back into the global variable. More specifically, the STR instruction will
store the 32-bit value from R1 into at memory at 0x20000100.

LDR R0,=count ;address of count
LDR R1,[R0] ;value of count
ADD R1,R1,#1

STR R1,[R0] ;store new value

count = count+1;

st
LDR RO, =Count |. Ow20000100 Code space
Il.._..--- .---.r..-.._____,i ~ EEHRGM)

Seoond,

R T }LDRF“ [R0]
R0l baonioo 7 G e

D ata
es FEAM)

R1

Figure 1.30. Indexed addressing using RO as a register pointer to access
memory. Data is moved into R1. Code space is where we place programs,
and data space is where we place variables. The dotted arrows in this figure
represent the motion of information, and the solid arrow is a pointer.

Let’s work through code similar to what we will use in Chapter 3as part of our
operating system. The above example used indexed addressing with an implicit offset
of 0. However, you will also need to understand indexed addressing with an explicit
offset. In this example, assume RunPt points to a linked list as shown in Figure 1.31.
A node of the list is a structure (struct in C) with multiple entries of different types. A
linked list is a set of nodes where one of the entries of the node is a pointer or link to
another node of the same type. In this example, the second entry of the list is a pointer
to the next node in the list. Figure 1.31 shows three of many nodes that are strung
together in a sequence defined by their pointers.

N ode‘.or L ist -

Figure 1.31. A linked list where the second entry is a pointer to the next
node. Arrows are pointers or links, and dotted lines are used to label
components in the figure.

As our operating system runs it will need to traverse the list. RunPt will always
points to a node in the list. However, we may wish to change it to point to the next
node in the list. In C, we would execute RunPt=RunPt->next; However, in
assembly this translates to

LDR RI1,=RunPt ; R1 points to variable RunPt, PC-rel
LDR RO,[R1] ; RO=value of variable RunPt
LDR R2,[R0,#4] ; next entry
STR R2,[R1] ; update RunPt
Figure 1.32draws the action caused by above the four instructions. Assume

initially RunPt points to the middle node of the list. Each entry of the node is 32 bits
or four bytes of memory. The first two instructions read the value of RunPt into RO.
Since RunPt points to the middle node in the linked list in this figure, RO will also
point to this node. Since each entry is 4 bytes, RO+4 points to the second entry, which
is the next pointer. The instruction LDR R2,[R0,#4] will read the 32-bit value
pointed to by RO+4 and place it in R2. Even though the memory address is calculated
as R0O+4, the Register RO itself is not modified by this instruction. R2 now points to
the right-most node in the list. The last instruction updates RunPt so it now points to
the right-most node shown in the Figure 1.32.

RunPt

F st
LDR R1,=RunPt

R11
RO |

Second.
LDR RO, [R1

Third,
LDR R2, [RO, #4]

T —

Figure 1.32. An example of indexed addressing mode with offset, data is in
memory. Arrows in this figure represent pointers (not the motion of
information).

A really important concept. We use the LDR instruction to load data from RAM to a
register and the STR instruction to store data from a register to RAM. In real life,
when we move a box to the basement, push a broom across the floor, load bags into
the trunk, store spoons in a drawer, pop a candy into your mouth, or transfer
employees to a new location, there is a physical object and the action changes the
location of that object. Assembly language uses these same verbs, but the action will
be different. In most cases, the processor creates a copy of the data and places the
copy at the new location. In other words, since the original data still exists in the
previous location, there are now two copies of the information. The exception to this
memory-access-creates-two-copies-rule is a stack pop. When we pop data from the
stack, it no longer exists on the stack leaving us just one copy. Having the information
in two places will create a very tricky problem that our operating system must
handle.

Let’s revisit the simple example of incrementing a global variable. In C, the code
would be count=count+1; In assembly, the compiler creates code like this:

LDR R0,=count ;address of count
LDR R1,[R0] ;value of count

;two copies of count: in memory and in R1
ADD R1,#1

;two copies of count with different values
STR R1,[R0] ;store new value

The instruction LDR R1,[R0] loads the contents of the variable count into R1. At
this point, there are two copies of the data, the original in RAM and the copy in R1.
After the ADD instruction, the two copies have different values. When designing an
operating system, we will take special care to handle shared information stored in
global RAM, making sure we access the proper copy. In Section 2.2.4, we will
discuss in detail the concept of race conditions and critical sections. These very
important problems arise from the problem generated by this concept of having
multiple copies of information.

1.5.5. Functions

Subroutines, procedures, and functions are programs that can be called to perform
specific tasks. They are important conceptual tools because they allow us to develop
modular software. The programming languages Pascal, FORTRAN, and Ada
distinguish between functions, which return values, and procedures, which do not. On
the other hand, the programming languages C, C++, Java, and Lisp do not make this
distinction and treat functions and procedures as synonymous. Object-oriented
programming languages use the term method to describe functions that are part of
classes; Objects being instantiation of classes. In assembly language, we use the term
subroutine for all subprograms whether or not they return a value. Modular
programming allows us to build complex systems using simple components. In this
section we present a short introduction on the syntax for defining assembly
subroutines. We define a subroutine by giving it a name in the label field, followed
by instructions, which when executed, perform the desired effect. The last instruction
in a subroutine will be BX LR , which we use to return from the subroutine.

The function in Program 1.1 and Figure 1.33will increment the global
variable count . The AREA DATA directive specifies the following lines are placed
in data space (typically RAM). The SPACE 4 pseudo-op allocates4 uninitialized
bytes. The AREA CODE directive specifies the following lines are placed in code
space (typically ROM). The |.text| connects this program to the C code generated by
the compiler. ALIGN=2 will force the machine code to be halfword-aligned as
required.

In assembly language, we will use the BL instruction to call this subroutine. At run
time, the BL instruction will save the return address in the LR register. The return
address is the location of the instruction immediately after the BL instruction. At the

end of the subroutine, the BX LR instruction will get the return address from the LR
register, returning the program to the place from which the subroutine was called.
More precisely, it returns to the instruction immediately after the instruction that
performed the subroutine call. The comments specify the order of execution. The
while-loop causes instructions 4-10 to be repeated over and over.

count=0 count= countt1
—;..J,

function() @
L1

Figure 1.33. A flowchart of a simple function that adds 1 to a global
variable.

AREA DATA
count SPACE 4 ; 32-bit data uint32_t count
AREA
|.text, CODE,READONLY,ALIGN=2 void function(void){
function count++; // 5,6,7,8
LDR R0,=count ;5 } /19

LDR R1,[R0] ;6 value of count
ADD R1,#1 ;7

STR R1,[R0] ;8 store new value int main(void){

BXLR ;9 count = 0; // 1,2,3
Start LDR R0,=count ;1 while (1){

MOV R1,#0 ;2 function(); // 4

STR R1,[R0] ;3 store new value } // 10
loop BL function ;4 }

B loop ;10

Program 1.1. Assembly and C versions that initialize a global array of ten
elements. The numbers illustrate the execution sequence.

While using a register (LR) to store the return address is very effective, it does pose
a problem if one function were to call a second function. In Program
1.2 someother calls function . Because the return address is saved in the LR, if one
function calls another function it must save the LR before calling and restore the LR
after the call. In Program 1.2, the saving and restoring is performed by
the PUSH and POP instructions.

function void function(void){
T I eeneeen
T I eeneeen

someother
3 eeeenes void someother(void){
PUSH {R4,LR} I eeneenn
BL function function();
POP {R4,LR} I eeneeen
3 cennene }
BX LR

Program 1.2. Assembly and C versions that define a simple function.

Checkpoint 1.18: When software calls a function (subroutine), where is the
return address saved?

1.5.6. ARM Cortex Microcontroller Software Interface
Standard

The ARM Architecture Procedure Call Standard, AAPCS, part of the ARM
Application Binary Interface (ABI), uses registers R0, R1, R2, and R3 to pass input
parameters into a C function. RO is the first parameter, R2 is the second, etc.
Functions must preserve the values of registers R4-R11. Also according to
AAPCSwe place the return parameter in Register RO. AAPCS requires we push and
pop an even number of registers to maintain an 8-byte alignment on the stack. In this
book, the SP will always be the main stack pointer (MSP), not the Process Stack
Pointer (PSP). Recall that all object code is halfword aligned, meaning bit O of the
PC is always clear. When the BL instruction is executed, bits 31-1 of register LR are
loaded with the address of the instruction after the BL. , and bit O is set to one. When
the BXLR instruction is executed, bits 31-1 of register LR are put back into the PC,
and bit 0 of LR goes into the T bit. On the ARM Cortex-M processor, the T bit should
always be 1, meaning the processor is always in the Thumb state. Normally, the
proper value of bit 0 is assigned automatically.

ARM’s Cortex Microcontroller Software Interface Standard (CMSIS) is a
standardized hardware abstraction layer for the Cortex-M processor series. The
purpose of the CMSIS initiative is to standardize a fragmented industry on one
superior hardware and software microcontroller architecture.

The CMSIS enables consistent and simple software interfaces to the processor and
core MCU peripherals for silicon vendors and middleware providers, simplifying
software re-use, reducing the learning curve for new microcontroller developers, and
reducing the time to market for new devices. Learn more about CMSIS directly from
ARM at www.onarm.com.

The CMSIS is defined in close cooperation with various silicon and software
vendors and provides a common approach to interface to peripherals, real-time

operating systems, and middleware components. The CMSIS is intended to enable
the combination of software components from multiple middleware vendors. The
CMSIS components are:

CMSIS-CORE: API for the Cortex-M processor core and peripherals. It provides at
standardized interface for Cortex-M0, Cortex-M3, Cortex-M4, SC000, and SC300.
Included are also SIMD intrinsic functions for Cortex-M4 SIMD instructions.

CMSIS-DSP: DSP Library Collection with over 60 Functions for various data types:
fixed-point (fractional q7, q15, q31) and single precision floating-point (32-bit). The
library is available for Cortex-M0, Cortex-M3, and Cortex-M4. The Cortex-M4
implementation is optimized for the SIMD instruction set.

CMSIS-RTOS API: Common API for Real-Time operating systems. It provides a
standardized programming interface that is portable to many RTOS and enables
software templates, middleware, libraries, and other components that can work
across supported RTOS systems.

CMSIS-SVD: System View Description for Peripherals. Describes the peripherals
of a device in an XML file and can be used to create peripheral awareness in
debuggers or header files with peripheral register and interrupt definitions.

Checkpoint 1.19: What is the purpose of AAPCS?

1.5.7. Conditional execution

If-then-else control structures are commonly found in computer software. If
the BHS or the BGE were to branch, the instruction pipeline would have to be
flushed and refilled. In order to optimize execution speed for short if-then and if-
then-else control structures, the ARM Cortex-M processoremploys conditional
execution. The conditional execution begins with the IT instruction, which specifies
the number of instructions in the control structure (1 to 4) and the conditional for the
first instruction. The syntax is

IT{x{y{z}}} cond

where x yandz specify the existence of the optional second, third, or fourth
conditional instruction respectively. We can specify x y and z as T for execute if true
or E for else. The cond field choices are listed in Table 1.6.

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CSor HS [C=1 Higher or same, unsigned >
CC or C=0 Lower, unsigned <

LO

MI N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VC V=0 No overflow

HI C=1and Z=0 | Higher, unsigned >

LS C=0orZ=1 |Lower or same, unsigned <

GE N==V Greater than or equal, signed >

LT NI=V Less than, signed <

GT Z =0 and N = V | Greater than, signed >

LE Z=1orN!=V | Less than or equal, signed <

AL Can have any | Always. This is the default when no
value suffix is specified.

Table 1.6. Condition code suffixes used to optionally execution instruction.

The conditional suffixes for the 1 to 4 following instruction must match the
conditional field of the IT instruction. In particular, the conditional for the true
instructions exactly match the conditional for the IT instruction. Furthermore, the
else instructions must have the logical complement conditional. If the condition is
true the instruction is executed. If the condition is false, the instruction is fetched, but
not executed. The following illustrates the use of if-then conditional execution. The
two T’s in ITT means there are two true instructions.

Change LDR R1,=Num ; R1 = &Num
LDR RO0,[R1] ; RO =Num
CMP RO0,#25600
ITT LO
ADDLO RO,R0,#1 ; if(R0<25600) RO = Num+1
STRLO RO,[R1] ; if(R0<25600) Num = Num+1
BX LR ; return

The following illustrates the use of if-then-else conditional execution.The one T and
one E in ITE means there is one true and one false instruction.

Change LDR R1,=Num ; R1 = &Num
LDR RO,[R1] ; RO =Num
CMP RO,#100
ITE LT
ADDLT RO,R0,#1 ; if(R0< 100) RO = Num+1
MOVGE RO0,#-100 ; if(R0>=100) R0 =-100
STR RO,[R1] ; update Num
BX LR ; return

The following assembly converts one hex digit (0—15) in RO to ASCII in R1. The one
T and one E in ITE means there is one true and one else instruction.

CMP RO0,#9 ; Convert RO (0 to 15) into ASCII

ITE GT ; Next 2 are conditional
ADDGT R1,R0,#55 ; Convert 0xA ->'A'
ADDLE R1,R0,#48 ; Convert 0x0 ->'0’

By themselves, the conditional branch instructions do not require a
preceding IT instruction. However, a conditional branch can be used as the last
instruction of an IT block. There are a lot of restrictions on IT. For more details,
refer to the programming reference manual.

This macro creates a new assembly instruction that is faster than MUL . This
approach can be used to multiply by any constant in the form of 2"+1. If x is a
variable, then 15x = (x<<4)-x.

MACRO

MUL15 $Rd,$Rn

RSB $Rd,$Rn,$Rn,LSL #4
MEND

This approach can also be used to multiply by any constant in the form of 1+2™". For
example, to multiply by 7/8 we implement x - (x>>3). Themacro MUL7_8 is
unsigned multiply by 7/8.

MACRO

MUL?7_8 $Rd,$Rn

SUB $Rd,$Rn,$Rn,L.SR #3
MEND

1.5.8. Stack usage

The stack can be used to store temporary information. If a subroutine modifies a
register, it is a matter of programmer style as to whether or not it should save and
restore the register. According to AAPCS a subroutine can freely change RO—R3 and
R12, but save and restore any other register it changes. In particular, if one subroutine
calls another subroutine, then it must save and restore the LR. AAPCS also requires
pushing and popping multiples of 8 bytes, which means an even number of registers.
In the following example, assume the function modifies register RO, R4, R7, R8 and
calls another function. The programming style dictates registers R4 R7 R8 and LR be
saved. Notice the return address is pushed on the stack as LR, but popped off into
PC. When multiple registers are pushed or popped, the data exist in memory with the
lowest numbered register using the lowest memory address. In other words, the
registers in the { } can be specified in any order. Of course remember to balance the
stack by having the same number of pops as pushes.

Func PUSH {R4,R7,R8,LR} ; save registers as needed
; body of the function

POP {R4,R7,R8,PC} ; restore registers and return

The ARM processor has a lot of registers, and we appropriately should use them for
temporary information such as function parameters and local variables. However,
when there are a lot of parameters or local variables we can place them on the stack.
Program 1.3 allocates a 40-byte localbuffer on the stack. The SUB instruction
allocates 10 words on the stack. Figure 1.34shows the stack before and after the
allocation. The SP points to the first location of data . The local variable i is held in
RO. The flexible second operand for the STR instruction uses SP as the base pointer,
and RO*4 as the offset. The ADD instruction deallocates the local wvariable,
balancing the stack.

/I C language implementation

void Set(void){
uint32_t data[10];
int i;
for(i=0; i<10; i++){
datali] = i;
}
}

Set SUB sp,sp,#0x28 ;allocate
MOVS r0,#0x00 ;i=0
B test

loop STR 10,[sp,r0,LSL #2]
ADDS r0,r0,#1 ;it++

test CMP 1r0,#0x0A
BLT loop
ADD sp,sp,#0x28 ;deallocate
BX LR

Program 1.3. Assembly and C versions that initialize a local array of ten
elements.

(%2000 000

ADD SP,SP,#0x28

SP %t datal0]

datalol

sp—F

SUB SP,SP, #0x28
Figure 1.34. A stack picture showing a local array of ten elements (40 bytes).

0x2000.7FFC

We will also use the stack to save program state during interrupt processing.

1.5.9. Floating-point math

If the range of numbers is unknown or large, then the numbers must be represented in
a floating-point format. Conversely, we can use fixed point when the range of values
is small and known. The IEEE Standard for Binary Floating-Point Arithmetic or
ANSI/IEEE Std 754-1985 is the most widely-used format for floating-point numbers.
There are three common IEEE formats: single-precision (32-bit), double-precision
(64-bit), and double-extended precision (80-bits). The 32-bit short real format as
implemented by the TM4C is presented here. The floating-point format, f, for the
single-precision data type is shown in Figure 1.35. Computers use binary floating
point because it is faster to shift than it is to multiply/divide by 10.

Bit 31 Mantissa sign, s=0 for positive, s=1 for negative
Bits 30:23 8-bit biased binary exponent 0 < e < 255

Bits 22:0 24-bit mantissa, m, expressed as a binary fraction,
A binary 1 as the most significant bit is implied.
m=1.mmm,...m,,

5|8, €

7 S (M

m

] 23

Figure 1.35. 32-bit single-precision floating-point format.
The value of a single-precision floating-point number is

f= (_1)5 . 26—127, m

The range of values that can be represented in the single-precision format is about
+10® to £10*%. The 24-bit mantissa yields a precision of about 7 decimal digits.
The floating-point value is zero if both e and m are zero. Because of the sign bit,
there are two zeros, positive and negative, which behave the same during
calculations.

There are some special cases for floating-point numbers. When e is 255, the number
is considered as plus or minus infinity, which probably resulted from an overflow
during calculation. When e is 0, the number is considered as denormalized. The
value of the mantissa of a denormalized number is less than 1. A denormalized short
result number has the value,

f=(-1) ¢ 21%%e m where m = 0.m,m,m,...m,,
Observation: The floating-point zero is stored in denormalized format.

When two floating-point numbers are added or subtracted, the smaller one is first
unnormalized. The mantissa of the smaller number is shifted right and its exponent is
incremented until the two numbers have the same exponent. Then, the mantissas are

added or subtracted. Lastly, the result is normalized. To illustrate the floating-point
addition, consider the case of 10+0.1. First, we show the original numbers in
floating-point format. The mantissa is shown in binary format.

10.0 = (-1)° «2% » 1.01000000000000000000000
+0.1 =(-1)°+2% 1.10011001100110011001101

Every time the exponent is incremented the mantissa is shifted to the right. Notice that
7 binary digits are lost. The 0.1 number is unnormalized, but now the two numbers
have the same exponent. Often the result of the addition or subtraction will need to be
normalized. In this case the sum did not need normalization.

10.0 = (-1)° «2% » 1.01000000000000000000000
+0.1 =(-1)°+2° « 0.00000011001100110011001 1001101
10.1 =(-1)° +2%+ 1.01000011001100110011001

When two floating-point numbers are multiplied, their mantissas are multiplied and
their exponents are added. When dividing two floating-point numbers, their mantissas
are divided and their exponents are subtracted. After multiplication and division, the
result is normalized.

Roundoff is the error that occurs as a result of an arithmetic operation. For example,
the multiplication of two 64-bit mantissas yields a 128-bit product. The final result is
normalized into a normalized floating-point number with a 64-bit mantissa. Roundoff
is the error caused by discarding the least significant bits of the product. Roundoff
during addition and subtraction can occur in two places. First, an error can result
when the smaller number is shifted right. Second, when two n-bit numbers are added
the result is n+1 bits, so an error can occur as the n+1 sum is squeezed back into an
n-bit result.

Truncation is the error that occurs when a number is converted from one format to
another. For example, when an 80-bit floating-point number is converted to 32-bit
floating-point format, 40 bits are lost as the 64-bit mantissa is truncated to fit into the
24-bit mantissa. Recall, the number 0.1 could not be exactly represented as a short
real floating-point number. This is an example of truncation as the true fraction was
truncated to fit into the finite number of bits available.

If the range is known and small and a fixed-point system can be used, then a 32-bit
fixed-point number system will have better resolution than a 32-bit floating-point
system. For a fixed range of values (i.e., one with a constant exponent), a 32-bit
floating-point system has only 23 bits of precision, while a 32-bit fixed-point system
has 9 more bits of precision.

Figure 1.36 shows the floating-point registers on the Cortex M4. Software can access
these registers in any combination of 32 single-precision registers named SO to S31
or 16 double-precision registers DO to D15. In particular, registers SO and S1 are the
same as register D0. This section will focus on single precision floating-point
operations.

32-bits 64-bits

2? DO
e D1
o4
F bating- 5 D2
point S6 D3
reg sters n 57
308
e D14
530
o D15

Figure 1.36. The TM4C has 32 single-precision floating-point registers that
overlap with 16 double-precision floating-point registers.

The following lists the general form for some of the load and store instructions.
Because the constant is stored into memory, and the assembly creates a PC relative
access, the constant can be any single-precision floating-point value. St Sd Sn and
Sm represent any of the 32 single-precision floating-point registers. Rn and Rd are
regular integer registers.

VLDR.F32 Sd, [Rn] ; load 32-bit float at [Rn] to Sd
VSTR.F32 St, [Rn] ; store 32-bit St to memory at [Rn]
VLDR.F32 Sd, [Rn, #n] ; load 32-bit memory at [Rn+n] to Sd
VSTR.F32 St, [Rn, #n] ; store 32-bit St to memory [Rn+n]
VLDR.F32 Sd, =constant ; load 32-bit constant into Sd

The move instructions get their data from the machine instruction or from within the
processor and do not require additional memory access instructions. The immediate
value is any number that can be expressed as +n*2”, where 16 <n<31,and 0 <r <
7.

VMOV.F32 Sd, Sn ; set Sd equal to the value in Sn
VMOV.F32 Sd, #imm ; set Sd equal to imm

VMOV Rd, Sn ; set Rdequal to the value in Sn
VMOV Sd, Rn ; set Sd equal to the value in Rn

These are some of the arithmetic operations, which operate on the floating-point
registers. Arithmetic operations can cause overflow, underflow, divide by zero
floating-point exceptions. In particular, bits in the SYSEXC_RIS_R register will get
set if there is a floating-point error.

VADD.F32 Sd, Sn, Sm ; set Sd equal to Sn+Sm
VSUB.F32 Sd, Sn, Sm ; set Sd equal to Sn-Sm
VMUL.F32 Sd, Sn, Sm ; set Sd equal to Sn*Sm

VDIV.F32 Sd, Sn, Sm ; set Sd equal to Sn/Sm

VNEG.F32 Sd, Sm set Sd equal to -Sm

VABS.F32 Sd, Sm ; set Sd equal to the absolute value of Sm
VSQRT.F32 Sd, Sm ; set Sd equal to the square root of Sm

.
b
.
b

The following example implements a digital 60 Hz notch filter (see Section 6.4). The
new ADC input is passed by value in register SO and the filter outputis returned by
value also in register SO. In C, we define a single-precision floating-point variable
using float .

float y,y1,y2; // outputs
float x,x1,x2; // input
// fs = 1000 Hz
// cutoff 60 Hz
// alpha = 0.99
float Notch60Hz(float in){
x2 =x1;x1 =x;x =im
y2=yl;yl =y;
y=Xx
- 1.8595529717765*x1
+ x2
+1.84095744205874*y1
- 0.9801*y2;
return y;
}
AREA DATA, ALIGN=2
y SPACE 4 ; current filter output
yl SPACE 4 ; filter output 1ms ago
y2 SPACE 4 ; filter output 2ms ago
x SPACE 4 ; current filter input
x1 SPACE 4 ;input 1ms ago
x2 SPACE 4 ;input 2ms ago
AREA |.text,CODE,READONLY,ALIGN=2
THUMB
; Input: S0 is new input
; Output: S0 is filter output
Notch60Hz
LDR RO,=x
VLDR.F32 S1,[R0,#4] ;read previous x1
VSTR.F32 S1,[R0,#8] ;S1 is x2
VLDR.F32 S2,[R0,#0] ;read previous x
VSTR.F32 S2,[R0,#4] ;S2 is x1
VSTR.F32 S0,[R0,#0] ;S0 is x = in
LDR Rl,=y
VLDR.F32 S3,[R1,#4] ;read previous yl1
VSTR.F32 S3,[R1,#8] ;S3 is y2
VLDR.F32 S4,[R1,#0] ;read previous y
VSTR.F32 S4,[R1,#4] ;S4 is y1
VLDR.F32 S5,=-1.8595529717765
VMUL.F32 S2,S2,S5
VADD.F32 S0,S0,S2 ;-1.8595529717765*x1
VADD.F32 S0,S0,S1 ;+x2
VLDR.F32 S5,=1.84095744205874
VMUL.F32 S4,54,S5
VADD.F32 S0,S0,54;+1.84095744205874*y1
VLDR.F32 S5,=-0.9801
VMUL.F32 S3,S3,S5

VADD.F32 S0,S0,S3 ; -0.9801*y2
VSTR.F32 S0,[R1,#0] ;sety
BX LR

Program 1.4. Floating-point function to a 60 Hz IIR digital filter (assembly
program executes in 43 cycles).

Observation: If you are implementing digital signal processing using floating
point math, we strongly recommend implement the functions in assembly so you
can specify exactly how the floating point hardware is to be used.

1.5.10. Keil assembler directives

We use assembler directives to assist and control the assembly process. The
following directives change the way the code is assembled.

AREA CODE ;places code in code space (flash ROM)
AREA DATA ;places objects in data space (RAM)
THUMB ;uses Thumb instructions
ALIGN ;skips 0 to 3 bytes to make next word aligned
END send of file

The following directives can add variables and constants.

DCB expr{,expr} ;places 8-bit byte(s) into memory
DCW expr{,expr} ;places 16-bit halfword(s) into memory
DCD expr{,expr} ;places 32-bit word(s) into memory
SPACE size ;reserves size bytes, uninitialized

The EQU directive gives a symbolic name to a numeric constant, a register-relative
value or a program-relative value. * is a synonym for EQU . We will use it to define
I/O port addresses. For example, these four definitions will be used to initialize and
operate Port D.

GPIO_PORTD_DATA_R equ 0x400073FC
GPIO_PORTD_DIR_R equ 0x40007400
GPIO_PORTD_DEN_R equ 0x4000751C
SYSCTL_RCGCGPIO_R equ 0x400FE608

In order for another file to access a variable or function in this assembly file we use
the EXPORT directive. In order for this assembly file to access a variable or
function in another file we use the IMPORT directive.All C public functions and
global variables (no static) are available to be imported into assembly. To import a
function into a C file, we define a prototype. To import a global variable into a C
file, we define it with an extern .

uint32_t v2; // global
extern uint32_t v1;

AREA

DATA, ALIGN=2

EXPORT v1

EXPORT f1

IMPORT v2
\ 1 seack
4 ; global

AREA |.text|,CODE,READQI:ILY,ALIGN=2
e THUMB

fl LDR R1,=v2
LDR R2,[R1]; contents
ADD RO,R0,R2
BX LR

uint32_t f1(uint32_t in);

void f2(void){
vl = f1(v1);
}

1.6. Pointers in C

1.6.1. Pointers

At the assembly level, we implement pointers using indexed addressing mode. For
example, a register contains an address, and the instruction reads or writes memory
specified by that address. Basically, we place the address into a register, then use
indexed addressing mode to access the data. In this case, the register holds the
pointer. Figure 1.37illustrates three examples that utilize pointers. In this figure, Pt
SP GetPt PutPt are pointers, where the arrows show to where they point, and the
shaded boxes represent data. An array or string is a simple structure containing
multiple equal-sized elements. We set a pointer to the address of the first element,
then use indexed addressing mode to access the elements inside. We have introduced
the stack previously, and it is an important component of an operating system. The
stack pointer (SP) points to the top element on the stack. A linked list contains some
elements that are pointers themselves. The pointers are used to traverse the data
structure. Linked lists will be used through this bookto maintain the states of threads
in our RTOS. The first in first out (FIFO) queue is an important data structure for I/O
programming because it allows us to pass data from one module to another. One
module puts data into the FIFO and another module gets data out of the FIFO. There
is a GetPt that points to the oldest data (to be removed next) and a PutPt that points
to an empty space (location to be stored into next). The FIFO queue will be used
excessively in this book.

Amavor sng Sk FIFO quese
Ft—m
GelPt —
SP—»
PutPt —

Figure 1.37. Examples of data structures that utilize pointers.

We will illustrate the use of pointers with some simple examples. Consider that we
have a global variable called Count . This creates a 32-bit space in memory to
contain the value of this variable. The int declaration means “is a signed 32-bit
integer”.

int Count;

There are three phases to using pointers: creation, initialization, usage. To create a
pointer, we define a variable placing the * before its name. As a convention, we will

({30 N {1

use “p”, “pt”, or “ptr” in the variable name to signify it is a pointer variable. The *

means “is a pointer to”. Therefore, int * means “is a pointer to a signed 32-bit
integer”.

int *cPt;

To initialize a pointer, we must set it to point to something. Whenever we make an
assignment in C, the type of the value must match the type of the variable. The
following executable code makes cPt point to Count . We see the type of Count is
signed 32-bit integer, so the type of & Count is a pointer to a signed 32-bit integer.

cPt = &Count;

Assume we have another variable called x, and assume the value of Count is 42.
Using the pointer is called dereferencing. If we place a *cPt inside an expression,
then *cPt is replaced with the value at that address. So this operation will set x
equal to 42.

x = (*cPt);

If we place a *cPt as the assignment, then the value of the expression is stored into
the memory at the address of the pointer. So, this operation will set Count equal to
5;

(*cPt) = 5;

We can use the dereferencing operator in both the expression and as the assignment.
These operations will increment Count .

(*cPt) = (*cPt) + 1;
(*cPt) +=1;
(*cPt)++;

Functions that require data to be passed by the value they hold are said to use call-
by-value parameter passing. With an input parameter using call by value, the data
itself is passed into the function. For an output parameter using return by value, the
result of the function is a value, and the value itself is returned. According to
AAPCS, the first four input parameters are passed in RO to R3 and the output
parameter is returned in RO. Alternatively, if you pass a pointer to the data, rather
than the data itself, we will be able to pass large amounts of data. Passing a pointer
to data is classified as call-by-reference. For large amounts of data, call by
reference is faster, because the data need not be copied from calling program to the
called subroutine. In call by reference, the one copy of the data exists in the calling
program, and a pointer to it is passed to the subroutine. In this way, the subroutine
actually performs read/write access to the original data. Call by reference is also a
convenient mechanism to return data as well. Passing a pointer to an object allows
this object (a primitive data type like char, int, or a collection like an array, or a
composite struct data type) to be an input parameter and an output parameter.

Our real-time operating system will make heavy use of pointers. In this example, the
function is allowed to read and write the original data:

void Increment(int *cpt){
(*cpt) = (*cpt)+1;
}
We will also use pointers for arrays, linked-lists, stacks, and first-in-first-out queues.
If your facility with pointers is weak, we suggest you review pointers.

Checkpoint 1.20: What are pointers and why are they important?

1.6.2. Arrays

Figure 1.38 shows an array of the first ten prime numbers stored as 32-bit integers,
we could allocate the structure in ROM using

int const Primes[10]={1,2,3,5,7,11,13,17,19,23};

1

2

3

5

i

11

13

17
19

23
32 bits

Figure 1.38. Array of ten 32-bit values.

By convention, we define Primes[0] as the first element, Primes[1] as the second
element, etc. The address of the first element can be written as &Primes[0] or
just Prime . In C, if we want the 5™element, we use the expression Primes[4] to
fetch the 7 out of the structure. In C the following two expressions are equivalent,
both of which will fetch the contents from the 5" element.

Primes|[4]
*(Primes+4)

In C, we define a pointer to a signed 32-bit constant as

int const *Cpt;
In this case, the const does not indicate the pointer is fixed. Rather, the pointer refers
to constant 16-bit data in ROM. We initialize the pointer at run time using

Cpt = Primes; // Cpt points to Primes
or
Cpt = &Primes[0]; // Cpt points to Primes

Cpt/

ﬁk:;:qm»w—

32 bits

Figure 1.39. Cpt is a pointer to an array of ten 32-bit values.

When traversing an array, we often wish to increment the pointer to the next element.
To move the pointer to the next element, we use the expression Cpt++ . In C, Cpt++ ,
which is the same thing as Cpt = Cpt+1; actually adds four to the pointer because it
points to 32-bit words. If the array contained 8-bit data, incrementing the pointer
would add 1. If the array contained 16-bit data, incrementing the pointer adds 2. The
pointers themselves are always 32-bits on the ARM, but the data could be 1, 2, 4, 8
... bytes.

As an example, consider the situation where we wish to pass a large amount of data
into the function BubbleSort . In this case, we have one or more buffers, defined in
RAM, which initially contains data in an unsorted fashion. The buffers shown here
are uninitialized, but assume previously executed software has filled these buffers
with corresponding voltage and pressure data. In C, we could have

uint8_t VBuffer[100]; // voltage data
uint8_t PBuffer[200]; // pressure data

Since the size of these buffers is more than will fit in the registers, we will use call
by reference. In C, to declare a parameter call by reference we use the *.

void Bubble Sort(uint8_t *pt, uint32_t size){
uint32_t i,j; uint8_t data,*p1,*p2;
for(i=1; i<size; i++){
pl = pt; // pointer to beginning
for(j=0; j<size-i; j++){
p2 = p1+1; // p2 points to the element after p1
if((*p1) > (*p2)){
data = (*pl); // swap
(*p1) = (*p2);
(*p2) = data;

}
pl++;
}
}
}
To invoke a function using call by reference we pass a pointer to the object. These
two calling sequences are identical, because in C the array name is equivalent to a
pointerto its first element (VBuffer is equivalent to & VBuffer[0]). Recall that
the & operator is used to get the address of a variable.
void main(void){ void main(void){
BubbleSort(Vbuffer,100); Bubble Sort(& VBuffer[0],100);
BubbleSort(Pbuffer,200); BubbleSort(&PBuffer[0],200);
} }

One advantage of call by reference in this example is the same buffer can be used

also as the return parameter. In particular, this sort routine re-arranges the data in the
same original buffer. Since RAM is a scarce commodity on most microcontrollers,
not having to allocate two buffers will reduce RAM requirements for the system.

From a security perspective, call by reference is more vulnerable than call by value.
If we have important information, then a level of trust is required to pass a pointer to
the original data to a subroutine. Since call by value creates a copy of the data at the
time of the call, it is slower but more secure. With call by value, the original data is
protected from subroutines that are called.

Checkpoint 1.21: If an array has 10 elements, what is the range of index values
used to access the data?

1.6.3. Linked lists

The linked list is an important data structure used in operating systems. Each element
(node) contains data and a pointer to another element as shown in Figure 1.40. Given
that a node in the list is a composite of data and a pointer, we use struct to declare a
composite data type. A composite data type can be made up of primitive data type,
pointers and also other composite data-types.

struct Node{
struct Node *Next;
int Data;
b
typedef struct Node NodeType;

In this simple example, the Data field is just a 32-bit number, we will expand our
node to contain multiple data fields each storing a specific attribute of the node.
There is a pointer to the first element, called the head pointer. The last element in the
list has a null pointer in its next field to indicate the end of the list.

HeadPt— =™ =™ =™ =™ _null

Figure 1.40. A linked list with 5 nodes.

We can create lists statically or dynamically. A statically created list is created at
compile time and does not change during the execution of the program.

NodeType theList[8] ={
{&theList[1], 1},
{&theList[2], 10},
{&theList[3], 100},
{&theList[4], 1000},
{&theList[5], 10000},
{&theList[6], 100000},

{&theList[7], 1000000},
{0, 10000000} };
NodeType *HeadPt = theList; // points to first element

The following function searches the list to see if a data value exists in the list.

int Search(int x){ NodeType *pt;
pt = HeadPt; // start at beginning
while (pt){
if(pt->Data == x) return 1; // found
pt = pt->Next;
}

return 0; // not found

}

This example created the linked-list statically. The compiler will generate code prior
to running main (called premain) that will initialize the eight nodes. To do this
initialization, there will be two copies of the structure: the initial copy in ROM used
during premain, and the RAM copy used by the program during execution. If the
program needs to change this structure during execution then having two copies is
fine. However, if the program does not change the structure, then you could put a
single copy in ROM by adding const to the definition. In this case, HeadPt will be
in RAM but the linked list will be in ROM.

const struct Node{
const struct Node *Next;
int Data;
s
typedef const struct Node NodeType;
NodeType theList[8] ={
{&theList[1], 1},
{&theList[2], 10},
{&theList[3], 100},
{&theList[4], 1000},
{&theList[5], 10000},
{&theList[6], 100000},
{&theList[7], 1000000},
{0, 10000000} };
NodeType *HeadPt = theList; // points to first element

It is possible to create a linked list dynamically and grow/shrink the list as a program
executes. However, in keeping with our goal to design a simple RTOS, we will
refrain from doing any dynamic allocation, which would require the management of a
heap. Most real-time systems do not allow the heap (malloc and free) to be
accessed by the application programmer, because the use of the heap could lead to

nondeterministic behavior (the activity of one program affects the behavior of
another completely unrelated program).

Checkpoint 1.22: What is a linked list and in what ways is it better than an array?
In what ways is are arrays better?

1.7. Memory Management

1.7.1. Use of the heap

In the previous two volumes, we have seen two types of allocation: permanent
allocation in global variables and temporary allocation in local variables. When we
allocate local variables in registers or on the stack these variables must be private to
the function and cannot be shared with other functions. Furthermore, each time the
function is invoked new local variables are created, and data from previous
instantiations are not available. This behavior is usually exactly what we want to
happen with local variables. However, we can use the heap (or memory manager)
to have temporary allocation in a way that is much more flexible. In particular, we
will be able to explicitly define when data are allocated and when they are
deallocated with the only restriction being we first allocate, next we use, and then we
deallocate. Furthermore, we can control the scope of the data in a flexible manner.

The use of the heap involves two system functions: malloc and free . When we wish
to allocate space,we call malloc and specify how many bytes we need. malloc will
return a pointer to the new object, which we must store in a pointer variable. If the
heap has no more space, malloc will return a 0, which means null pointer. The heap
implements temporary allocation, so when we are done with the data, we return it to
the heap by calling free . Consider the following simple example with three
functions.

int32_t *Pt;
void Begin(void){
Pt = (*int32_t)malloc(4*20); // allocate 20 words
}
void Use(void){ int32_t i;
for(i=0; i < 20; i++)
Pt[i] = i; // put data into array
}
void End(void){
free(Pt);
}

The pointer Pt is permanently allocated. The left side of Figure 1.41 shows that
initially, even though the pointer exists, it does not point to anything. More
specifically, the compiler will initialize it to O; this 0 is defined as a nullpointer,
meaning it is not valid. When malloc is called the pointer is now valid and points to
a 20-word array. The array is inside the heap and Pt points to it. Any time
after malloc is called and before free is called,the array exists and can be accessed

via the pointer Pt. After you call free , the pointer has the same value as before.
However, the array itself does not exist. Le., these 80 bytes do not belong to your
program anymore. In particular, after you call free , the heap is allowed to allocate
these bytes to some other program. Weird and crazy errors will occur if you attempt
to dereference the pointer before the array is allocated, or after it is released.

Bebremal loc I Afermalloc | Aferfree

: : nothing
© /B

| |
Pt | Pt Pt

| |

| |

Figure 1.41. The heap is used to dynamically allocate memory.

This array exists and the pointer is valid from when you call malloc up until the time
you call free . In C, the heap does not manage the pointers to allocated block; your
program must. If you call malloc ten times in a row, you must keep track of the ten
pointers you received. The scope of this array is determined by the scope of the
pointer, Pt . If Pt is public, then the array is public. If static were to be added to the
definition of Pt , then the scope of the array is restricted to software within this file.
In the following example, the scope of the array is restricted to the one function.
Within one execution of the function, the array is allocated, used, and then
deallocated, just like a local variable.

void Function(void){ int32_t i;
int32_t *pt;
pt = (*int32_t)malloc(4*20); // allocate 20 words
for(i=0; i< 20; i++)
ptli] = i; // put data into array
free(pt);
}
A memory leakoccurs if software uses the heap to allocate space but forgets to
deallocate the space when it is finished. The following is an example of a memory
leak. Each time the function is called, a block of memory is allocated. The pointer to
the block is stored in a local variable. When the function returns, the pointer pt no
longer exists. This means the allocated block in the heap exists, but the program has
no pointer to it. In other words, each time this function returns 80 bytes from the heap
are permanently lost.

void LeakyFunction(void){ int32_t i;
int32_t *pt;
pt = (*int32_t)malloc(4*20); // allocate 20 words
for(i=0; i< 20; i++)
ptli] = i; // put data into array
}

Internal fragmentation is storage that is allocated for the convenient of the
operating system but contains no information. This space is wasted. Often this space
is wasted in order to improve speed or provide for a simpler implementation. The
fragmentation is called "internal" because the wasted storage is inside the allocated
region. External fragmentation exists when the largest memory block that can be
allocated is less than the total amount of free space in the heap. External
fragmentation occurs in simple memory managers because memory is allocated in
contiguous blocks. External fragmentation occurs over time as free storage becomes
divided into many small pieces. It is a particular problem when an application
allocates and deallocates blocks of storage of varying sizes. The result is that
although free storage is available, it is effectively unusable because it is divided into
pieces that are too small to satisfy the demands of the application. The term
"external" refers to the fact that the unusable storage is outside the allocated regions.

Checkpoint 1.23: Depending on the microcontroller architecture, it may be faster
to access variables allocated on either a 16-bit word or 32-bit boundary. If the
compiler skips memory cells in order to align variables, is this internal or
external fragmentation?

1.7.2. Simple fixed-size heap

Figure 1.
list.

Program
manager.

In general, the heap manager allows the program to allocate a variable block size, but
in this section we will develop a simplified heap manager handles just fixed
sizeblocks. In this example, the block size is specified by the constant SIZE . The
initialization will create a linked list of all the free blocks (Figure 1.42).

FresPt— i — — —* null

42. The initial state of the heap has all of the free blocks linked in a

Program 1.5ashows the global structures for the heap. These entries are defined in
RAM. SIZE is the number of 8-bit bytes in each block. All blocks allocated and
released with this memory manager will be of this fixed size. NUM is the number of
blocks to be managed. FreePt points to the first free block.

#define SIZE 80

#define NUM 5

#define NULL 0 // empty pointer
int8_t *FreePt;

int8_t Heap[SIZE*NUM];

1.5a. Private global structures for the fixed-block memory

Initialization must be performed before the heap can be used. Program 1.5bshows the
software that partitions the heap into blocks and links them together. FreePt points
to a linear linked list of free blocks.

void Heap_Init(void){
int8_t *pt;
FreePt = &Heap|0];
for(pt=&Heap[0]; pt!=&Heap[SIZE*(NUM-1)]; pt=pt+SIZE){
*(int32_t *)pt =(int32_t)(pt+SIZE);
}
(int32_t)pt = NULL;
}

Program 1.5b. Functions to initialize the heap.

Initially these free blocks are contiguous and in order, but as the manager is used the
positions and order of the free blocks can vary. It will be the pointers that will thread
the free blocks together. To allocate a block to manager just removes one block from
the free list. Program 1.5c shows the allocate and release functions.
The Heap_Allocate function will fail and return a null pointer when the heap
becomes empty. The Heap_Release returns a block to the free list. This system does
not check to verify a released block actually was previously allocated.
void *Heap_Allocate(void){int8_t *pt;
pt = FreePt;
if (pt '= NULL){
FreePt = (int8_t*) *(int8_t**)pt;
}
return(pt);
}
void Heap_Release(void *pt){int8_t *oldFreePt;
oldFreePt = FreePt;
FreePt = (int8_t*)pt;
*(int32_t *)pt = (int32_t)oldFreePt;
}

Program 1.5c. Functions to allocate and release memory blocks.

Checkpoint 1.24: There are 5 blocks in this simple heap. How could the memory
manager determine if block I (where 0 <1< 4) is allocated or free?

Checkpoint 1.25: Using this memory manager, write a malloc and free functions
such that the size is restricted to a maximum of 100 bytes. L.e., you may assume the
user never asks for more than 100 bytes at a time.

1.7.3. Memory manager: malloc and free

The heapis a large piece of memory, managed by the operating system, used for
temporary allocation. The memory manager has at least three functions: one for
initialization (Heap_Init), one function for allocation and a third function for
deallocation. Most compilers support memory management,
implementing malloc and free . However, in this example we develop an equivalent
solution, with names Heap_Malloc and Heap_Free . You can download a version of
the memory manager described in this section at the book web site. It is called
Heap_xxx and was developed by Jacob Egner as an example to illustrate
programming style. It runs on the TM4C compiled with the ARM Keil uVision, but
should operate without change on other microcontrollers and other compilers. The
heap itself is statically allocated storage assigned by the compiler. For a 32-bit
microcontroller we could define the 2000-byte heap using

static int32_t Heap[500];

Typically, the operating system calls Heap_Init during the initialization process.
The initial heap is one large free block, as shown in Figure 1.43. The initial heap has
498 words of allocatable space and 2 words of overhead.

Initial heap
Heap | 498

1
'
11

498

Figure 1.43. An initial heap of 2000 bytes is one block of 498 words (each
box is 32 bits).

The proper usage of the dynamic memory manager follows three phases: allocation,
use, and deallocation. The user or OS itself calls Heap_Malloc when it needs a
contiguous block of memory. It is good design practice to store the pointer to the
allocated space in permanent memory. For example, if a 20-byte buffer is needed,
initially, we could call

int8_t *Pt;

void UserStart(void){ // called at the beginning
Pt = Heap_Malloc(20);

}

The second phase is for the system to use the 20-byte array
void UserBody(void){ // called in the middle
for(int i=0; i<20; i++){
(*Pt) = 0; // access the data via Pt

}

/I rest of user programs

}

When the program is finished with the block, it is released by calling Heap_Free .

void UserFinish(void){ // called at the end
Heap_Free(Pt);
}

Checkpoint 1.26: What happens if a function allocates a block, stores a pointer to
the block in a local variable, and then returns from the function without
deallocating the block?

Saving the pointer to an allocated block in a local variable does not make sense. If
the memory is needed for the duration of just one function call, the block should be
allocated on the stack. For example, if a 20-byte buffer is needed, we could call

void User(void){ int8_t buffer[20];
// use 20-byte buffer
}

The heap is divided into blocks of variable size. As shown in Figure 1.44, there are
two copies of the block size, one counter stored at the beginning (Header) and other
copy of the counter stored at the end of the block (Trailer). These two counters will
be classified as internal fragmentation because they exist for the convenience of the
operating system. If the counter is positive the block is being used (previously
allocated). If the counter is negative the block is free. The value of the counter
determines the size of the block in 32-bit words, not including the two counters
themselves. If the counter is implemented as a 32-bit signed number (int32_t), then
a heap of up to 23'*4 bytes (2 gibibytes) can be managed. The number of bytes in a
block will be divisible by four. ILe., blocks are aligned to 32-bit word boundaries.
For example, if the user asks for a block with 17 bytes, 20 bytes will be allocated.
These 3 wasted bytes are a form of internal fragmentation. Furthermore, the block
with 5 words of data actually requires 7 words of memory.

bk F ree b lock
= Header| 100
Headern +5
Traikerl_+5
- Trailer| <00
32 bits

Figure 1.44. Each block has a header and a trailer.

When allocating blocks we can use a number of algorithms to choose which block to
allocate. Let nbe the number of bytes requested by Heap_Malloc .

¢ First fit uses the first free block with a size greater than or equal to n.
e Best fit uses the smallest free block with a size greater than or equal to n.
e Worst fit uses the largest free block with a size greater than or equal to n.

Depending on the allocation pattern of the user program, these three allocation
methods will have differing levels of external fragmentation. The implementation on
the book web site as Heap_xxx uses first fit.

Checkpoint 1.27: How would you change the way free blocks are organized to
implement best fit?

When a block is allocated, a free block is divided to two parts. Figure 1.45illustrates
the process of allocating a 20-word block using a 100-word free block. In this
example, 80 bytes is 20 words. The 100-word free block is divided into a 20-word
block and a 78-word block. A pointer to the 20-word block is returned
by Heap_Malloc .

When allocating a block, the free block may not be large enough to split in two. For
example, if the user were to have asked for 392 bytes (98 words) in Figure 1.45, it
would be better to give the user the entire 100-word block, because the 8 bytes (2
words) are too small to create a useful block. These extra 8 bytes allocated to the
user constitute internal fragmentation.

Before A fter
Header[100 Pt 20
eader "__+

e

|
1
T

Pt=Heap_Mal loc(40) ;|
- M 120
=18

i
\

1
1t
i
1]

Traiker =100 =18

Figure 1.45. Example, the user calls Pt=Heap_Malloc(80).

Checkpoint 1.28: In Figure 1.45, why does the sum of the parts not equal the
whole? In particular, 20+78 does not equal 100.

When deallocating a block, there are four cases: no merge, merge above, merge
below and merge both above and below. If the blocks immediately above and
immediately below the deallocated block are used, no merging is needed and the
manager simply changes the counters from positive to negative, as shown Figure
1.46.

Before A fier
+10 —!
2 +10 Heap_Free(Pt): +10 _|
[e U sed e e F ree
+20 | 20
+10 —!
+10 +10

Figure 1.46. Example, the user calls Heap_Free(Pt).

If the block immediately above is free and immediately below is used, a merge above
is needed and the manager will combine two blocks into one big free block, as
shown Figure 1.47. There are two special cases when deallocating blocks. If the
block is the first block in the heap, you cannot merge it above, and if the block is the
last block in the heap, you cannot merge it below.

Before A fer
-10 32 59
-10 Heap_Free(Pt):

=

e e U sed e =
+20 32 -
+10 +10
+10 +10

Figure 1.47. Two blocks are merged during a call to Heap_Free.

Checkpoint 1.29: What happens if you continue to access a memory block after
the block is deallocated?

The Knuth buddy allocation maintains the heap as a collection of blocks each with a
size of 2™. When the user requests a block of size n, it will find the smallest block
with 2™ greater than or equal to n. For example, if the smallest block is size 1024,
and the user requests a block of 100 bytes, the 1024-byte block will be divided into
two 128-byte blocks, one 256-byte block and one 512-byte blocks. The user will be
given the 128-byte block. The 28 extra bytes allocated to the user is internal
fragmentation.

1.8. Introduction to debugging

Microcontroller-related problems often require the use of specialized equipment to
debug the system hardware and software. Useful hardware tools include a logic
probe, an oscilloscope, a logic analyzer, and a JTAG debugger. A logic probe is a
handheld device with an LED or buzzer. You place the probe on your digital circuit
and LED/buzzer will indicate whether the signal is high or low. An escillescope, or
scope, graphically displays information about an electronic circuit, where the voltage
amplitude versus time is displayed. A scope has one or two channels, with many
ways to trigger or capture data. A scope is particularly useful when interfacing
analog signals using an ADC or DAC. The PicoScope 2104 (from
http://www.picotech.com/) is a low-cost but effective tool for debugging
microcontroller circuits. A logic analyzer is essentially a multiple channel digital
storage scope with many ways to trigger. As shown in Figure 1.48, we can connect
the logic analyzer to digital signals that are part of the system, or we can connect the
logic analyzer channels to unused microcontroller pins and add software to toggle
those pins at strategic times/places. As a troubleshooting aid, it allows the
experimenter to observe numerous digital signals at various points in time and thus
make decisions based upon such observations. One problem with logic analyzers is
the massive amount of information that it generates. To use an analyzer effectively
one must learn proper triggering mechanisms to capture data at appropriate times
eliminating the need to sift through volumes of output. The logic analyzer figures in
this book were collected with a logic analyzer Digilent (from
http://www.digilentinc.com/). The Analog Discovery combines a logic analyzer with
an oscilloscope, creating an extremely effective debugging tool.

M SP LogcAnalzer

his D gital FEALC T

Interface Wy gy By N

—l N S Oy I8

D igital g ey P

Interface %

P4.1 J‘I_I—I_I_I_}
P4.0

Figure 1.48. A logic analyzer and example output. P4.1 and P4.0 are extra
pins just used for debugging.

Figure 1.49 shows a logic analyzer output, where signals SSI are outputs to the LCD,
and UART is transmission between two microcontrollers. However P3.3 and P3.1
are debugging outputs to measuring timing relationships between software execution
and digital I/O. The rising edge of P3.1 is used to trigger the data collection.

i

Fie Conrol Wew Selngs Window e

fgEeert [Joat (Jeverss O Zoom Focsors i Heis
Pesifion B0uws = Bufer "0 * Clock e s =
NSr\qle o - 3 -
Base G| = [o2 Aekd Talk Far Soerce Frahi
e st - 3 Reworoe - |- - —l Fnady nS0T0E 1R05.58 58 Prastion Hyme .
N Eamples o | MHz [1e8 cl
- [e .
5510k
551 C5

Trgger DIO0=Rising

g

| 551 Mo

Fa3
P31

Ly =) | w2 Hi

PEETEENEN

e oo coons —— 000 0) D T S, e
[IOV T 1T S

LART 0
I LART
Ry

Figure 1.49. Analog Discovery logic analyzer output (www.digilentinc.com).

=

i |

An emulator is a hardware debugging tool that recreates the input/output signals of
the processor chip. To use an emulator, we remove the processor chip and insert the
emulator cable into the chip socket. In most cases, the emulator/computer system
operates at full speed. The emulator allows the programmer to observe and modify
internal registers of the processor. Emulators are often integrated into a personal
computer, so that its editor, hard drive, and printer are available for the debugging
process.

The only disadvantage of the in-circuit emulator is its cost. To provide some of the
benefits of this high-priced debugging equipment, many microcontrollers use a JTAG
debugger. The JTAG hardware exists both on the microcontroller chip itself and as an
external interface to a personal computer. Although not as flexible as an ICE, JTAG
can provide the ability to observe software execution in real-time, the ability to set
breakpoints, the ability to stop the computer, and the ability to read and write
registers, I/0O ports and memory.

Debugging is an essential component of embedded system design. We need to
consider debugging during all phases of the design cycle. It is important to develop a
structure or method when verifying system performance. This section will present a
number of tools we can use when debugging. Terms such as program testing,
diagnostics, performance debugging, functional debugging, tracing, profiling,
instrumentation, visualization, optimization, verification, performance measurement,
and execution measurement have specialized meanings, but they are also used
interchangeably, and they often describe overlapping functions. For example, the
terms profiling, tracing, performance measurement, or execution measurement may be
used to describe the process of examining a program from a time viewpoint. But,
tracing is also a term that may be used to describe the process of monitoring a
program state or history for functional errors, or to describe the process of stepping
through a program with a debugger. Usage of these terms among researchers and
users vary.

Black-box testing is simply observing the inputs and outputs without looking inside.
Black-box testing has an important place in debugging a module for its functionality.

On the other hand, white-box testing allows you to control and observe the internal
workings of a system. A common mistake made by new engineers is to just perform
black box testing. Effective debugging uses both. One must always start with black-
box testing by subjecting a hardware or software module to appropriate test-cases.
Once we document the failed test-cases, we can use them to aid us in effectively
performing the task of white-box testing. Unit testing involves evaluating each
module separately before combining the components into the larger system.
Integration testing occurs when multiple components are integrated together.

We define a debugging instrument as software code that is added to the program for
the purpose of debugging. A print statement is a common example of an instrument.
Using the editor, we add print statements to our code that either verify proper
operation or display run-time errors.

Nonintrusiveness is the characteristic or quality of a debugger that allows the
software/hardware system to operate normally as if the debugger did not exist.
Intrusiveness is used as a measure of the degree of perturbation caused in program
performance by the debugging instrument itself. Let t be the time required to execute
the instrument, and let At be the average time in between executions of the instrument.
One quantitative measure of intrusiveness is t/At, which is the fraction of available
processor time used by the debugger. For example, a print statement added to your
source code may be very intrusive because it might significantly affect the real-time
interaction of the hardware and software. Observing signals that already exist as part
of the system with an oscilloscope or logic analyzer is nonintrusive, meaning the
presence of the scope/analyzer has no effect on the system being measured. A
debugging instrument is classified as minimally intrusive if it has a negligible effect
on the system being debugged. In a real microcontroller system, breakpoints and
single-stepping are also intrusive, because the real hardware continues to change
while the software has stopped. When a program interacts with real-time events, the
performance can be significantly altered when using intrusive debugging tools. To be
effective we must employ nonintrusive or minimally intrusive methods.

Checkpoint 1.30: What does it mean for a debugging instrument to be minimally
intrusive? Give both a general answer and a specific criterion.

Although, a wide variety of program monitoring and debugging tools are available
today, in practice it is found that an overwhelming majority of users either still prefer
or rely mainly upon “rough and ready” manual methods for locating and correcting
program errors. These methods include desk-checking, dumps, and print statements,
with print statements being one of the most popular manual methods. Manual
methods are useful because they are readily available, and they are relatively simple
to use. But, the usefulness of manual methods is limited: they tend to be highly
intrusive, and they do not provide adequate control over repeatability, event
selection, or event isolation. A real-time system, where software execution timing is
critical, usually cannot be debugged with simple print statements, because the print
statement itself will require too much time to execute.

The first step of debugging is to stabilize the system. In the debugging context, we
stabilize the problem by creating a test routine that fixes (or stabilizes) all the inputs.
In this way, we can reproduce the exact inputs over and over again. Once stabilized,
if we modify the program, we are sure that the change in our outputs is a function of
the modification we made in our software and not due to a change in the input
parameters.

Acceleration means we will speed up the testing process. When we are testing one
module we can increase how fast the functions are called in an attempt to expose
possible faults. Furthermore, since we can control the test environment, we will vary
the test conditions over a wide range of possible conditions. Stress testing means
we run the system beyond the requirements to see at what point it breaks down.

When a system has a small number of possible inputs (e.g., less than a million), it
makes sense to test them all. When the number of possible inputs is large we need to
choose a set of inputs. Coverage defines the subset of possible inputs selected for
testing. A corner case is defined as a situation at the boundary where multiple inputs
are at their maximum, like the corner of a 3-D cube. At the corner small changes in
input may cause lots of internal and external changes. In particular, we need to test
the cases we think might be difficult (e.g., the clock output increments one second
from 11:59:59 PM December 31, 1999.) There are many ways to decide on the
coverage. We can select values:

* Near the extremes and in the middle

» Most typical of how our clients will properly use the system
 Most typical of how our clients will improperly use the system
» That differ by one

* You know your system will find difficult

* Using a random number generator

Maintenance Tip: First, find the things that will break you. Second, break them.

To stabilize the system we define a fixed set of inputs to test, run the system on these
inputs, and record the outputs. Debugging is a process of finding patterns in the
differences between recorded behavior and expected results. The advantage of
modular programming is that we can perform modular debugging. We make a list of
modules that might be causing the bug. We can then create new test routines to
stabilize these modules and debug them one at a time. Unfortunately, sometimes all
the modules seem to work, but the combination of modules does not. In this case we
study the interfaces between the modules, looking for intended and unintended (e.g.,
unfriendly code) interactions.

Common error: Sometimes the original system operates properly, and the
debugging code has bugs.

1.9. Exercises

1.1 There are two R13s. What is special about R13? Why are there two of them?
What is the initial value in R13 after a reset?

1.2 What is in R14 when a function is called? How do you write code so that
function calls can be nested? What is the initial value in R14 after a reset?

1.3 What is in Register 15? Why is bit 0 of Register 15 always 0? What happens
when you load a value into Register 15 with bit 0 set? What is the initial value in
R15 after a reset?

1.4 Why are there so many buses on the ARM Cortex-M processor?
1.5 Write C code that sets bit 30 of memory location 0x2000.4000 using bit-banding.

1.6 Write C code that clears bit 15 of memory location 0x2000.1000 using bit-
banding.

1.7 Write C code that sets bit 5 of memory location 0x4000.4400 using bit-banding.
What effect does this operation have?

1.8 Write C code that clears bit 3 of memory location 0x4000.7400 using bit-
banding. What effect does this operation have?

1.9 Where is the interrupt enable bit on ARM Cortex-M processor? Which value
enables interrupts: 0 or 1?

1.10Does the associative principle hold for signed integer multiply and divide?

Assume Outl Out2 A B C are all the same precision (e.g., 32 bits). In particular do

these two C calculations always achieve identical outputs? If not, give an example.
Outl = (A*B)/C; Out2 = A*(B/C);

1.11Does the associative principle hold for signed integer addition and subtraction?
Assume Out3 Out4 AB C are all the same precision (e.g., 32 bits). In particular do

these two C calculations always achieve identical outputs? If not, give an example.
Out3 = (A+B)-C; Out4 = A+(B-C);

1.12 According to AAPCS, which registers must be preserved and which registers
are free to modify by a function?

1.13 A C function has this prototype, void MyProg(int a, int b, int c) . If one placed
a breakpoint at the beginning of this function, where would you find the parameters a,
b, and c?

1.14 Write two assembly functions that return RO equal to 31 times the input. One
function uses the multiply function and one uses the shift and reverse subtract. Make

the functions comply with AAPC, so RO is the input and RO is the output.

1.15 Let RO and R1 be two unsigned integers. Write assembly code that makes RO
the larger of the two using the conditional assembly instruction IT .

1.16 Consider a software system that allocates memory block i of Size, in the order
ofi =0, 1, 2, ... Inthis system, blocks will always be deallocated in the opposite
order. Prove that the memory manage will never result in fragmentation (two free
blocks that are not adjacent.) Write three functions (init, malloc, and free) that
implement a heap used in this manner.

#define SIZE 1000
uint8_t Heap[SIZE];

2. Microcontroller Input/Output

Chapter 2 objectives are to:
* Overview digital I/0 on the MSP432 and TM4C
 Review interrupt synchronization
* Introduce timer and edge-triggered interrupts
* Define simple serial communication using the UART and SPI
* Present timer I/O with input capture and PWM
* Overview analog I/O using a DAC and an ADC

The overall objective of this book is to teach the design of real-time operating
systems for embedded systems. This chapter will review interfacing to the
Texas Instruments MSP432/TM4C family of microcontrollers. Hardware and
software aspects of interfacing to the microcontroller were presented in detail
in Volume 2. In particular, this chapter is an abridged version of Volume 2
summarizing I/O interfacing concepts, presenting some reference material. The
reader can refer to Volume 2 for more details including more design examples.

2.1. Parallel 1/O

On most embedded microcontrollers, the I/O ports are memory mapped. This means
the software can access an input/output port simply by reading from or writing to the
appropriate address. It is important to realize that even though I/O operations “look”
like reads and writes to memory variables, the I/O ports often DO NOT act like
memory. For example, some bits are read-only, some are write-only, some can only
be cleared, others can only be set, and some bits cannot be modified. To make our
software more readable we include symbolic definitions for the I/O ports. We set the
direction register to specify which pins are input and which are output. Individual
port pins can be general purpose I/O (GPIO) or have an alternate function.

With a parallel input software reads a binary one if the input pin is high. The
software reads a binary zero if the input pin is low. With a parallel output, when the
software writes a 1, the output pin goes high. When the software writes a 0, the
output pin goes low. Microcontrollers allow parallel I/O to 8 or 16 pins at a time,
hence the classification as parallel I/O.

2.1.1. TM4C 1/O programming

Pins have a regular (GPIO) or can have one of multiple alternate functions. By
default, the alternate function register (e.g., GPIO_PORTD_AFSEL_R) is zero,
specifying the corresponding bits are regular GPIO pins. We will set bits in the
alternative function register when we wish to activate the functions listed in Tables
1.4, and 1.5. Typically, we write to the direction and alternate function registers once
during the initialization phase. We use the data
register(e.g.,, GPIO_PORTD_DATA_R) to perform input/output on the port.
Conversely, we read and write the data register multiple times to perform input and
output respectively during the running phase. The only differences among the TM4C
family are the number of ports and available pins in each port. For example, the
TM4C1294 has fifteen digital I/O ports A (8 bits), B (6 bits), C (8 bits), D (8 bits), E
(6 bits), F (5 bits), G (2 bits), H (4 bits), J (2 bits), K (8 bits), L (8 bits), M (8 bits),
N(6 bits), P (6 bits), and Q (5 bits). Furthermore, the TM4C1294 has different
addresses for ports. Refer to the file tmdc1294ncpdt.h or to the data sheet for more
the specific addresses of its I/O ports.

To initialize an I/O port for general use we perform seven steps, see Program 2.1. We
will skip steps three four and six in this chapter because the default state after a reset
is to disable analog function and disable alternate function. First, we activate the
clock for the port by setting the corresponding bit in RCGCGPIO register. Because
it takes time for the clock to stabilize, we next will wait for its status bit in the
PRGPIO to be true. Second, we unlock the port; unlocking is needed only for pins

PD7, and PFO on the TM4C123. The only pin needing unlocking on the TM4C1294 is
PD?7. Third, we disable the analog function of the pin, because we will be using the
pin for digital I/O. Fourth, we clear bits in the PCTL (Tables 1.4, 1.5) to select
regular digital function. Fifth, we set its direction register. The direction register
specifies bit for bit whether the corresponding pins are input or output. A bit in DIR
set to 0 means input and 1 means output. Sixth, we clear bits in the alternate function
register, and lastly, we enable the digital port. Turning on the clock must be first. If
the pin needs unlocking that must be second. However, the other five steps can occur
in any order.

void PortF_Init(void){ // TM4C123 has PortF bits 4-0
SYSCTL_RCGCGPIO_R [|= 0x00000020; // 1) activate clock for Port F
while((SYSCTL_PRGPIO_R&0x00000020) == 0){};// wait for stabilization
GPIO_PORTF_LOCK_R = 0x4C4F434B; // 2) unlock GPIO Port F
GPIO_PORTF_CR_R = 0x1F; // allow changes to PF4-0
GPIO_PORTF_AMSEL_R = 0x00; // 3) disable analog on PF
GPIO_PORTF_PCTL_R = 0x00000000; //4) PCTL GPIO on PF4-0
GPIO_PORTF _DIR_R = 0x0FE; /! 5) PF4,PF0 in, PF3-1 out
GPIO_PORTF_AFSEL_R = 0x00; // 6) disable alt funct on PF4-0
GPIO_PORTF_PUR_R = 0x11; // enable pull-up on PF0 and PF4
GPIO_PORTF_DEN_R = 0x1F; /! 7) enable digital I/O on PF4-0

}

uint32_t PortF_Input(void){
return (GPIO_PORTF_DATA_R&0x11); // read PF4,PF0 inputs

}

void PortF_Output(uint32_t data){
GPIO_PORTF_DATA_R = data; // write PF3-PF1 outputs

}
Program 2.1. A set of functions using PF4, PFO0 as inputs and PF3-PF1 as
outputs.

Address 7 6 5 4 3 2 1 0 Name

$400F.E608 - - GPIOF | GPIOE | GPIOD | GPIOC | GPIOB | GPIOA | SYSCTL_RCGCGPIO_R
$4000.43FC | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | GPIO_PORTA_DATA_R
$4000.4400 | DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 | SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4510 | PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.451C | DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 | 1 1 1 1 1 1 1 1 GPIO_PORTA_CR_R
$4000.4528 | 0 0 0 0 0 0 0 0 GPIO_PORTA_AMSEL_R
$4000.53FC | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | GPIO_PORTB_DATA_R
$4000.5400 | DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 | SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.5510 | PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTB_PUR_R
$4000.551C | DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R
$4000.5524 | 1 1 1 1 1 1 1 1 GPIO_PORTB_CR_R

$4000.5528 | 0 0 AMSEL | AMSEL | 0 0 0 0 GPIO_PORTB_AMSEIL,_R
$4000.63FC | DATA | DATA | DATA | DATA |JTAG JTAG JTAG JTAG GPIO_PORTC_DATA_R
$4000.6400 | DIR DIR DIR DIR JTAG JTAG JTAG JTAG GPIO_PORTC_DIR_R
$4000.6420 | SEL SEL SEL SEL JTAG JTAG JTAG JTAG GPIO_PORTC_AFSEL_R
$4000.6510 | PUE PUE PUE PUE JTAG JTAG JTAG JTAG GPIO_PORTC_PUR_R
$4000.651C | DEN DEN DEN DEN JTAG JTAG JTAG JTAG GPIO_PORTC_DEN_R
$4000.6524 | 1 1 1 1 JTAG JTAG JTAG JTAG GPIO_PORTC_CR_R
$4000.6528 | AMSEL | AMSEL | AMSEL | AMSEL | JTAG JTAG JTAG JTAG GPIO_PORTC_AMSEL_R
$4000.73FC | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | GPIO_PORTD_DATA_R
$4000.7400 | DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTD_DIR_R
$4000.7420 | SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTD_AFSEL_R
$4000.7510 | PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTD_PUR_R
$4000.751C | DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTD_DEN_R
$4000.7524 | CR 1 1 1 1 1 1 1 GPIO_PORTD_CR_R
$4000.7528 | 0 0 AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | GPIO_PORTD_AMSEL_R
$4002.43FC DATA | DATA | DATA | DATA | DATA | DATA | GPIO_PORTE_DATA_R
$4002.4400 DIR DIR DIR DIR DIR DIR GPIO_PORTE_DIR_R
$4002.4420 SEL SEL SEL SEL SEL SEL GPIO_PORTE_AFSEL_R
$4002.4510 PUE PUE PUE PUE PUE PUE GPIO_PORTE_PUR_R
$4002.451C DEN DEN DEN DEN DEN DEN GPIO_PORTE_DEN_R
$4002.4524 1 1 1 1 1 1 GPIO_PORTE_CR_R
$4002.4528 AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | GPIO_PORTE_AMSEL_R
$4002.53FC DATA | DATA | DATA | DATA | DATA | GPIO_PORTF_DATA_R
$4002.5400 DIR DIR DIR DIR DIR GPIO_PORTF_DIR_R
$4002.5420 SEL SEL SEL SEL SEL GPIO_PORTF_AFSEL_R
$4002.5510 PUE PUE PUE PUE PUE GPIO_PORTF_PUR_R
$4002.551C DEN DEN DEN DEN DEN GPIO_PORTF_DEN_R
$4002.5524 1 1 1 1 CR GPIO_PORTF_CR_R
$4002.5528 0 0 0 0 0 GPIO_PORTF_AMSEL_R
31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0
$4000.452C | PMC7 | PMC6 |PMC5 |PMC4 |PMC3 |PMC2 |PMC1 |PMCO | GPIO_PORTA_PCTL_R
$4000.552C | PMC7 | PMC6 |PMC5 |PMC4 |PMC3 |PMC2 |PMC1 |PMCO | GPIO_PORTB_PCTL_R
$4000.652C | PMC7 | PMC6 |PMC5 | PMC4 | Ox1 0x1 0x1 0x1 GPIO_PORTC_PCTL_R
$4000.752C | PMC7 | PMC6 |PMC5 |PMC4 |PMC3 |PMC2 |PMC1 |PMCO | GPIO_PORTD_PCTL_R
$4002.452C PMC5 |PMC4 |PMC3 |PMC2 |PMC1 |[PMCO [GPIO_PORTE_PCTL_R
$4002.552C PMC4 |PMC3 |PMC2 |PMC1 |PMCO | GPIO_PORTF_PCTL_R
$4000.6520 | LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) | GPIO_PORTC_LOCK_R
$4000.7520 | LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) | GPIO_PORTD_LOCK_R
$4002.5520 | LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) | GPIO_PORTF_LOCK_R

Table 2.1. Some TM4C123 parallel ports. Each register is 32 bits wide. For PMCx bits, see
Tables 1.4 and 1.5. JTAG means do not use these pins and do not change any of these bits.

To use a port we first must activate @ its clock in
the SYSCTL_RCGCGPIO_R register. To make Port F pins 4,0 input and pins 3—1
output, we set the direction register to 0x0E, as shown in Program 2.1. When the
software reads from location 0x400253FC the bottom 5 bits are returned with the
current values on Port F. The top 27 bits are returned zero. The input pins show the
current digital state, and the output pins show the value last written to the port. The
function PortF_Input will read from the two input pins and return a value, 0x00

0x01, 0x10 or Ox11, depending on the current status of the inputs. The
function PortF_Output will write new values to the three output pins.

In Program 2.1 the assumption was the software module had access to all of Port F. In
other words, this software owned all five pins of Port F. In most cases, a software
module needs access to only some of the port pins. If two or more software modules
access the same port, a conflict will occur if one module changes modes or output
values owned by another module. It is good software design to write friendly
software, which only affects the individual pins as needed. Friendly software does
not change the other bits in a shared register. Conversely, unfriendly software
modifies more bits of a register than it needs to. The difficulty of unfriendly code is
each module will run properly when tested by itself, but weird bugs result when two
or more modules are combined.

Consider the problem that a software module need to output to just Port F bit 1. After
enabling the clock for Port F, we use read-modify-write software to initialize just pin
1

SYSCTL_RCGCGPIO_R |= 0x00000020; // activate clock for Port F
while((SYSCTL_PRGPIO_R&0x00000020) == 0){};// clock stabilization
GPIO_PORTF_AMSEL_R &=~0x02; // disable analog on PF1
GPIO_PORTF_PCTL_R &=~0x000000F0; // PCTL GPIO on PF1
GPIO_PORTF_DIR_R |- 0x02; // PF1 is an output
GPIO_PORTF_AFSEL_R &=~0x02; // regular port function
GPIO_PORTF_DEN_R |- 0x02; // PF1 is enabled as a digital port

There is no conflict if two or more modules enable the clock for Port F. There are
two ways on the Cortex-M microcontroller to access individual port bits. The first
method is to use read-modify-write software to change just pin 1. A read-or-write
sequence can be used to set one or more bits.

GPIO_PORTF _DATA R |- 0x02; // make PF1 high

A read-and-write sequence can be used to clear one or more bits.

GPIO_PORTF_DATA_R &=~0x02; // make PF1 low

The second method uses the bit-specific addressing. The TM4C family implements a
more flexible way to access port pins than the bit-banding. This bit-specific
addressing doesn’t work for all the I/O registers, just the parallel port data registers.
This mechanism allows collective access to 1 to 8 bits in a data port. We define eight
address offset constants in Table 2.2. Basically, if we are interested in bit b, the
constant is 4*2°. There 256 possible bit combinations we might be interested in
accessing, from all of them to none of them. Each possible bit combination has a
separate address for accessing that combination. For each bit we are interested in,
we add up the corresponding constants from Table 2.2 and then add that sum to the
base address for the port. The base addresses for the data ports can be found in GPIO

chapter of the microcontroller data sheet. For example, assume we are interested in
Port A bits 1, 2, and 3. The base address for Port A is 0x4000.4000, and the
constants are 0x0020, 0x0010 and 0x008. The sum of
0x4000.4000+0x0020+0x0010+0x008 is the address 0x4000.4038. If we read from
0x4000.4038 only bits 1, 2, and 3 will be returned. If we write to this address only
bits 1, 2, and 3 will be modified.

If we wish to access | Constant

bit

7 0x0200
6 0x0100
5 0x0080
4 0x0040
3 0x0020
2 0x0010
1 0x0008
0 0x0004

Table 2.2. Address offsets used to specify individual data port bits.

The base address for Port F is 0x4002.5000. If we want to read and write all 8 bits
of this port, the constants will add up to 0x03FC. Notice that the sum of the base
address and the constants yields the 0x4002.53FC address used in tmdc123gh6pm.h.
In other words, read and write operations to 0x4002.53FC will access all bits of
Port F. If we are interested in just bit 1 of Port F, we add 0x0008 to 0x4002.5000, to
get 0x4002.5008. Now, a simple write operation can be used to set PF1. The
following macros are friendly because it does not modify the other bits of Port F. A
read from PF1 will return 0x02 or 0x00 depending on whether the pin is high or low,
respectively. The PF1 and PF2 macros are not critical with respect each other.

#define PF1 (*((volatile uint32_t *)0x40025008))
#define SetPF1() (PF1 = 0x02)
#define ClearPF1() (PF1 = 0x00)

#define Toggle PF1()(PF1 = PF1/A0x02)
#define PF2 (*((volatile uint32_t *)0x40025010))
#define SetPF2() (PF2 = 0x04)

#define ClearPF2() (PF2 = 0x00)
#define Toggle PF2() (PF2 = PF2/0x04)

2.1.2. MSP432 1/0 programming

We will set/clear bits in the select registers (e.g., PISEL1 P1SELO0) when we wish
to activate the alternate functions listed in Table 2.3. To use a pin as GPIO, we must
clear the corresponding bits in the two select registers. Typically, we write to the
direction and select registers once during the initialization phase. We use the data

registers(e.g., P1IIN P10UT) to perform the actual input/output on the port. Table
2.4 shows the parallel port registers for Ports 1 and 2, but there are similar registers
for other ports 3 — 10. Each register in Table 2.4 is 8 bits wide.

To make a pin an output, we set the corresponding bit in the PxDIRregister to 1. In
addition, we can also set the corresponding bit in the drive strength register
(e.g., P2DS) to increase the maximum I,, and I, of the pin to 20 mA. Normal

strength is DS=0, and increased strength, called high drive, is DS=1. High-drive with
DS=1 is available only on P2.0 — P2.3.

Pin | PxSEL1=0, |PxSEL1=0, PxSEL0=1 PxSEL1=1, PxSEL1=1,
PxSEL0=0 PxSEL0=0 PxSEL0=1

P1.0 Port UCAOSTE

P1.1 Port UCAOCLK

P1.2 Port UCAORXD/UCAOSOMI

P1.3 Port UCAOTXD/UCAOSIMO

P14 Port UCBOSTE

P15 Port UCBOCLK

P1.6 Port UCBOSIMO/UCBOSDA

P17 Port UCB0SOMI/UCBOSCL

P2.0 Port UCAI1STE

P2.1 Port UCAICLK

P2.2 Port UCA1RXD/UCA1SOMI

P2.3 Port UCAI1TXD/UCA1SIMO

P2.4 Port TA0.CCI1A*/ TA0.1°

P2.5 Port TAO0.CCI2A? / TA0.2°

P2.6 Port TA0.CCI3A®/ TA0.3”

P2.7 Port TAO0.CCI4A? / TA0.4°

P3.0 Port UCA2STE

P3.1 Port UCA2CLK

P3.2 Port UCA2RXD/UCA2SOMI

P3.3 Port UCA2TXD/UCA2SIMO

P3.4 Port UCB2STE

P3.5 Port UCB2CLK

P3.6 Port UCB2SIMO/UCB2SDA

P3.7 Port UCB2SOMI/UCB2SCL

P4.0 Port A13

P4.1 Port A12

P4.2 Port ACLKb TAZCLKa All

P4.3 Port MCLKb RTCCLKb A10

P4.4 Port HSMCLK" SVMHOUT" A9

P4.5 Port A8

P4.6 Port A7

P4.7 Port A6

P5.0 Port AS

P5.1 Port A4

P5.2 Port A3

P5.3 Port A2

P5.4 Port Al

P5.5 Port A0

P5.6 Port TA2.CCI1AY/ TA2.1b VREF+, VeREF+,
C1.7

P5.7 Port TA2.CC12A'3 / TA2.2b VREF—, VEREF—,
C1.6

P6.0 Port A15

P6.1 Port Al4

P6.2 Port UCBISTE C1.5

P6.3 Port UCBICLK Cl.4

P6.4 Port UCB1SIMO/UCB1SDA C1.3

P6.5 Port UCB1SOMI/UCB1SCL C1.2

P6.6 POFt TA2.CC13A'3 / TA2.3b UCB3SIMO/UCB35DA Cl. 1

P6.7 POFt TA2.CCI4Aa / TA2.4b UCB3SOMI/UCB3SCL Cl.O

P7.0 Port DMAEO? / SMCLK"

P7.1 Port TAOCLK? / COOUT”

P7.2 Port TAICLK?/ C10UTP

P7.3 Port TA0.CCIOA® / TA0.0”

P7.4 Port TALCCI4A®/ TA1.4° Co.5

P7.5 Port TA1.CCI3A? / TA1.3 Co.4

P7.6 Port TALCCI2A%/ TA1.2” co.3

P7.7 Port TA1.CCI1A?/ TA1.1° C0.2

P8.0 POFt UCB3STE TAl.CCIOAa / TAl.Ob C.O.l

P8. 1 POFt UCB3CLK TAZ.CCIOAa / TAZ.Ob C.0.0

Pin | PxSEL1=0, |PxSEL1=0, PxSEL0=1 PxSEL1=1, PxSEL1=1,
PxSEL0=0 PxSEL0=0 PxSEL0=1

P8.2 Port TA3.CCI2A% / TA3.2” A23

P8.3 Port TABCLKa A22

P8.4 Port A21

P8.5 Port A20

P8.6 Port A19

P8.7 Port A18

P9.0 Port Al7

PO.1 Port Al6

P3.2 Port TA3.CCI3A®/ TA3.3"

P9.3 Port TA3.CCI4A? / TA3.4°

P9.4 Port UCAB3STE

P9.5 Port UCA3CLK

P9.6 Port UCA3RXD/UCA3SOMI

P9.7 Port UCA3TXD/UCA3SIMO

P10.0 Port UCB3STE

P10.1 Port UCB3CLK

P10.2 Port UCB3SIMO/UCB3SDA

P10.3 Port UCB3SOMI/UCB3SCL

P10.4 Port TA3.CCIOA® / TA3.0” co.7

P10.5 Port TA3.CCI1A? / TA3.1° C0.6

Table 2.3. SEL1 and SEL0 bits on the MSP432 specify alternate functions. P1.2 and P1.3

are hardwired to the serial port. * means DIR register is zero, > means DIR register is one.

To make a pin an input, we clear the corresponding bit in the PxDIR register to 0. In
addition, we can activate a pull up or pull down resistor on an input pin. To activate
a pull up resistor, we set PXREN=1 and PxOUT=1. To activate a pull down resistor,
we set PXREN=1 and clear PxOUT=0. The equalivalent resistance of the pull up or
pull down resistor is about 20 — 50 kQ.

Address 7 6 5 4 3 2 1 0 Name
0x4000.4C00 | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | P1IN
0x4000.4C02 | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | P1OUT
0x4000.4C04 [DIR DIR DIR DIR DIR DIR DIR DIR P1DIR
0x4000.4C06 [REN |REN |REN |[REN |REN |REN |REN |REN [PIREN
0x4000.4C08 | DS DS DS DS DS DS DS DS P1DS
0x4000.4COA | SELO | SELO | SELO |[SELO |SELO | SELO |SELO |SELO |PI1SELO
0x4000.4C0OC | SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |[PI1SEL1
0x4000.4C01 | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | P2IN
0x4000.4C03 | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | P20UT
0x4000.4C05 | DIR DIR DIR DIR DIR DIR DIR DIR P2DIR
0x4000.4C07 [REN |REN |REN |[REN |REN |REN |REN |REN [P2REN
0x4000.4C09 | DS DS DS DS DS DS DS DS P2DS
0x4000.4COB | SELO | SELO | SELO |[SELO |SELO |SELO |SELO |SELO |P2SELO
0x4000.4COD | SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |SEL1 |[P2SEL1

Table 2.4. MSP432 parallel ports 1 and 2. Each register is 8 bits wide. For SEL bits, see

Table 2.3.

Table 2.5 lists the possible ways to configure a GPIO pin. To initialize an I/O port
for general use we perform three steps. First, we specify GPIO writing zeros to the
PxSELQO and PxSEL1 registers. Second, we set its direction register. The direction
register specifies bit for bit whether the corresponding pins are input or output, 0
means input and 1 means output. Third, for inputs we can add a pull up or pull down
resistor. For outputs we can specify drive strength using P2DS on P2.0 — P2.3.

PxDIR | PxOut | PxDS | PXREN | Functionality

0 X X 0 Regular GPIO input

0 0 X 1 GPIO input with pull
down

0 1 X 1 GPIO input with pull
up

1 0 0 X Regular GPIO output
low

1 1 0 X Regular GPIO output
high

1 0 0 1 High drive GPIO

output low
1 1 0 1 High drive GPIO
output high

Table 2.5. MSP432 GPIO functions, assuming PxSEL0 and PxSEL1 are zero. The little x
specifies port 1 — 10. The big X means don’t care.

A 16-bit read access from address

0x40004C00 (defined as PAIN) will return the input values from both Ports 1 and 2
as one 16-bit result. Since the ARM is little endian, Port 1 will be in least significant
bits and Port 2 will be in the most significant bits. Similarly, a 16-bit write access to
address 0x40004C02 (defined as PAOUT) will set the output values to both Ports 1
and 2 in one 16-bit operation. In fact, we have 16-bit names for each set of adjacent
8-bit ports. 16-bit port definitions are available for Ports A — E. Definitions for Port
A are shown below.

#define PAIN (HWREG16(0x40004C00)) // Input

#define PAOUT (HWREG16(0x40004C02)) // Output

#define PADIR (HWREG16(0x40004C04)) // Direction

#define PAREN (HWREG16(0x40004C06)) / Resistor

#define PADS (HWREG16(0x40004C08)) // Strength

#define PASEL0 (HWREG16(0x40004C0A)) // Select 0
#define PASEL1 (HWREG16(0x40004C0C)) // Select 1

Port A |Port |: Port
is 2 1
Port B | Port |: Port
is 4 3
Port C |Port |: Port
is 6 5
Port D |Port |: Port
is 8 7
Port E |Port |: Port
is 10 9

In this first example, we will initialize the LaunchPad so we can read from the two
switches and output to the 3-color LED. In particular, we will make P1.4 and P1.1
GPIO inputs, and we will make P2.2-P2.0 GPIO outputs, as shown in Program 2.2.
To run this example on the LaunchPad, we also set bits in the PIREN register for the
two switch inputs to have an internal pull-up resistor, equivalent to 20 — 50 kQ. To
make the resistor a pull up to 3.3V, the initialization software sets the corresponding
bits in the P1OUT register.

When the software performs an 8-bit read from location 0x40004C00, the 8 bits are

returned with the values currently on Port 1. When reading an I/O port, the input pins
report the high/low state currently on the input, and the output pins show the value
last written to the port. The function Portl_Input will read from all eight Port 1
pins, and return a value depending on the status of the pins at the time of the read.

When writing to an I/O port, the input pins are not affected, and the output pins are
changed to the value written to the port. That value remains until written again. The
function Port2_Output will write new values to the output pins. The #include will
define symbolic names for all the I/O ports for that microcontroller.
The msp432p401rh file comes with the compiler installation. Use the proper one
for your microcontroller. Program 2.2 writes all bits of the port registers, and this is
an inappropriate method of I/O programming. In general, it is better to set/clear bits
on an individual basis.

Observation: High drive strength (DS=1) is only available on P2.0 P2.1 P2.2
and P2.3. Setting DS=1 does not make the current 20 mA, rather makes it possible
for the pin to drive up to 20 mA if needed.

void Port1_Init(void){

}

P1SEL0 &= ~0x12;

P1SEL1 &=~0x12; // 1) configure P1.4 and P1.1 as GPIO
P1DIR &=~0x12; //2) make P1.4 and P1.1 in

PI1REN |- 0x12; // 3) enable pull resistors on P1.4 and P1.1
P10OUT |5 0x12; // P1.4 and P1.1 are pull-up

uint8_t Port1_Input(void){

}

return (P1IN&0x12); // read P1.4,P1.1 inputs

void Port2_Init(void){

}

P2SELO0 &= ~0x07;

P2SEL1 &= ~0x07; // 1) configure P2.2-P2.0 as GPIO
P2DIR |- 0x07; // 2) make P2.2-P2.0 out

P2DS |- 0x07; // 3) activate increased drive strength
P20UT &=~0x07; // all LEDs off

void Port2_Output(uint8_t data){ // write three outputs bits of P2

}

P20UT = (P20UT&0xF8)|data;

Program 2.2. A set of functions using P1.4,P1.1 as inputs and P2.2-0 as

outputs (InputOutput_MSP432).

Checkpoint 2.1: Does the entire port need to be defined as input or output, or can
some pins be input while others are output?

In Program 2.2 the assumption was the software module did not have access to all of
Port 2. In other words, this software owned only P1.4, P1.1, P2.2, P2.1, and P2.0.

Good design practice clearly specifies which pins belong to which software
modules. If two or more software modules access the same port, a conflict will occur
if one module changes modes or output values owned by another module. It is good
software design to write friendly software, which only affects the individual pins as
needed. Friendly software does not change the other bits in a shared register.
Conversely, unfriendly software modifies more bits of a register than it needs to. The
difficulty of unfriendly code is each module will run properly when tested by itself,
but weird bugs result when two or more modules are combined. A read-or-write
sequence can be used to set one or more bits. A read-and-write sequence can be used
to clear one or more bits.

The second method uses the bit-banding. In this example, assume P1.0 is an output
connected to the LED. The regular 8-bit access for P1IOUT is 0x40004CO02. For bit-
banding of bit O of this address, n=0x4C01 and b =0. The address for this bit will be

0x42000000 + 32*n + 4*b = 0x42000000 + 32*0x4C02 + 4*0 = 0x42098040
In C we can create an I/O port label for just bit 0 of Port 1 output.
#define LEDOUT (*((volatile uint8_t *)(0x42098040)))

With this bit-banded definition, accessing P1.0 is much simpler. Writing a 1 to a bit-
banded address sets that bit, and writing a O clears that bit (without affecting the
other 7 bits).

#define LED_On() (LEDOUT = 0x01)

#define LED_Off() (LEDOUT = 0x00)
We can also create bit-banded addresses for the two switches on the LaunchPad.
Reading a bit-banded address returns 0 or 1 depending on if the bit is clear or set.
SW2 is Port 1 bit 4 and SW1 is Port 1 bit 1. The address of P1IN is 0x40004CO00.
For bit-banding of this address, n=0x4C00. The aliased addresses for bits 4 and 1
will be

0x42000000 + 32*0x4C00 + 4*4 = 0x42098010
0x42000000 + 32*0x4C00 + 4*1 = 0x42098004

In C we can create I/O port label for SW1 and SW2 input.

#define SW2IN (*((volatile uint8_t *)(0x42098010)))
#define SW1IN (*((volatile uint8_t *)(0x42098004)))

The switches are negative logic. Using SW2IN will return a 1 if P1.4 is 1 (SW2
switch not pressed), and will return a 0 if P1.4 is 0 (SW2 switch pressed).
Using SWI1IN will return a 1 if P1.1 is 1 (SW1 switch not pressed), and will return
a 0 if P1.1 is 0 (SW1 switch pressed).

Bit-banding only works for individual bits. It cannot be used to access more than one
bit at a time. Recall the 3-color LED is interfaced on P2.2 P2.1 and P2.0. There is no
bit-banded address to allow us to set all three bits in one operation. We could use
bit-banding to access the colors on P2.2 P2.1 and P2.0 individually.

#define BLUELED (*((volatile uint8_t *)(0x42098068)))
#define GREENLED (*((volatile uint8_t *)(0x42098064)))
#define REDLED (*((volatile uint8_t *)(0x42098060)))

To make the LED yellow, we turn on red, turn on green, and turn off blue:

REDLED =1;
GREENLED =1;
BLUELED =0;

2.2. Interrupts

Another concept we need the reader to have a thorough understanding of is an
Interrupt. An interrupt is a hardware/software triggered software action, see Figure
2.1. In this class we will see three types of interrupts. A software interrupt is
triggered by software. Executing the SVC (supervisor call) instruction will generate
an interrupt. There is another software interrupt on the Cortex M called PendSV,
which is also triggered by software. We will see a third mechanism for software
interrupt in this chapter where the software executes explicit code to trigger a
SysTick timer interrupt.

The second type of interrupt is a periodic interrupt, which is triggered periodically
by a hardware timer. The MSP432/TM4C microcontrollers have SysTick and Timer
interrupts. The ISR will perform an action we wish to perform on a regular basis.
For example, a data acquisition system needs to read the ADC at a regular rate.

The third type of interrupt is triggered by input/output events. With an input device,
the hardware will request an interrupt when input device has new data. The software
interrupt service routine (ISR) will read from the input device and save (put) the data
into a data structure located in shared memory, see Figure 2.1. When the system
wishes to process the data, it will check the status of the data structure, and if there is
some data it will get it from the data structure located in shared memory.

With an output device, the hardware will request an interrupt when the output device
is idle. The ISR will get data from a data structure located in shared memory, and
then write to the device. When the system wishes to output data, it will check the
status of the data structure, and if there is room in the data structure, software will
write (put) its data.

Interrupts are an important synchronization mechanism in a real-time operating
system because there will be multiple tasks to perform. To achieve real-time
response interrupt-based synchronization serves as an important tool.

; Inter rupt
T - >

Emp Full ot em phyl
Read data
@ / ea¢ ata_/ Statis il

Nntrug*jj ¥

G etdata ﬁ Putdata Putdata /W rite data /
Y —y

m reum from interrupt m retum from inferrupt

Figure 2.1. Flowcharts illustrating the use of interrupts for input and for

output.

2.2.1. NVIC

On the ARM Cortex-M processor, exceptions include resets, software interrupts and
hardware interrupts. Each exception has an associated 32-bit vector that points to the
memory location where the ISR that handles the exception is located. Vectors are
stored in ROM at the beginning of memory. Program 2.3 shows the first few vectors
as defined in the startup_TM4C123.s file for the TM4C123 and the
startup_msp432.sfile for the MSP432. DCD is an assembler pseudo-op that defines
a 32-bit constant. ROM location 0x0000.0000 has the initial stack pointer, and
location 0x0000.0004 contains the initial program counter, which is called the reset
vector. It holds the address of a function called the reset handler, which is the first
thing executed following reset. There are hundreds of possible interrupt sources and
their 32-bit vectors are listed in order starting with location 0x0000.0008. From a
programming perspective, we can attach ISRs to interrupts by writing the ISRs as
regular assembly subroutines or C functions with no input or output parameters and
editing the startup_TM4C123.s or startup_msp432.s file to specify those functions
for the appropriate interrupt. In this class, we will write our ISRs using standard
function names so that the startup files need not be edited. For example, we will
simply name the ISRfor SysTick periodic interrupt as SysTick_Handler . The ISR
for this interrupt is a 32-bit pointer located at ROM address 0x0000.003C. Because
the vectors are in ROM, this linkage is defined at compile time and not at run time.
After the first 16 vectors, each processor will be different so check the data sheet.

EXPORT __ Vectors

__Vectors
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

; address ISR
StackMem + Stack ; 0x00000000 Top of Stack
Reset_Handler ; 0x00000004 Reset Handler
NMI_Handler ; 0x00000008 NMI Handler
HardFault_Handler ; 0x0000000C Hard Fault Handler
MemManage_Handler ; 0x00000010 MPU Fault Handler
BusFault_Handler ; 0x00000014 Bus Fault Handler
UsageFault_Handler ; 0x00000018 Usage Fault Handler

0 ; 0x0000001C Reserved

0 ; 0x00000020 Reserved

0 ; 0x00000024 Reserved

0 ; 0x00000028 Reserved

SVC_Handler ; 0x0000002C SVCall Handler
DebugMon_Handler ; 0x00000030 Debug Monitor Handler
0 ; 0x00000034 Reserved

PendSV_Handler ; 0x00000038 PendSV Handler
SysTick_Handler ; 0x0000003C SysTick Handler

Program 2.3. Software syntax to set the interrupt vectors for the first 16
vectors on the Cortex M processor.

Table 2.6 lists the interrupt sources we will use on the TM4C123 and Table 2.7
shows similar interrupts on the MSP432. Interrupt numbers 0 to 15 contain the faults,
software interrupts and SysTick; these interrupts will be handled differently from
interrupts 16 to 154.

Vector Number | IRQ | ISR name in Startup.s NVIC priority Priority
address bits
0x00000038 14 -2 | PendSV_Handler SYS_PRI3 23-21
0x0000003C 15 -1 | SysTick_Handler SYS_PRI3 31-29
0x000001E0 120 104 | WideTimer5A_Handler | NVIC_PRI26_R 7-5

Table 2.6. Some of the interrupt vectors for the TM4C (goes to number 154 on the M4).

Vector Number | IRQ | ISR name in Startup.s NVIC priority Priority
address bits

0x00000038 14 -2 | PendSV_Handler SYS_PRI3 23-21
0x0000003C 15 -1 | SysTick_Handler SYS_PRI3 31-29
0x000000A4 41 25 | T32_INT1_IRQHandler | NVIC_IPR6 15-13

Table 2.7. Some of the interrupt vectors for the MSP432 (goes to number 154 on the M4).

Interrupts on the Cortex-M are controlled by the Nested Vectored Interrupt Controller
(NVIC). To activate an interrupt source we need to set its priority and enable that
source in the NVIC. SysTick interrupt only requires arming the SysTick module for
interrupts and enabling interrupts on the processor (I=0 in the PRIMASK). Other
interrupts require additional initialization. In addition to arming and enabling, we
will set bit 8 in the NVIC_EN3_R to activate WideTimer5A interrupts on the
TM4C123. Similarly, we will set bit 25 in the NVIC_ISERO to activate T32_INT1
interrupts on the MSP432. This activation is in addition to the arm and enable steps.

Each interrupt source has an 8-bit priority field. However, on the TM4C123 and
MSP432 microcontrollers, only the top three bits of the 8-bit field are used. This
allows us to specify the interrupt priority level for each device from 0 to 7, with 0
being the highest priority. The priority of the SysTick interrupt is found in bits 31 —
29 of the SYS_PRI3 register. Other interrupts have corresponding priority registers.
The interrupt number (number column in Tables 2.6 and 2.7) is loaded into the IPSR
register when an interrupt is being serviced. The servicing of interrupts does not set
the I bit in the PRIMASK, so a higher priority interrupt can suspend the execution of
a lower priority ISR. If a request of equal or lower priority is generated while an
ISR is being executed, that request is postponed until the ISR is completed. In
particular, those devices that need prompt service should be given high priority.

Figure 2.2 shows the context switch from executing in the foreground to running a
SysTick periodic interrupt. The I bit in the PRIMASK is 0 signifying interrupts are
enabled. Initially, the interrupt number (ISRNUM) in the IPSR register is 0, meaning
we are running in Thread mode (i.e., the main program, and not an ISR). Handler
mode is signified by a nonzero value in IPSR. When BASEPRI register is zero, all
interrupts are allowed and the BASEPRI register is not active.

When a SysTick interrupt is triggered, the current instruction is finished. (a) Eight
registers are pushed on the stack with R0 on top. These registers are pushed onto the
stack using whichever stack pointer is active: either the MSP or PSP. (b) The vector
address is loaded into the PC (“Vector address” column in Tables 2.6 and 2.7). (c)
The IPSR register is set to 15 (“Number” column in Tables 2.6 and 2.7) (d) The top
24 bits of LR are set to OXFFFFFF, signifying the processor is executing an ISR. The
bottom eight bits specify how to return from interrupt.

OxE1 Return to Handler mode MSP (using floating point state)

OxE9 Return to Thread mode MSP (using floating point state)

OxED Return to Thread mode PSP (using floating point state)

OxF1 Return to Handler mode MSP

0xF9 Return to Thread mode MSP ~ we will mostly be using this
one

OxFD Return to Thread mode PSP

After pushing the registers, the processor always uses the main stack pointer (MSP)
during the execution of the ISR. Events b, c, and d can occur simultaneously.

[Beiore f1krrupt . [0 A fer inkrruot
RAM ontext Sw ok

F inish instruction RO

IPSR II' a)Push registers IPSR IEI oldR 1
b) PC = {0x0000003C } oldR2

c)SetIPSR =15 052132

d) SetLR = OxFFFFFFF9 EHLR

I'."ISF‘“‘N.\H*_ Us=M SP asstack ponter M SP Eﬂ?@g
p| Stack 4| Stack

Figure 2.2. Stack before and after an interrupt, in this case a SysTick
periodic interrupt.

To return from an interrupt, the ISR executes the typical function return
statement: BX LR . However, since the top 24 bits of LR are OxFFFFFF, it knows to
return from interrupt by popping the eight registers off the stack. Since the bottom
eight bits of LR in this case are 0b11111001, it returns to thread mode using the MSP
as its stack pointer. Since the IPSR is part of the PSR that is popped, it is
automatically reset to its previous state.

A nested interrupt occurs when a higher priority interrupt suspends an ISR. The
lower priority interrupt will finish after the higher priority ISR completes. When one
interrupt preempts another, the LR is set to OXFFFFFFF1, so it knows to return to
handler mode. Tail chaining occurs when one ISR executes immediately after
another. Optimization occurs because the eight registers need not be popped only to
be pushed once again. If an interrupt is triggered and is in the process of stacking
registers when a higher priority interrupt is requested, this late arrival interrupt will
be executed first.

On the Cortex-M4, if an interrupt occurs while in the floating point state, an
additional 18 words are pushed on the stack. These 18 words will save the state of
the floating point processor. Bits 7-4 of the LR will be 0b1110 (0xE), signifying it
was interrupted during a floating point state. When the ISR returns, it knows to pull
these 18 words off the stack and restore the state of the floating point processor. We
will not use floating point in this class.

Priority determines the order of service when two or more requests are made
simultaneously. Priority also allows a higher priority request to suspend a lower
priority request currently being processed. Usually, if two requests have the same
priority, we do not allow them to interrupt each other. NVIC assigns a priority level
to each interrupt trigger. This mechanism allows a higher priority trigger to interrupt
the ISR of a lower priority request. Conversely, if a lower priority request occurs
while running an ISR of a higher priority trigger, it will be postponed until the higher
priority service is complete.

Program 2.4 shows two functions that can be used to enable and disable interrupts.

Disable Interrupts
CPSID 1
BX LR

Enable Interrupts
CPSIE 1
BX LR

Program 2.4. Assembly functions needed for interrupt enabling and
disabling.

2.2.2. SysTick periodic interrupts

The SysTick Timer is a core device on the Cortex M architecture, which is most
commonly used as a periodic timer. When used as a periodic timer one can setup the
countdown to zero event to cause an interrupt. By setting up an initial reload value
the timer is made to periodically interrupt at a predetermined rate decided by the
reload value. Periodic timers as an interfacing technique are required for data
acquisition and control systems, because software servicing must be performed at
accurate time intervals. For a data acquisition system, it is important to establish an
accurate sampling rate. The time in between ADC samples must be equal (and
known) in order for the digital signal processing to function properly. Similarly, for
microcontroller-based control systems, it is important to maintain both the input rate
of the sensors and the output rate of the actuators. Periodic events are so important
that most microcontrollers have multiple ways to generate periodic interrupts. In this
book our operating system will use periodic interrupts to schedule threads.

Assume we have a 1-ms periodic interrupt. This means the interrupt service routine
(ISR) is triggered to run 1000 times per second. Let Count be a global variable that

is incremented inside the ISR. Figure 2.3 shows how to use the interrupt to run Task 1
every N ms and run Task 2 every M ms.

Perod c Interrupt

Countt+

v

Figure 2.3. Using a 1-ms periodic interrupt to run Task 1 every N ms and
run Task 2 every M ms.

The SysTick timer exists on all Cortex-M microcontrollers, so using SysTick means
the system will be easy to port to other microcontrollers. Table 2.8 shows the
register definitions for SysTick. The basis of SysTick is a 24-bit down counter that
runs at the bus clock frequency. To configure SysTick for periodic interrupts we first
clear the ENABLE bit to turn off SysTick during initialization, see Program 2.5.
Second, we set the STRELOAD register. Third, we write any value to the
STCURRENT, which will clear the counter and the flag. Lastly, we write the
desired clock mode to the control register STCTRL, also setting the INTEN bit to
enable interrupts and enabling the timer (ENABLE). We establish the priority of the
SysTick interrupts using the TICK field in the SYSPRI3 register. When the
STCURRENT value counts down from 1 to 0, the COUNT flag is set. On the next
clock, the STCURRENT is loaded with the STRELOAD value. In this way, the
SysTick counter (STCURRENT) is continuously decrementing. If the STRELOAD
value is n, then the SysTick counter operates at modulo n+1:

...n,n-1,n-2...1,0,n,n-1, ...

In other words, it rolls over every n+1 counts. Thus, the COUNT flag will be
configured to trigger an interrupt every n+1 counts. The main program will enable
interrupts in the processor after all variables and devices are initialized.

Address 31- | 23- 16 15- 2 1 0 Name

24 | 17 3
OxEOOOE010| O | O [COUNT| 0 | CLK_SRC | INTEN | ENABLE | STCTRL
0xEOOCEO14 | O 24-bit RELOAD value STRELOAD
0xEOOOEO18 | O 24-bit CURRENT value of SysTick counter STCURRENT

Address

31-29 | 28-24| 23-21 20- 7-5 4-0 | Name

(o]

0xEOOOED20

TICK 0 | PENDSV| 0 | DEBUG 0 SYSPRI3

Table 2.8. SysTick registers.

The SysTick counter decrements every bus cycle. So it is important to know the bus
frequency when using SysTick. TM4C123 projects run at 16 MHz until the system
calls a PLL function to change the frequency. MSP432 projects run at 3 MHz until the
system calls a clock function to change the frequency. We will assume the MSP432
has been configured to run at its fastest speed of 48 MHz. In general, if the period of
the core bus clock is t time units, then the COUNT flag will be set every (n+1)t time
units. Reading the STCTRL control register will return the COUNT flag in bit 16,
and then clear the flag. Also, writing any value to the STCURRENT register will
reset the counter to zero and clear the COUNT flag. The COUNT flag is also
cleared automatically as the interrupt service routine is executed.

Let f,,, be the frequency of the bus clock, and let n be the value of the STRELOAD
register. The frequency of the periodic interrupt will be

faus/(n+1)

#define Profile_Toggle PC5/=0x20

void SysTick_Init(uint32_t period){
Profile_Init(); // make PC5 is an output
Counts = 0;
STCTRL = 0; // disable SysTick during setup
STRELOAD = period-1;// reload value
STCURRENT =0; // any write to current clears it
SYSPRI3 = (SYSPRI3 & 0x00FFFFFF)|0x40000000; // priority 2
STCTRL = 0x07; // enable, core clock, interrupts

}

void SysTick_Handler(void){ // Executed every (bus cycle)*(period)
Profile_Toggle(); // toggle bit
Profile_Toggle(); // toggle bit
Counts = Counts + 1;
Profile_Toggle(); // toggle bit

}

int main(void){ // TMA4C123 bus clock at 16 MHz
SysTick_Init(1600000); // SysTick timer interrupts every 100 ms
Enable Interrupts();
while (1){

} // do nothing foreground

}

Program 2.5. Implementation of a periodic interrupt using SysTick
(SysTickInts_xxx).

Checkpoint 2.2: If the MSP432 bus clock is 48 MHz, what reload value yields a
100 Hz (10ms) periodic interrupt?

2.2.3. Periodic timer interrupts

Because time is a precious commodity for embedded systems there is a rich set of
features available to manage time. If you connect a digital input to the
microcontroller you could measure its

Period, time from one edge to the next
Frequency, number of edges in a fixed amount of time
Pulse width, time the signal is high, or time the signal is low

If there are multiple digital inputs, then you can measure more complicated
parameters such as frequency difference, period difference or phase.

Alternately, you can create a digital output and have the software set its
Period

Frequency
Duty cycle (pulse-width modulation)

If there are multiple digital outputs, then you can create more complicated patterns
that are used in stepper motor and brushless DC motor controllers. For examples of
projects that manage time on the TM4C123 see examples at

http://users.ece.utexas.edu/~valvano/arm/#Timer

http://edx-org-
utaustinx.s3.amazonaws.com/UT601x/ValvanoWareTM4C123.zip

For all the example projects on the TM4C123/MSP432 download and unzip these
projects:

http://edx-org-utaustinx.s3.amaz onaws.com/UT601x/ValvanoWare.zip

However, in this section, we present the basic principles needed to create periodic
interrupts using the timer. We begin by presenting five hardware components needed
as shown in Figure 2.4.

fhase fek Ir ieger flag
base clock pr&:c{:ala’_ cbck A-bit counter I
_ . AAAAALALAAAAAAA N
ek e ™ N-bitreload value
e
Infernipt period = b, .. %M * R+1) : R Ve

Figure 2.4. Fundamental hardware components used to create periodic

interrupts.

The central component for creating periodic interrupts is a hardware counter. The
counter may be 16, 24, 32, 48, or 64 bits wide. Let N be the number of bits in the
counter. When creating periodic interrupts, it doesn’t actually matter if the module
counts up or counts down. However, most of the software used in this class will
configure the counter to decrement.

Just like SysTick, as the counter counts down to 0, it sets a trigger flag and reloads
the counter with a new value. The second component will be the reload value, which
is the N-bit value loaded into the counter when it rolls over. Typically, the reload
value is a constant set once by the software during initialization. Let R be this
constant value.

The third component is the trigger flag, which is set when the counter reaches O.
This flag will be armed to request an interrupt. Software in the ISR will execute code
to acknowledge or clear this flag.

The fourth component will be the base clock with which we control the entire
hardware system. On the TM4C123, we will select the 80-MHz system clock. On the

MSP432, we will select the 12-MHz SMCLK. In both cases, these clocks are
derived from the crystal; hence timing will be both accurate and stable. Let f, ., be

the frequency of the base clock (80 MHz or 12 MHz) and ¢, ., be the period of this
clock (12.5 ns or about 83.33 ns).

The fifth component will be a prescaler, which sits between the base clock and the
clock used to decrement the counter. Most systems create the prescaler using a
modulo-M counter, where M is greater than or equal to 1. This way, the frequency
and period of the clock used to decrement the counter will be

fclk - fbase /M t 1k = tbase *M

C

Software can configure the prescaler to slow down the counting. However, the
interrupt period will be an integer multiple of ¢_,. In addition, the interrupt period

must be less than 2V, t . Thus, the smaller the prescale M is, the finer control the

software has in selecting the interrupt period. On the other hand, the larger prescale
M is, the longer the interrupt could be. Thus, the prescaler allows the software to
control the tradeoff between maximum interrupt period and the fine-tuning selection
of the interrupt period.

Because the counter goes from the reload value down to 0, and then back to the
reload value, an interrupt will be triggered every R+1 counts. Thus the interrupt
period, P, will be

P=t ,*M*(R+1)
Solving this equation for R, if we wish to create an interrupt with period P, we make
R=(P/t,,,*M))—1

Remember R must be an integer less than 2. Most timers have a limited choice for
the prescale M. Luckily, most microcontrollers have a larger number of timers. The
TMA4C123 has six 32-bit timers and six 64-bit timers. The MSP432 has four 16-bit
timers and two 32-bit timers. The board support package, presented in the next
section, provides support for two independent periodic interrupts. Initialization
software follows these steps.

0) Activate the base clock for the timer

1) Disable timer during initialization

2) Set the timer mode to continuous down counting with automatic
reload

3) Set the reload value, R

4) Set the prescale, M

5) Arm the trigger flag in the timer

6) Arm the timer in the NVIC

7) Set the priority in the NVIC

8) Clear trigger flag

9) Enable timer after timer is completely configured

10) Enable interrupts (I=0), typically done after all initializations are
complete

For more details on the timers for the TM4C123 or MSP432, see the corresponding
Volume 2. However, we present one simple solution that executes a user task at a
periodic rate with units of ps. We will generate a periodic interrupt and call the user
task from the ISR. Assuming an 80 MHz bus clock, we disable the prescale, meaning
the timer counts every 12.5ns. To define the user task, we will create a private global
variable containing a pointer to the user’s function. We will set the variable during
initialization and call that function at run time. Another name for a dynamically set
function pointer is a hook. The maximum possible value for period is 12.5ns*2%,
which is about 53 seconds. Simple solutions for the TM4C and MSP432 are shown
in Program 2.6. You will find many more on the book web site.

void (*PeriodicTask)(void); // user function

void Timer0B_Init(void(*task)(void), uint32_t period){
SYSCTL_RCGCTIMER_R [|= 0x0001; // 0) activate timer(
PeriodicTask = task; // user function
TIMERO_CTL_R &= ~0x00000100; // 1) disable timer0B during setup
TIMERO_CFG_R = 0x00000000; // 2) configure for 32-bit timer mode
TIMERO_TBMR_R = 0x00000002; // configure for periodic mode
TIMERO_TBILR_R = period-1; /1 3) reload value
TIMERO_TBPR_R = 0; // 4) no prescale, 12.5ns clock
TIMERO_IMR_R |- 0x00000100; // 5) arm timeout interrupt
NVIC_ENO_R = (1<<20); // 6) enable interrupt 20 in NVIC

NVIC_PRI5_R = (NVIC_PRI5_R&O0xFFFFFF00)|0x00000040; // 7) priority 2
TIMERO_ICR_R = 0x00000100; // 8) clear timer0B timeout flag
TIMERO_CTL_R |- 0x00000100; // 9) enable timer0B

}

void Timer0OB_Handler(void){
TIMERO_ICR_R = 0x00000100; /I acknowledge timer0B timeout
(*PeriodicTask)(); // execute user task

}

Program 2.6a. Implementation of a periodic interrupt using TimerOB (see
PeriodicTimerOAInts_xxx).

void TimerAOQ_Init(void(*task)(void), uint16_t period){

PeriodicTask = task; // user function
TAOCTL &= ~0x0030; // 1) halt Timer A0
TAOCTL = 0x0202; // 2) compare mode

TAOCCTLO = 0x0010;
TAOCCRO = (period - 1); // 3) compare match value
TAOEX0 &= ~0x0007; // 4) input clock divider /1
NVIC_ISERO0 = 0x00000100; // 6) enable interrupt 8 in NVIC
NVIC_IPR2 = (NVIC_IPR2&0xFFFFFF00)|0x00000040; // 7) priority 2
TAOCCTLO &= ~0x0001; // 8) clear interrupt flag 0
TAOCTL |- 0x0014; /1 5,9) reset and start Timer A0 in up mode

}

void TAO0_0_IRQHandler(void){
TAOCCTLO0 &= ~0x0001; /I acknowledge capture/compare interrupt 0
(*PeriodicTask)(); // execute user task

}

Program 2.6b. Implementation of a periodic interrupt using TimerOB (see
PeriodicTimerAOInts_xxx).

2.2.4. Critical sections

An important consequence of multi-threading is the potential for the threads to
manipulate (read/write) a shared object. With this potential comes the possibility of
inconsistent updates to the shared object. A race condition occurs in a multi-threaded
environment when there is a causal or timing dependency between two or more
threads. In other words, different behavior occurs depending on the order of
execution of two threads. Consider a simple example of a race condition occurring
where two thread initialize the same port in an unfriendly manner. Thread-1
initializes Port 4 bits 3 — 0 to be output using P4ADIR = 0xOF; Thread-2 initializes
Port 4 bits 6 — 4 to be output using P4DIR = 0x70; In particular, if Thread-1 runs first
and Thread-2 runs second, then Port 4 bits 3 — 0 will be set to inputs. Conversely, if

Thread-2 runs first and Thread-1 runs second, then Port 4 bits 6 — 4 will be set to
inputs. This is a race condition caused by unfriendly code. The solution to this
problem is to write the two initializations in a friendly manner, and make both
initializations atomic.

In a second example of a race condition, assume two threads are trying to get data
from the same input device. Both call the input function to receive data from the input
device. When data arrives at the input, the thread that executes first will capture the
data.

In general, if two threads access the same global memory and one of the accesses is a
write, then there is a causal dependency between the execution of the threads. Such
dependencies when not properly handled cause unpredictable behavior where the
execution order may affect the outcome. Such scenarios are referred to as race
conditions. While shared global variables are important in multithreaded systems
because they are required to pass data between threads, they result in complex
behavior (and hard to find bugs). Therefore, a programmer must pay careful attention
to avoid race conditions.

A program segment is reentrant if it can be concurrently executed by two (or more)
threads. Note that, to run concurrently means both threads are ready to run though
only one thread is currently running. To implement reentrant software, we place
variables in registers or on the stack, and avoid storing into global memory
variables. When writing in assembly, we use registers, or the stack for parameter
passing to create reentrant subroutines. Typically, each thread will have its own set
of registers and stack. A non-reentrant subroutine will have a section of code called a
vulnerable window or critical section. A critical section may exist when two
different functions access and modify the same memory-resident data structure. E.g.,

1) One thread calls a non-reentrant function
2) It is executing in the critical section when interrupted by a
second thread

3) The second thread calls the same non-reentrant function.

There are a number of scenarios that can happen next. In the most common scenario,
the second thread is allowed to complete the execution of the function, control is then
returned to the first thread, and the first thread finishes the function. This first
scenario is the usual case with interrupt programming. In the second scenario, the
second thread executes part of the critical section, is interrupted and then re-entered
by a third thread, the third thread finishes, the control is returned to the second thread
and it finishes, lastly the control is returned to the first thread and it finishes. This
second scenario can happen in interrupt programming if the second interrupt has
higher priority than the first.

Program 2.7shows two C functions and the corresponding assembly codes. These
functions have critical sections because of their read-modify-write nonatomic access
to the global variable, count . If an interrupt were to occur just before or just after
the ADD or SUB instruction, and the ISR called the other function, then count would

be in error.

count SPACE 4 int32_t volatile count;
/ Producer LDR rl,[pc,#116] ; void Producer(void){
_ // other stuff
R0O= &count
/ count = count + 1;
LDR 10,[r1] 5| // other stuff
RO=count }
ADD r0,r0,#1 void Consumer(void){
STR r0,[r1] ; update // other stuff
BX Ir count = count — 1;

& Consumer LDR r1,| // other stuff

[pc,#96] ; RO= & count }
LDR r0,[r1] ; RO=count
SUB r0,r0,#1
STR r0,[rl] ; update

BX

DCD num

Ir

Program 2.7. These functions are nonreentrant because of the read-modify-
write access to a global. The critical section, pointed to by arrows, is just
before and just after the ADD and SUB instructions.

Assume there are two concurrentthreads, where the main program
calls Producer and a background ISR calls Consumer . Concurrent means that both
threads are ready to run. Because there is only one computer, exactly one thread will
be running at a time. Typically, the operating system switches execution control back
and forth using interrupts. There are two places in the assembly code of Producer at
which if an interrupt were to occur and the ISR called the Consumer function, the
end value of count will be inconsistent. Assume for this example count is initially 4.
An error occurs if:

1.The main program calls Producer
2.The main executes LDR r0,[r1] making RO =4
3. The OS suspends the main (using an interrupt) and starts the
ISR
4. The ISR calls Consumer
Executes count=count-1; making count equal to 3
5. The OS returns control back to the main program
RO is back to its original value of 4
6. The producer finishes (adding 1 to RO0)
Making count equal to 5

The expected behavior with the producer and consumer executing once is that count
would remain at 4. However, the race condition resulted in an inconsistency
manifesting as a lost consumption. As the reader may have observed, the cause of the
problem is the non-atomicity of the read-modify-write operation involved in reading
and writing to the count (count=count+1 or count=count-1) variable. An atomic
operation is one that once started is guaranteed to finish. In most computers, once an
assembly instruction has begun, the instruction must be finished before the computer
can process an interrupt. The same is not the case with C instructions which
themselves translate to multiple assembly instructions. In general, nonreentrant code
can be grouped into three categories all involving 1) nonatomic sequences, 2) writes
and 3) global variables. We will classify I/O ports as global variables for the
consideration of critical sections. We will group registers into the same category as
local variables because each thread will have its own registers and stack.

The first group is the read-modify-write sequence:

1. The software reads the global variable producing a copy of the
data

2. The software modifies the copy (original variable is still
unmodified)

3. The software writes the modification back into the global variable.

In the second group, we have a write followed by read, where the global variable is
used for temporary storage:

1. The software writes to the global variable (only copy of the
information)

2. The software reads from the global variable expecting the original
data to be there.

In the third group, we have a non-atomic multi-step write to a global variable:

1. The software writes part of the new value to a global variable
2. The software writes the rest of the new value to a global variable.

Observation: When considering reentrant software and vulnerable windows we
classify accesses to I/O ports the same as accesses to global variables.

Observation: Sometimes we store temporary information in global variables out
of laziness. This practice is to be discouraged because it wastes memory and may
cause the module to not be reentrant.

Sometimes we can have a critical section between two different software functions
(one function called by one thread, and another function called by a different thread).

In addition to above three cases, a non-atomic multi-step read will be critical when
paired with a multi-step write. For example, assume a data structure has multiple
components (e.g., hours, minutes, and seconds). In this case, the write to the data
structure will be atomic because it occurs in a high priority ISR. The critical section
exists in the foreground between steps 1 and 3. In this case, a critical section exists
even though no software has actually been reentered.

Foreground thread Background thread

1. The main reads some of the

data 2. ISR writes to the data
structure

the data

3. The main reads the rest of

In a similar case, a non-atomic multi-step write will be critical when paired with a
multi-step read. Again, assume a data structure has multiple components. In this
case, the read from the data structure will be atomic because it occurs in a high
priority ISR. The critical section exists in the foreground between steps 1 and 3.

Foreground thread Background thread

1. The main writes some of the

data 2. ISR reads from the data
structure

the data

3. The main writes the rest of

When multiple threads are active, it is possible for two threads to be executing the
same program. For example, the system may be running in the foreground and calls a
function. Part way through execution of the function, an interrupt occurs. If the ISR
also calls the same function, two threads are simultaneously executing the function.

If critical sections do exist, we can either eliminate them by removing the access to
the global variable or implement mutual exclusion, which simply means only one
thread at a time is allowed to execute in the critical section. In general, if we can
eliminate the global variables, then the subroutine becomes reentrant. Without global
variables there are no “vulnerable” windows because each thread has its own
registers and stack. Sometimes one must access global memory to implement the
desired function. Remember that all I/O ports are considered global. Furthermore,
global variables are necessary to pass data between threads. Program 2.8 shows two
functions that can be used to implement mutual exclusion.

o SRSk kKKK sk kKoK 41 Rk sk sk sk sk sk sk sk sk sk sk sk sk sk sl sk sk sk sk sk sk sk
; StartCritical

; make a copy of previous I bit, disable interrupts

; inputs: none voutputs: previous I bit
StartCritical
MRS R0, PRIMASK ; save old status

CPSID 1 ; mask all (except faults)

BX LR
; using the copy of previous I bit, restore I bit to previous value
; inputs: previous I bit outputs: none
EndCritical

MSR PRIMASK, R0

BX LR

Program 2.8. Assembly functions needed to implement mutual exclusion.

A simple way to implement mutual exclusion is to disable interrupts while executing
the critical section. It is important to disable interrupts for as short a time as
possible, so as to minimize the effect on the dynamic performance of the other
threads. While we are running with interrupts disabled, time-critical events like
power failure and danger warnings cannot be processed. The assembly code of
Program 2.8 is in the startup file in our projects that use interrupts. Program 2.9
illustrates how to implement mutual exclusion and eliminate the critical section.

When making code atomic with this simple method, make sure one critical section is
not nested inside another critical section.

uint32_t volatile count; // number of elements
// simple option

void Producer(void){ void Consumer(void){
Disable Interrupts(); Disable Interrupts();
count = count + 1; count = count - 1;
Enable Interrupts(); Enable Interrupts();
} }
// safer option
void Producer(void){ void Consumer(void){
long sr; long sr;
sr = StartCritical(); sr = StartCritical();
count = count + 1; count = count - 1;
EndCritical(sr); EndCritical(sr);
} }

Program 2.9. These functions are reentrant because of the read-modify-write
access to the global is atomic. Use the simple option only if one critical
section is not nested inside another critical section.

Checkpoint 2.3: Although disabling interrupts does remove critical sections, it
will add latency and jitter to real-time systems. Explain how latency and jitter are
affected by the Disablelnterrupts() and Enablelnterrupts() functions.

Checkpoint 2.4: Consider the situation of nested critical sections. For example, a

function with a critical section calls another function that also has a critical
section. What would happen if you simply added disable interrupts at the
beginning and a re-enable interrupts at the end of each critical section?

2.2.5. Executing periodic tasks

The timers provide a simple way to execute periodic tasks. A periodic task is one
that is performed on a fixed time basis. This interfacing technique is required for data
acquisition and control systems, because software servicing must be performed at
accurate time intervals. For a data acquisition system, it is important to establish an
accurate sampling rate. The time in between ADC samples must be equal (and
known) in order for the digital signal processing to function properly. Similarly, for
microcontroller-based control systems, it is important to maintain both the ADC and
DAC timing. The general purpose timers can also create periodic interrupts. The
operating system will use periodic interrupts to schedule threads.

Another application of periodic interrupts is called “intermittent polling” or
“periodic polling”. Figure 2.5 shows busy wait side by side with periodic polling. In
busy-wait synchronization, the main program polls the I/O devices continuously. With
periodic polling, the I/O devices are polled on a regular basis (established by the
periodic interrupt.) If no device needs service, then the interrupt simply returns. If the
polling period is At, then on average the interface latency will be 72At, and the worst
case latency will be At. Periodic polling is appropriate for low bandwidth devices
where real-time response is not necessary. This method frees the main program from
the I/O tasks.

We use periodic polling if the following two conditions apply:

1. The I/0O hardware cannot generate interrupts directly
2. We wish to perform the I/O functions in the background

Busywait Feriode Folling

Busy / InputO utput /
datal

Busy .f InputO utput /

R eady

Busy / Inputd utput /
datal

Busy i InputOutput

Busy / InputO utput /
da}a?r

Inputd utput X
dﬂtl'r33

-

0 ther

functions
I |

Figure 2.5. An ISR flowchart that implements periodic polling.

2.2.6. Software interrupts

When the user code is not compiled and linked together with the operating system, the
user code can invoke the OS using the supervisor call instruction, SVC . A software
interrupt, or trap, is a software-triggered interrupt. In the user code, various OS
functions can be invoked with specifying a trap number to the SVC instruction

OS_Sleep
SVC #2
BX LR

OS_Time
SVC #3
BX LR

On the Cortex M, the SVC instruction will invoke a software interrupt, which is
similar to hardware interrupts in that 8 registers are pushed on the stack and the PC is
loaded with the corresponding ISR vector address. Within the OS, the SVC handler
will look into the object code of the SVC instruction to extract the trap number,
which will be the least significant 8 bits of the 16-bit instruction. If the OS function
has input or output parameters they will be passed and returned on the stack, rather
than in registers.

SVC_Handler
LDR R12,[SP,#24] ; Return address
LDRH R12,[R12,#-2] ; SVC instruction is 2 bytes

BIC R12,#0xFF00 ; Extract trap number in R12
LDM SP,{R0-R3} ; Get any parameters

BL OS_xxx ; Call OS routine by number

STR RO0,[SP] ; Store return value
BX LR ; Return from exception

PendSV is similar to SVC in that the interrupt is invoked by software and not
hardware. To trigger a PendSV interrupt we write a 1 to bit 28 of the interrupt
control register. PendSV does not have a trap number, so we typically use it for just
one dedicated purpose.

INTCTRL = 0x10000000; // trigger PendSV

Similarly, software can trigger a SysTick interrupt by writing a 1 to bit 26.
INTCTRL = 0x04000000; // trigger SysTick

2.3. First in First Out (FIFO) Queues

The first in first out (FIFO) queue is an important data structure for I/O programming
because it allows us to pass data from one module to another. One module puts data
into the FIFO and another module gets data out of the FIFO. Programs 2.10 and 2.11
define macros allowing us to create as many FIFOs as we need. These FIFO
implementations are meant for embedded systems without an operating system, hence
they do not include semaphore synchronization.

// macro to create a pointer FIFO

#define AddPointerFifo(NAME,SIZE,TYPE,SUCCESS,FAIL) \
TYPE volatile *NAME ## PutPt; \

TYPE volatile *XNAME ## GetPt; \

TYPE static NAME ## Fifo [SIZE]; \

void NAME ## Fifo_Init(void){ \

NAME ## PutPt = NAME ## GetPt = & NAME ## Fifo[0]; \
} \
int NAME ## Fifo_Put (TYPE data){ \

TYPE volatile *nextPutPt; \

nextPutPt = NAME ## PutPt + 1; \
if(nextPutPt == & NAME ## Fifo[SIZE]){ \
nextPutPt = & NAME ## Fifo[0]; \

} \

if(nextPutPt == NAME ## GetPt){ \
return(FAIL); \

} \

else{ \

*(NAME ## PutPt) = data; \
NAME #i PutPt = nextPutPt; \
return(SUCCESS); \
} \
} \
int NAME ## Fifo_Get (TYPE *datapt){ \
if(NAME ## PutPt == NAME ## GetPt){\
return(FAIL); \
} \
*datapt = *(NAME ## GetPt ## ++); \
if(NAME ## GetPt == &NAME ## Fifo[SIZE]){ \
NAME ## GetPt = &NAME ## Fifo[0]; \
} \
return(SUCCESS); \

Program 2.10. Two-pointer macro implementation of a FIFO.
To create a 20-element FIFO storing unsigned 16-bit numbers that returns 1 on
success and 0 on failure we invoke
AddPointerFifo(Rx, 20, uint16_t, 1, 0)

creating the three functions RxFifo_Init() , RxFifo_Get() ,and RxFifo_Put() .

Program 2.11 is a macro we can use to create two-index FIFOs.

// macro to create an index FIFO

#define AddIndexFifo(NAME,SIZE, TYPE,SUCCESS,FAIL) \
uint32_t volatile NAME ## Putl; \

uint32_t volatile NAME ## Getl; \

TYPE static NAME ## Fifo [SIZE]; \

void NAME ## Fifo_Init(void){ \
NAME #i Putl = NAME ## Getl = 0; \
} \

int NAME ## Fifo_Put (TYPE data){ \
if(NAME ## Putl - NAME ## Getl) & ~(SIZE-1)){ \
return(FAIL); \
} \
NAME ## Fifo[l NAME ## Putl &(SIZE-1)] = data; \
NAME ## Putl ## ++; \
return(SUCCESS); \
} \
int NAME ## Fifo_Get (TYPE *datapt){ \
if(NAME ## Putl == NAME ## Getl){\
return(FAIL); \
} \
*datapt = NAME ## Fifol NAME ## Getl &(SIZE-1)]; \
NAME ## Getl ## ++; \
return(SUCCESS); \
} \
uint16_t NAME ## Fifo_Size (void){ \
return ((uint16_t)(NAME ## Putl - NAME ## Getl)); \
}

Program 2.11. Macro implementation of a two-index FIFO. The size must be
a power of two.

To create a 32-element FIFO storing signed 32-bit numbers that returns 0 on success
and 1 on failure we invoke

AddIndexFifo(Tx, 32, int32_t, 0, 1)

creating the four functions TxFifo_Init() , TxFifo_Get() ,
TxFifo_Put() ,and TxFifo_Size() . We can use the following macro to collect
histogram data. Basically, we can add Collect() to places where data are added to
the FIFO.

#define Collect() (Histogram|TxFifo_Size()]++;)

2.4. Edge-triggered Interrupts

2.4.1. Edge-triggered interrupts on the TM4C123

Synchronizing software to hardware events requires the software to recognize when
the hardware changes states from busy to done. Many times the busy to done state
transition is signified by a rising (or falling) edge on a status signal in the hardware.
For these situations, we connect this status signal to an input of the microcontroller,
and we use edge-triggered interfacing to configure the interface to set a flag on the
rising (or falling) edge of the input. Using edge-triggered interfacing allows the
software to respond quickly to changes in the external world. If we are using busy-
wait synchronization, the software waits for the flag. If we are using interrupt
synchronization, we configure the flag to request an interrupt when set. Each of the
digital I/O pins on the TM4C family can be configured for edge triggering. Table 2.9
lists some the registers available for Port A. For more details, refer to the datasheet
for your specific microcontroller. Any or all of digital I/O pins can be configured as
an edge-triggered input. When writing C code using these registers, include the
header file for your particular microcontroller (e.g., tmdc123gh6pm.h).

To use any of the features for a digital I/O port, we first enable its clock in the
SYSCTL_RCGCGPIO_R. For each bit we wish to use we must set the
corresponding DEN (Digital Enable) bit. To use a pin as regular digital input or
output, we clear its AFSEL (Alternate Function Select) bit. Setting the AFSEL will
activate the pin’s special function (e.g., UART, I’C, CAN etc.) For regular digital
input/output, we clear DIR (Direction) bits to make them input, and we set DIR bits
to make them output.

Address 7 6 5 4 3 2 1 0 Name

$4000.43FC | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | GPIO_PORTA_DATA_R
$4000.4400 | DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4404 | IS IS IS IS IS IS IS IS GPIO_PORTA_IS_R
$4000.4408 | IBE IBE IBE IBE IBE IBE IBE IBE GPIO_PORTA_IBE_R
$4000.440C | IEV IEV IEV IEV IEV IEV IEV IEV GPIO_PORTA_IEV_R
$4000.4410 | IME IME IME IME IME IME IME IME GPIO_PORTA_IM_R
$4000.4414 | RIS RIS RIS RIS RIS RIS RIS RIS GPIO_PORTA_RIS_R
$4000.4418 | MIS MIS MIS MIS MIS MIS MIS MIS GPIO_PORTA_MIS_R
$4000.441C | ICR ICR ICR ICR ICR ICR ICR ICR GPIO_PORTA_ICR_R
$4000.4420 | SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4500 | DRV?2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 GPIO_PORTA_DR2R_R
$4000.4504 | DRV4 [DRV4 | DRV4 |[DRV4 |DRV4 |DRV4 |DRV4 | DRV4 | GPIO_PORTA_DR4R_R
$4000.4508 | DRV8 | DRV8 | DRV8 | DRV8 |DRV8 |DRV8 | DRV8 | DRVS GPIO_PORTA_DRS8R_R
$4000.450C | ODE ODE ODE ODE ODE ODE ODE ODE GPIO_PORTA_ODR_R
$4000.4510 | PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.4514 | PDE PDE PDE PDE PDE PDE PDE PDE GPIO_PORTA_PDR_R

$4000.4518 | SLR SLR SLR SLR SLR SLR SLR SLR GPIO_PORTA_SLR_R
$4000.451C | DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 | CR CR CR CR CR CR CR CR GPIO_PORTA_CR_R
$4000.4528 | AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | AMSEL | GPIO_PORTA_AMSEL_R
31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0
$4000.452C | PMC7 | PMC6 |PMC5 |PMC4 |PMC3 |PMC2 |PMC1 |PMCO | GPIO_PORTA_PCTL_R
$4000.4520 | LOCK (write 0x4C4F434B to unlock, other locks) (reads 1 if locked, 0 if unlocked) | GPIO_PORTA_LOCK_R
Table 2.9. Port A registers for the TM4C.

We clear bits in the AMSEL register to use the port for digital I/O. AMSEL bits exist
for those pins which have analog functionality. We set the alternative function using
both AFSEL and PCTL registers. On the TM4C123, we need to unlock PD7 and
PFO if we wish to use them. On the TM4C1294, only PD7 needs unlocking. Because
PC3-0 implements the JTAG debugger, we will never unlock these pins. To unlock a
pin, we first write 0x4C4F434B to the LOCK register, and then we write zeros to the
CR register.

To configure an edge-triggered pin, we first enable the clock on the port and
configure the pin as a regular digital input. We can trigger on the rising, falling, or
both edges, as listed in Table 2.10. Clearing the IS (Interrupt Sense) bit configures
the bit for edge triggering. If the IS bit were to be set, the trigger occurs on the level
of the pin.

DIR | AFSEL| IS | IBE | IEV | IME | Port mode

0 0 0 O 0 O |Input, falling edge trigger,
busy wait

0 0 0 O 1 O |Input, rising edge trigger,
busy wait

0 0 0| 1 - O |Input, both edges trigger,
busy wait

0 0 0 O 0 1 |Input, falling edge trigger,
interrupt

0 0 0] O 1 1 |Input, rising edge trigger,
interrupt

0 0 0| 1 - 1 |Input, both edges trigger,
interrupt

Table 2.10. Edge-triggered modes.

Since most busy to done conditions are signified by edges, we typically trigger on
edges rather than levels. Next we write to the IBE (Interrupt Both Edges) and IEV
(Interrupt Event) bits to define the active edge. We clear the IME (Interrupt Mask
Enable) bits if we are using busy-wait synchronization, and we set the IME bits to
use interrupt synchronization.

The hardware sets an RIS (Raw Interrupt Status) bit (called the trigger) and the
software clears it (called the acknowledgement). The triggering event listed in Table

2.10 will set the corresponding RISbit in the GPIO_PORTA_RIS_R register
regardless of whether or not that bit is allowed to request a controller interrupt. In
other words, clearing an IME bit disables the corresponding pin’s interrupt, but it
will still set the corresponding RIS bit when the interrupt would have occurred. The
software can acknowledge the event by writing ones to the corresponding
IC(Interrupt Clear) bit in the GPIO_PORTA_IC_R register. The RISbits are read
only, meaning if the software were to write to this registers, it would have no effect.
For example, to clear bits 2, 1, and 0 in the GPIO_PORTA_RIS_R register, we
write a 0x07 to the GPIO_PORTA_IC_R register. Writing zeros into IC bits will
not affect the RIS bits.

For input signals we have the option of adding either a pull-up resistor or a pull-
down resistor. If we set the corresponding PUE (Pull-Up Enable) bit on an input pin,
the equivalent of a 50 to 110 kQ resistor to +3.3 V power is internally connected to
the pin. Similarly, if we set the corresponding PDE (Pull-Down Enable) bit on an
input pin, the equivalent of a 55 to 180 kQ resistor to ground is internally connected
to the pin. We cannot have both pull-up and a pull-down resistor, so setting a bit in
one register automatically clears the corresponding bit in the other register.

A typical application of pull-up and pull-down mode is the interface of simple
switches. Using these modes eliminates the need for an external resistor when
interfacing a switch. The switch interfaces for the two switches on the LaunchPad are
illustrated in Figure 2.6. The Port F interfaces employ software-configured internal
resistors, implementing negative logic inputs.

Checkpoint 2.5: What do negative logic and positive logic mean in the context of
interfacing switches?

PF O
PF 4 [—#— ‘
e 2 " 120

swi SW 2]

Figure 2.6. Edge-triggered interfaces can generate interrupts on a switch
touch. These negative logic switches require internal pull-up resistors. R1
and R13 are 0-ohm resistors can could be desoldered to disconnect the
switches from the microcontroller.

Checkpoint 2.6: What values to you write into DIR, AFSEL, PUE, and PDE to
configure the switch interfaces of PF4 and PFO in Figure 2.6?

Using edge triggering to synchronize software to hardware centers around the
operation of the trigger flags, RIS. A busy-wait interface will read the appropriate
RIS bit over and over, until it is set. When the RIS bit is set, the software will clear
the RIS bit (by writing a one to the corresponding IC bit) and perform the desired
function. With interrupt synchronization, the initialization phase will arm the trigger

flag by setting the corresponding IME bit. In this way, the active edge of the pin will
set the RIS and request an interrupt. The interrupt will suspend the main program and
run a special interrupt service routine (ISR). This ISR will clear the RIS bit and
perform the desired function. At the end of the ISR it will return, causing the main
program to resume. In particular, five conditions must be simultaneously true for an
edge-triggered interrupt to be requested:

» The trigger flag bit is set (RIS)

 The arm bit is set (IME)

 The level of the edge-triggered interrupt must be less than
BASEPRI

 The edge-triggered interrupt must be enabled in the
NVIC_ENO_R

* The edge-triggered interrupt must be disabled in the
NVIC_DISO_R

» Bit 0 of the special register PRIMASK is 0

Table 2.9 listed the registers for Port A. The other ports have similar registers. We
will begin with a simple example that counts the number of falling edges on Port F
bits 4,0 (Program 2.12). The initialization requires many steps. (a) The clock for the
port must be enabled. (b) The global variables should be initialized. (c) The
appropriate pins must be enabled as inputs. (d) We must specify whether to trigger on
the rise, the fall, or both edges. In this case, we will trigger on the fall of PF4,PF0.
(e) It is good design to clear the trigger flag during initialization so that the first
interrupt occurs due to the first rising edge after the initialization has been run. We do
not wish to trigger on a falling edge that might have occurred during the power up
phase of the system. (f) We arm the edge-trigger by setting the corresponding bits in
the IMregister. (g) We establish the priority of Port F by setting bits 23 — 21 in
the NVIC_PRI7_R register. We activate Port F interrupts in the NVIC by writing a
one to bit 30 in the NVIC_ENO_R register (“IRQ number”). In most systems we
would not enable interrupts in the device initialization. Rather, it is good design to
initialize all devices in the system, and then enable interrupts.

Checkpoint 2.7: If both switches are touched simultaneously, what will happen?
How many interrupts are generated?

int32_t Count1,Count2 = 0;

void Switch_Init(void){
SYSCTL_RCGCGPIO_R |- 0x20; // (a) activate clock for Port F
Count1= Count2 = 0; // (b) initialize counters
GPIO_PORTF_LOCK_R = 0x4C4F434B; // unlock GPIO Port F
GPIO_PORTF_CR_R = 0x1F; // allow changes to PF4-0
GPIO_PORTF _DIR_R = 0x02; // (c) make PF4,PF0 in and PF1 is out
GPIO_PORTF_DEN_R |- 0x13; // enable digital I/O on PF4,PF0, PF1
GPIO_PORTF_PUR_R |- 0x11; // pullups on PF4,PF0

}

GPIO_PORTF_IS_ R &=~0x11; // (d) PF4,PF0 are edge-sensitive
GPIO_PORTF_IBE_R &=~0x11; // PF4,PF0 are not both edges
GPIO_PORTF_IEV_R &=~0x11; // PF4,PF0 falling edge event
GPIO_PORTF_ICR_R = 0x11; /1 (e) clear flags

GPIO_PORTF_IM_R |- 0x11; // (f) arm interrupt on PF4,PF0
NVIC_PRI7_R = (NVIC_PRI7_R&0xFFO00FFFF)|0x00A00000; // (g) priority 5
NVIC_ENO_R = 0x40000000; // (h) enable interrupt 30 in NVIC

void GPIOPortF_Handler(void){

}

if(GPIO_PORTF_RIS_R&0x10){ // poll PF4
GPIO_PORTF_ICR_R = 0x10; // acknowledge flag4
Count1++; // event occurred

}

if(GPIO_PORTF_RIS_R&0x01){ // poll PF0
GPIO_PORTF_ICR_R = 0x01; // acknowledge flag0
Count2++; // event occurred

}

Program 2.12. Interrupt-driven edge-triggered input that counts falling

edges of PF4,PF0.

2.4.2. Edge-triggered Interrupts on the MSP432

Synchronizing software to hardware events requires the software to recognize when
the hardware changes states from busy to done. Many times the busy to done state
transition is signified by a rising (or falling) edge on a status signal in the hardware.
For these situations, we connect this status signal to an input of the microcontroller,
and we use edge-triggered interfacing to configure the interface to set a flag on the
rising (or falling) edge of the input. Using edge-triggered interfacing allows the
software to respond quickly to changes in the external world. If we are using busy-
wait synchronization, the software waits for the flag. If we are using interrupt
synchronization, we configure the flag to request an interrupt when set. Each of the
digital I/O pins on ports P1 — P6 can be configured for edge triggering. Table 2.11
shows many of the registers available for Port 1. The differences between members
of the MSP432 family include the number of ports (e.g., the MSP432P401 has ports 1
— 10), which pins can interrupt (e.g., the MSP432P401 can interrupt on ports 1 — 6)
and the number of pins in each port (e.g., the MSP432P401 has pins 6 — 0 on Port
10). For more details, refer to the datasheet for your specific microcontroller.

Each of the pins on Ports 1 — 6 on the MSP432P401 can be configured as an edge-
triggered input. When writing C code using these registers, include the header file for
your particular microcontroller (e.g., msp432p401r.h). To use a pin as regular digital
input or output, we clear its SEL0 and SEL1 bits. For regular digital input/output,

we clear DIR (Direction) bits to make them input, and we set DIR bits to make them

output.
Address 7 6 5 4 3 2 1 0 Name
0x4000.4C00 | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | P1IN
0x4000.4C02 | DATA | DATA | DATA | DATA | DATA | DATA | DATA | DATA | P1OUT
0x4000.4C04 [DIR |[DIR |[DIR [DIR |[DIR [DIR [DIR |[DIR |[PIDIR
0x4000.4C06 |[REN |REN |REN |[REN |REN |REN |[REN |[REN |PIREN
0x4000.4C08 [DS [DS [ps [Ds [ps [ps [ps [Ds |piDs
0x4000.4COA [SELO | SELO [SELO |[SELO [SELO |SELO [SELO [SELO [PISELO
0x4000.4C0C | SEL1 [SEL1 [SEL1 [SEL1 [SEL1 [SEL1 |[SEL1 [SEL1 |PISELI1
0x4000.4COE P11V P11V
0x4000.4C18 [IES [1ES [IES [IES [IES [IES [IES [IES |PI1IES
0x4000.4C1A [IE IE IE IE IE IE IE IE P1IE
0x4000.4C1C [IFG [IFG [IFG [IFG [IFG |IFG [IFG [IFG |[PIIFG
Table 2.11. MSP432 Port 1 registers. SEL0 SEL1 bits, see Table 2.3. All except PxIV are 8
bits wide.

To configure an edge-triggered pin, we first configure the pin as a regular digital
input. Most busy to done conditions are signified by edges, and therefore we trigger
on edges of those signals. Next we write to the IES (Interrupt Edge Select) to define
the active edge. We can trigger on the rising or falling edge, as listed in Table 2.12.
We clear the IE (Interrupt Enable) bits if we are using busy-wait synchronization, and
we set the IE bits to use interrupt synchronization. For input signals we have the
option of adding either a pull-up resistor or a pull-down resistor. If we set the
corresponding REN (Resistor Enable) bit on an input pin, we internally connect the
equivalent of a 20 — 50 kQ resistor to the pin. As previously mentioned we choose
pull up by setting the corresponding bit in PIOUT to 1. We choose pull down by
clearing the corresponding bit in P1IOUT to 0.

The 16-bit P11V (Interrupt Vector) register specifies a number of the highest priority
flag that is set in the P1IFG register. The value is 0x00 if no flag is set. Pin 0 is the
highest priority and Pin 7 is the lowest. If pin n is the highest priority flag that is set,
then P1IV will be 2*(n+1), meaning it will be one of these values: 0x02, 0x04, 0x06,
0x08, 0x0A, 0x0C, 0x0E, or 0x10.

The hardware sets an IFG (Interrupt Flag) bit (called the trigger) and the software
clears it (called the acknowledgement). The triggering event listed in Table 2.12 will
set the corresponding IFGbit in the P1IFG register regardless of whether or not that
bit is allowed to request an interrupt. In other words, clearing an IE bit disables the
corresponding pin’s interrupt, but it will still set the corresponding IFG bit when the
interrupt would have occurred. To use interrupts, clear the IE bit, configure the bits
in Table 2.11, and then set the IE bit. The software can acknowledge the event by
writing zeros to the corresponding IFG bitsin the P1IFG register. For example, to
clear bit 2in the P1IFG register, we simply execute

P1IFG &= (~0x04);

However, this mechanism has a critical section, and should not be used if there are

multiple interrupts active on a single port. The example will illustrate using P11V to

acknowledge.
DIR | SELO | IE | IES |Port mode
SEL1
0 00 0 O | Input, rising edge trigger
0 00 0 1 | Input, falling edge trigger
0 00 1 O |Input, rising edge trigger,
interrupt
0 00 1 1 |Input, falling edge trigger,
interrupt

Table 2.12. Edge-triggered modes.

A typical application of pull-up and pull-down mode is the interface of simple
switches. Using these modes eliminates the need for an external resistor when
interfacing a switch. The P1.1 and P1.4 interfaces will use software-configured
internal resistors. The P1.1 and P1.4 interfaces in Figure 2.7 implement negative

logic switch inputs.
P14 MSP432
—{P1.]
1

SW ﬁSWl

Figure 2.7. Edge-triggered interfaces can generate interrupts on a switch
touch. These negative logic switches require internal pull-up resistors.

Using edge triggering to synchronize software to hardware centers around the
operation of the trigger flags, IFG. A busy-wait interface will read the appropriate
IFG bit over and over, until it is set. When the IFG bit is set, the software will clear
the bit by writing a zero to it and perform the desired function. With interrupt
synchronization, the initialization phase will arm the trigger flag by setting the
corresponding IE bit. In this way, the active edge of the pin will set the IFG and
request an interrupt. The interrupt will suspend the main program and run a special
interrupt service routine (ISR). This ISR will clear the IFG bit and perform the
desired function. At the end of the ISR it will return, causing the main program to
resume. In particular, five conditions must be simultaneously true for an edge-
triggered interrupt to be requested:

 The trigger flag bit is set (IFG)

* The arm bit is set (IE)

» The level of the edge-triggered interrupt must be less than
BASEPRI

* The edge-triggered interrupt must be enabled in the
NVIC_ISERI1

» Bit 0 of the special register PRIMASK is 0

In Volumes 1 and 2, we developed blind-cycle and busy-wait solutions. However, in
this section we will redesign the systems using interrupt synchronization. Table 2.11
lists the registers for Port 1. The other ports have similar registers. However, only
Ports 1 — 6 can request interrupts. We will begin with a simple example that counts
the number of falling edges on Port 1 bits 1 and 4 (Program 2.13). The initialization
requires many steps. We enable interrupts (EnableInterrupts()) only after all
devices are initialized.

(a) The global variables should be initialized.
(b) The appropriate pins must be enabled as inputs.

(c) We must specify whether to trigger on the rising or the falling edge. We will
trigger on the falling of either P1.1 or P1.4. A falling edge occurs whenever we touch
either SW1 or SW2.

(d) It is good design to clear the trigger flag during initialization so that the first
interrupt occurs due to the first falling edge after the initialization has been run. We
do not wish to trigger on a rising edge that might have occurred during the power up
phase of the system.

(e) We arm the edge-trigger by setting the corresponding bits in the IE register.

(f) We establish the priority of Port 1 by setting bits 31 — 29 in the NVIC_IPR8
register.

(8) We activate Port 1 interrupts in the NVIC by setting bit 3 in
the NVIC_ISERU1 register.

The proper way to poll the interrupt is to use P1IV. If the software reads P11V it
will get the number (2*(n+1)) where n is the pin number of the lowest bit with a
pending interrupt. This access will clear only flag n.

int32_t Count1,Count2 = 0;

void Switch_Init(void){

Count1 = Count2 = 0; // (a) initialize counters

P1SEL1 &= ~0x12; /I (b) configure P1.1, P1.4 as GPIO
P1SEL0 &= ~0x12; // built-in Buttons 1 and 2
P1DIR &= ~0x12; // make P1.1, P1.4 in

P1REN |- 0x12; /' enable pull resistors

P10UT |- 0x12; // P1.1, P1.4 is pull-up

P1IES |- 0x12; // (c¢) P1.1, P1.4 is falling edge event
P1IFG &= ~0x12; // (d) clear flagl and flag4

P1IE |- 0x12; // (e) arm interrupt on P1.1, P1.4

NVIC_IPR8 = (NVIC_IPR8&0x00FFFFFF)|0x40000000; // (f) priority 2
NVIC_ISER1 = 0x00000008; // (g) enable interrupt 35 in NVIC

}

void PORT1_IRQHandler(void){ uint8_t status;
status = P1IV; // 4 for P1.1 and 10 for P1.4

if(status == 4){

Countl++; // event occurred
}
if(status == 10){

Count2++; // event occurred
}

}
Program 2.13. Interrupt-driven edge-triggered input that counts falling
edges of P1.4 and P1.1.

2.5. UART Interface

In this section we will develop a simple device driver using the Universal
Asynchronous Receiver/Transmitter (UART). This serial port allows the
microcontroller to communicate with devices such as other computers, printers, input
sensors, and LCDs. Serial transmission involves sending one bit a time, such that the
data is spread out over time. The total number of bits transmitted per second is called
the baud rate. The reciprocal of the baud rate is the bit time, which is the time to
send one bit. Most microcontrollers have at least one UART. The details of the
UART operation on the MSP432/TM4C can be found in Volume 2. In this book, we
present general features common to all devices, and also include interrupt driven
drivers. Each UART will have a baud rate control register, which we use to select
the transmission rate. Each device is capable of creating its own serial clock with a
transmission frequency approximately equal to the serial clock in the computer with
which it is communicating. A frame is the smallest complete unit of serial
transmission. Figure 2.8 plots the signal versus time on a serial port, showing a
single frame, which includes a start bit (which is 0), 8 bits of data (least significant
bit first), and a stop bit (which is 1). There is always only one start bit, but the
UARTS: allow us to select the 5 to 8 data bits and 1 or 2 stop bits. The UART can add
even, odd, or no parity bit. However, we will employ the typical protocol of 1 start
bit, 8 data bits, no parity, and 1 stop bit. This protocol is used for both transmitting
and receiving. The information rate, or bandwidth, is defined as the amount of data
or useful information transmitted per second. From Figure 2.8, we see that 10 bits are
sent for every byte of usual data. Therefore, the bandwidth of the serial channel (in
bytes/second) is the baud rate (in bits/sec) divided by 10.

= =

0 ne frame

Serial port \sm%{ an b,X bzx b3X b4)(b5X bﬁX b;xsmp 333

Figure 2.8. A serial data frame with 8-bit data, 1 start bit, 1 stop bit, and no
parity bit.

Checkpoint 2.8: Assuming the protocol drawn in Figure 2.8 and a baud rate of
115200 bits/sec, what is the bandwidth in bytes/sec?

Table 2.13 shows the three most commonly used RS232 signals. The RS232 standard
uses a DB25 connector that has 25 pins. The EIA-574 standard uses RS232 voltage
levels and a DB9 connector that has only 9 pins. The most commonly used signals of
the full RS232 standard are available with the EIA-574 protocols. Only TxD, RxD,
and SG are required to implement a simple bidirectional serial channel (Figure 2.9).
We define the data terminal equipment (DTE) as the computer or a terminal and the
data communication equipment (DCE) as the modem or printer.

DB25|RS232| DBY | EIA- |Signal|Description True | DTE | DCE
Pin | Name | Pin | 574
Name

2 BA 3 103 TxD | Transmit Data |-12V| out | in

3 BB 2 104 RxD [Receive Data [-12V| in | out

7 AB 5 102 SG |Signal Ground

Table 2.13. The commonly-used signals on the RS232 and EIA-574 protocols.

M SP432

P13UCAOTED
P120CAORKD =

P2IUCAITYD
PZ2ZOCAIRXD |

+3.3V

PR3UCAZTXD — o01% ;
PA2AICA2RXD |+— T e 01 % DBY femak

+ N /—q\“‘\‘
POJMCASTXD — 01 ¥ T MAX sy Yss g
PO BAICA 3RXD |[<— ATt

h L 55V | —
01 € 01 °F —
™ 4C123 o £ .

PAIUOTx > RxD ‘QQ 8 Sin o
PAOAIIR Y [+—
% DQ __
15_L

PB 11T x —= "
PB 0 1R LD 10 Soul 10y
PDIAI2T x e
PDEAI IRy [— __ =

Figure 2.9. Hardware interface implementing an asynchronous RS232
channel. The TM4C123 and TM4C1294 have eight UART ports.

Observation: Most MSP432/TM4C development kits connect the UARTO
channel through the USB cable, so the circuit shown in Figure 2.9 will not be
needed. On the PC side of the cable, the serial channel becomes a virtual COM
port.

RS232 is a non-return-to-zero (NRZ) protocol with true signified as a voltage
between -5 and -15 V. False is signified by a voltage between +5 and +15 V. A
MAX3232 converter chip is used to translate between the +5.5/-5.5 V RS232 levels
and the 0/+3.3 V digital levels, as shown in Figure 2.9. The capacitors in this circuit
are important, because they form a charge pump used to create the +5.5 voltages from
the +3.3 V supply. The RS232 timing is generated automatically by the UART. During
transmission, the Maxim chip translates a digital high on microcontroller side to
-5.5V on the RS232/EIA-574 cable, and a digital low is translated to +5.5V. During
receiving, the Maxim chip translates negative voltages on RS232/EIA-574 cable to a
digital high on the microcontroller side, and a positive voltage is translated to a
digital low. The computer is classified as DTE, so its serial output is pin 3 in the
EIA-574 cable, and its serial input is pin 2 in the EIA-574 cable. When connecting a
DTE to another DTE, we use a cable with pins 2 and 3 crossed. lL.e., pin 2 on one
DTE is connected to pin 3 on the other DTE and pin 3 on one DTE is connected to

pin 2 on the other DTE. When connecting a DTE to a DCE, then the cable passes the
signals straight across. In all situations, the grounds are connected together using the
SG wire in the cable. This channel is classified as full duplex, because transmission
can occur in both directions simultaneously.

Figure 2.10 shows a data flow graph with buffered input and buffered output. First in
first out (FIFO) queues are statically allocated global structures. The producer puts
into the FIFO and the consumer gets from the FIFO. Because they are global
variables, it means they will exist permanently and can be carefully shared by the
foreground and background threads. The advantage of using a FIFO structure for a
data flow problem is that we can decouple the producer and consumer threads.
Without the FIFO we would have to produce one piece of data, then process it,
produce another piece of data, then process it. With the FIFO, the producer thread
can continue to produce data without having to wait for the consumer to finish
processing the previous data. This decoupling can significantly improve system
performance.

 ongam &

Figure 2.10. A data flow graph showing two FIFOs that buffer data between
producers and consumers.

Checkpoint 2.9: What does it mean if the RxFifo in Figure 2.10 is empty?
Checkpoint 2.10: What does it mean if the TxFifo in Figure 2.10 is empty?

2.5.1. Transmitting in asynchronous mode

We will begin with transmission, because it is simple. The transmitter portion of the
UART includes a data output pin, with digital logic levels as drawn in Figure 2.11.
The TM4C transmitter has a 16-element FIFO and a 10-bit shift register, which
cannot be directly accessed by the programmer (Figure 2.11). The MSP432 simply
has the data register and shift register. The data register, FIFO, and shift register in
the transmitter are separate from the data register, FIFO, and shift register associated
with the receiver. To output data using the UART, the software will first check to
make sure the transmit data register is not fulland then write to the transmit data
register (e.g., UART0_DR_R UCAOTXBUF). The bits are shifted out in this order:
start, b,, b,, b,, b,, b,, b;, b., b, and then stop, where b, is the LSB and b, is the MSB.

The transmit data register is write only, which means the software can write to it (to
start a new transmission) but cannot read from it. Even though the transmit data
register is at the same address as the receive data register, the transmit and receive
data registers are two separate registers.

Stop 76543210 Strt
Shift a4 D ata 0 —=TXD

clock -
1‘ ’T T J|k T T T 1‘ Tranam itshift rag ister
W ritedata—™ Dataregisker

Tranan itda b reeister

Flag

Figure 2.11. Data and shift registers implement the serial transmission.

On the TM4C, we will interrupt when the transmit FIFO is almost empty. The ISR
will pass data from the software FIFO to the hardware FIFO. The use of FIFOs
separates the data production (software) from the data consumption (UART
hardware).

On the MSP432, we will interrupt when the transmit data register is empty. The ISR
will pass one byte of data from the software FIFO to the hardware UART.

In all cases, we will disarm the UART transmitter when the software FIFO is empty,
and rearm it when new data are available.

2.5.2. Receiving in asynchronous mode

Receiving data frames is a little trickier than transmission because we have to
synchronize the receive shift register with the incoming data. The receiver portion of
the UART includes an RXD data input pin with digital logic levels. At the input of
the microcontroller, true is 3.3V and false is 0V. The TM4C microcontrollers have a
16-element FIFO to buffer the incoming frames. All microcontrollers have a 10-bit
shift register and a data register. The FIFO and shift register cannot be directly
accessed by the programmer (Figure 2.12). Again the receive hardware is separate
from the transmitter hardware. The receive data register, UART0_DR_R
UCAORXBUF , is read only, which means write operations to this address have no
effect on this register (recall write operations activate the transmitter). The receiver
obviously cannot start a transmission, but it recognizes a new frame by its start bit.
The bits are shifted in using the same order as the transmitter shifted them out: start,
b,, b, b,, b;, b,, b;, b., b., and then stop.

Sbp 7654 3210 Start TAD

Shift___—x| 1 D ata 0
clock

o

Receive shift reg sEr
Flg

YY Y Y Yy ¥Y¥YWYFY

Read data ®*— D ata register
Receive dals reg sier

Figure 2.12. Data register shift registers implement the receive serial
interface.

The receiver waits for the 1 to 0 edge signifying a start bit, then shifts in 10 bits of
data one at a time from the RXD line. The start and stop bits are removed (checked
for framing errors). The 8 bits of data are available to be read from the receive data
register. On the TM4C, the FIFO implements hardware buffering so data can be
safely stored if the software is performing other tasks.

We will interrupt when the receive UART has data. The ISR will pass data from the
UART hardware to the software FIFO. The use of FIFOs separates the data
production (UART hardware) from the data consumption (software). We will arm the
UART receiver at initialization and it will remain armed throughout. If there are no
incoming frames, there will be no interrupts and the software FIFO will eventually
become empty. The system will remain in the idle state until new data arrives. You
can find UART examples on the book web site as UART_xxx and UARTints_xxx.

2.5.3. Interrupt-driven UART on the TM4C123

The TM4C microcontrollers have one to eight UARTS. The specific port pins used to
implement the UARTs vary from one chip to the next. To find which pins your
microcontroller uses, you will need to consult its datasheet. Table 2.14 shows some
of the registers for the UARTO. If the microcontroller has multiple UARTs, the
register names will replace the 0 with a 1 — 7. For the exact register addresses, you
should include the appropriate header file (e.g., tmdc1294ncpdt.h). To activate a
UART you will need to turn on the UART clock in the SYSCTL_RCGCUART_R
register. You should also turn on the clock for the digital port in the
SYSCTL_RCGCGPIO_R register. You need to enable the transmit and receive pins
as digital signals. The alternative function for these pins must also be selected.

The OE, BE, PE, and FE are error flags associated with the receiver. You can see
these flags in two places: associated with each data byte in UARTO_DR_R or as a
separate error register in UARTO_RSR_R . The overrun error (OE) is set if data has
been lost because the input driver latency is too long. BE is a break error, meaning
the other device has sent a break. PE is a parity error (however, we will not be using
parity). The framing error (FE) will get set if the baud rates do not match. The
software can clear these four error flags by writing any value to UART0_RSR_R .

The status of the two FIFOs can be seen in the UARTO_FR_R register. The BUSY

flag is set while the transmitter still has unsent bits. It will become zero when the
transmit FIFO is empty and the last stop bit has been sent. If you implement busy-wait
output by first outputting then waiting for BUSY to become 0, then the routine will
write new data and return after that particular data has been completely transmitted.

The UARTO0_CTL_R control register contains the bits that turn on the UART. TXE
is the Transmitter Enable bit, and RXE is the Receiver Enable bit. We set TXE,
RXE, and UARTEN equal to 1 in order to activate the UART device. However, we
should clear UARTEN during the initialization sequence.

31- | 11 10 9 8 7-0 Name
12
$4000.C000 OE BE PE FE DATA UARTO_DR_R
31-3 3 2 1 0
$4000.C004 OE BE PE FE UARTO_RSR_R
31- | 7 6 5 4 3 2-0
8
$4000.C018 TXFE | RXFF | TXFF | RXFE | BUSY UARTO_FR_R
31— 15-0
16
$4000.C024 DIVINT UARTO_IBRD_R
31-6 5-0
$4000.C028 DIVFRAC UARTO_FBRD_R
31- | 7 6-5 4 3 2 1 0
8
$4000.C02C SPS | WLEN| FEN | STP2 | EPS | PEN BRK | UARTO_LCRH_R
31-| 9 8 7 6-3 2 1 0
10
$4000.C030 RXE | TXE | LBE SIRLP | SIREN | UARTEN | UART0O_CTL_R
31-6 5-3 2-0
$4000.C034 RXIFLSEL TXIFLSEL UARTO_IFLS_R
3- | 10 9 8 7 6 5 4
1
$4000.C038 OEIM | BEIM | PEIM | FEIM | RTIM | TXIM | RXIM| | UARTO IM_R
$4000.C03C OERIS | BERIS | PERIS | FERIS | RTRIS | TXRIS | RXRIS| | UARTO_RIS_R
$4000.C040 OEMIS | BEMIS | PEMIS | FEMIS | RTMIS | TXMIS | RXMIS | | UARTO_MIS_R
$4000.C044 OEIC | BEIC | PEIC | FEIC | RTIC | TXIC | RXIC| | UARTO_ICR_R

Table 2.14. Some UART registers. Each register is 32 bits wide. Shaded bits are zero.

The UARTO0_IBRD_R and UARTO0_FBRD_R registers specify the baud rate. The
baud rate divider is a 22-bit binary fixed-point value with a resolution of 2. The
Baud16 clock is created from the system bus clock, with a frequency of (Bus clock

frequency)/divider. The baud rate is 16 times slower than Baud16
Baud rate = Baud16/16 = (Bus clock frequency)/(16*divider)

For example, if the bus clock is 8 MHz and the desired baud rate is 19200 bits/sec,
then the divider should be 8,000,000/16/19200 or 26.04167. As a binary fixed-point
number, this number is about 11010.000011. We can establish this baud rateby putting
the 11010 into UARTO_IBRD_R and the 000011 into UART0_FBRD_R . In reality,
11010.000011 is equal to 1667/64 or 26.046875. The baud rates in the transmitter
and receiver must match within 5% for the channel to operate properly. The error for
this example is 0.02%.

The three registers UARTO_LCRH_R , UARTO0_IBRD_R,
and UARTO_FBRD_R form an internal 30-bit register. This internal register is only
updated when a write operation to UART0_LCRH_R is performed, so any changes
to the baud-rate divisor must be followed by a write to the UART0_LCRH_R
register for the changes to take effect. Out of reset, both FIFOs are disabled and act
as 1-byte-deep holding registers. The FIFOs are enabled by setting the FENDit
in UARTO0_LCRH_R..

To wuse interrupts, we will enable the FIFOs by setting the FENbit in
the UARTO0_LCRH_R register. RXIFLSEL specifies the receive FIFO level that
causes an interrupt. TXIFLSEL specifies the transmit FIFO level that causes an
interrupt.

RXIFLSEL, RX FIFOSet RXMIS interrupt trigger when

0x0 > 14 full Receive FIFO goes from 1 to 2 characters
0Ox1 > 14 full Receive FIFO goes from 3 to 4 characters
0x2 > 15 full Receive FIFO goes from 7 to 8 characters
0x3 > % full Receive FIFO goes from 11 to 12 characters
0x4 > 7 full Receive FIFO goes from 13 to 14 characters

TXIFLSEL TX FIFOSet TXMIS interrupt trigger when

0x0 < 7% empty Transmit FIFO goes from 15 to 14 characters
0x1 <% empty Transmit FIFO goes from 13 to 12 characters
0x2 <% empty Transmit FIFO goes from 9 to 8 characters
0x3 <Vaempty Transmit FIFO goes from 5 to 4 characters
0x4 <% empty Transmit FIFO goes from 3 to 2 characters

There are seven possible interrupt trigger flags that are in the UARTO0_RIS_R
register. The setting of the TXRIS and RXRIS flags is defined above. The OERIS
flag is set on an overrun, new incoming frame received but the receive FIFO is full.
The BERIS flag is set on a break error. The PERIS flag is set on a parity error. The
FERIS flag is set on a framing error (stop bit is not high). The RTRISis set on a
receiver timeout, which is when the receiver FIFO is not empty and no incoming
frames have occurred in a 32-bit time period. Each of the seven trigger flags has a
corresponding arm bit in the UARTO_IM_R register. A bit in the

UARTO0_MIS_R register set if the trigger flag is both set and armed. To
acknowledge an interrupt (make the trigger flag become zero), software writes a 1 to
the corresponding bit in UART0_IC_R .

The UART system has two channels, one for input and one for output, and each
channel employs a separate FIFO queue. Program 2.14 shows the interrupt-driven
UART device driver. During initialization, Port A pins 0 and 1 are enabled as
alternate function digital signals. The two software FIFOs are initialized. The baud
rate is set at 115200 bits/sec, and the hardware FIFOs are enabled. A transmit
interrupt will occur as the transmit FIFO goes from 2 elements down to 1 element.
Not waiting until the hardware FIFO is completely empty allows the software to
refill the hardware FIFO and maintain a continuous output stream, achieving
maximum bandwidth. There are two conditions that will request a receive interrupt.
First, if the receive FIFO goes from 2 to 3 elements a receive interrupt will be
requested. At this time there is still 13 free spaces in the receive FIFO so the latency
requirement for this real-time input will be 130 bit times (about 1 ms). The other
potential source of receiver interrupts is the receiver time out. This trigger will occur
if the receiver becomes idle and there are data in the receiver FIFO. This trigger will
allow the interface to receive input data when it comes just one or two frames at a
time. In the NVIC, the priority is set at 2 and UARTO (IRQ=5) is activated. Normally,
one does not enable interrupts in the individual initialization functions. Rather,
interrupts should be enabled in the main program, after all initialization functions
have completed.

When the main thread wishes to output it calls UART_QutChar , which will put the
data into the software FIFO. FIFOs will be presented in detail later in Section 4.3.
Next, it copies as much data from the software FIFO into the hardware FIFO and
arms the transmitter. The transmitter interrupt service will also get as much data from
the software FIFO and put it into the hardware FIFO.
The copySoftwareToHardware function has a critical section and is called by
both UART_OutChar and the ISR. To remove the critical section,the transmitter is
temporarily disarmed in the UART_OutChar function
when copySoftwareToHardware is called. This helper function guarantees data is
transmitted in the same order it was produced. When input frames are received they
are placed into the receive hardware FIFO. If this FIFO goes from 2 to 3 elements, or
if the receiver becomes idle with data in the FIFO, a receive interrupt occurs. The
helper function copyHardwareToSoftware will get from the receive hardware FIFO
and put into the receive software FIFO. When the main thread wished to input data it
calls UART _InChar . This function simply gets from the software FIFO. If the
receive software FIFO is empty, it will spin.

#define FIFOSIZE 16 // size of the FIFOs (must be power of 2)
#define FIFOSUCCESS 1 // return value on success

#define FIFOFAIL 0 // return value on failure
AddIndexFifo(Rx, FIFOSIZE, char, FIFOSUCCESS, FIFOFAIL)
AddIndexFifo(Tx, FIFOSIZE, char, FIFOSUCCESS, FIFOFAIL)

void UART _Init(void){
SYSCTL_RCGCUART_R |- 0x01; // activate UART0
SYSCTL_RCGCGPIO_R [|= 0x01; // activate port A
RxFifo_Init(); TxFifo_Init(); // initialize empty FIFOs
UART(0_CTL_R &=~UART_CTL_UARTEN; // disable UART
UARTO0_IBRD_R = 3; // IBRD=int(6,000,000/(16*115,200)) = int(3.2552)
UARTO0_FBRD_R = 16; // FBRD = round(0.2552 * 64) = 16
UART(0_LCRH_R = (UART_LCRH_WLEN_8|UART_LCRH_FEN); // 8-bit, FIFOs
UARTO0_IFLS_R &= ~0x3F; // TX FIFO <= 1/8 full, RX FIFO >= 1/8 full
UARTO0_IFLS_R += (UART_IFLS_TX1_8|UART_IFLS_RX1_8);// and RX time-out
UART0_IM_R |= (UART_IM_RXIM|UART_IM_TXIM|UART_IM_RTIM);

UARTO0_CTL_R |- 0x0301; // enable RXE TXE UARTEN
GPIO_PORTA_AFSEL_R |- 0x03; // enable alt funct on PA1-0
GPIO_PORTA_DEN_R |- 0x03; // enable digital I/O on PA1-0

NVIC_PRI1_R = (NVIC_PRI1_R&0xFFFF00FF)|0x00004000; // UARTO0=priority 2
NVIC_ENO_R = NVIC_ENO_INTS5; // enable interrupt 5 in NVIC
Enable Interrupts();
}
/I copy from hardware RX FIFO to software RX FIFO
// stop when hardware RX FIFO is empty or software RX FIFO is full
void static copyHardwareToSoftware(void){ char letter;
while (((UART0_FR_R&UART_FR_RXFE)==0)& &(RxFifo_Size() < (FIFOSIZE-1))){
letter = UARTO0_DR_R;
RxFifo_Put(letter);
}

}
/I copy from software TX FIFO to hardware TX FIFO

// stop when software TX FIFO is empty or hardware TX FIFO is full
void static copySoftwareToHardware(void){ char letter;
while (((UART0_FR_R&UART_FR_TXFF) == 0) && (TxFifo_Size() > 0)){
TxFifo_Get(&letter);
UARTO0_DR_R =]etter;
}

}
// input ASCII character from UART

// spin if RxFifo is empty

char UART_InChar(void){
char letter;
while (RxFifo_Get(&letter) == FIFOFAIL){};
return(letter);

}

/I output ASCII character to SCI

// spin if TxFifo is full

void UART_OutChar(char data){

while (TxFifo_Put(data) == FIFOFAIL){};
UART0_IM_R &=~UART_IM_TXIM; // disable TX FIFO interrupt
copySoftwareToHardware();
UART0_IM_R |- UART_IM_TXIM; // enable TX FIFO interrupt
}
/I at least one of three things has happened:
/! hardware TX FIFO goes from 3 to 2 or less items
// hardware RX FIFO goes from 1 to 2 or more items
// UART receiver has timed out
void UART0_Handler(void){
if(UARTO0_RIS_R&UART_RIS_TXRIS){ // hardware TX FIFO <= 2 items
UARTO0_ICR_R = UART_ICR _TXIC; /I acknowledge TX FIFO
/I copy from software TX FIFO to hardware TX FIFO
copySoftwareToHardware();
if(TxFifo_Size() == 0){ // software TX FIFO is empty
UART0_IM_R &=~UART_IM_TXIM; // disable TX FIFO interrupt
}
}
if(UARTO0_RIS_R&UART_RIS_RXRIS){ // hardware RX FIFO >= 2 items
UART0_ICR_R = UART _ICR_RXIC; /I acknowledge RX FIFO
/I copy from hardware RX FIFO to software RX FIFO
copyHardwareToSoftware();
}
if(UARTO0_RIS_R&UART_RIS_RTRIS){ // receiver timed out
UART0_ICR_R = UART _ICR_RTIC; /I acknowledge receiver time out
/I copy from hardware RX FIFO to software RX FIFO
copyHardwareToSoftware();
}
}

Program 2.14. Interrupt-driven device driver for the UART uses two FIFOs
to buffer data (UARTints_xxx).

2.5.4. Interrupt-driven UART on the MSP432

Table 2.15 shows the device registers used for UART I/O. The system has two
channels, one for input and one for output, and each channel employs a separate FIFO
queue. Program 2.15 shows the interrupt-driven UART device driver. During
initialization, Port 1 pins 2 and 3 are enabled as alternate function digital signals.
The two software FIFOs are initialized. The baud rate is set at 115200 bits/sec, and
the UART is enabled. A transmit interrupt will occur if the transmit data register is
empty. A receive interrupt will occur if there is data in the receive data register. In
the NVIC, the priority is set at 2 and the UART (eUSCI_A, module 0, IRQ=16) is
activated. Normally, one does not enable interrupts in the individual initialization

functions. Rather, interrupts should be enabled in the main program, after all
initialization functions have completed.

We will employ TXIFG and RXIFG interrupt trigger flags, located in the UCAOIFG
register. The arm bits TXIE and RXIE are located in the UCAOQIE register. TXIFG
is set when the TXBUF is empty meaning it is safe to start another output. Writing to
TXBUF automatically clears TXIFG, acknowledging the transmit interrupt. RXIFG
is set when the RXBUF is full meaning it is time to read the RXBUF. Reading
RXBUF automatically clears RXIFG, acknowledging the receive interrupt. The
Interrupt Enable Registers UCAXIE and UCBXIE are reset after a hardware reset or
when the USCI module is inreset (bit 0 of UCxxCTLWO is 1).

When the main thread wishes to output it calls UART_QutChar , which will put the
data into the software TxFifo. Next, it enables the transmit interrupts. The UART ISR
will copy data from the TxFifo to the TXBUF. The use of the FIFO guarantees data is
transmitted in order. When the TxFifo becomes empty it will disarm the transmit
interrupts.

15 14 13 12 1 10 | 9 8
0x40001000 PEN | PAR| MSB 7BIT SPB MODEx SYNC | UCAXCTLWO
7 6 5 4 3 2 1 0
SSELx RXEIE | BRKIE DORM | TXADDR | TXBRK | SWRST | UCAxCTLWO
15-0
0x40001006 UCBRx UCAxBRW
15-8 7-4 3-1 0
0x40001008 BRSx BRFx UCOS16 | UCAXMCTLW
7 6 5 4 3 2 1 0
0x4000100A | LISTEN | FE OE PE BRK RXERR IDLE BUSY | UCAXSTATW
15-8 7-0
0x4000100C RXBUFx UCAXRXBUF
15-8 7-0
0x4000100E TXBUFx UCAXTXBUF
15-4 3 2 1 0
0x4000101A TXCPTIE STTIE TXIE RXIE [UCAXIE
15-4 3 2 1 0
0x4000101C TXCPTIFG | STTIFG | TXIFG | RXIFG | UCAXIFG

Table 2.15. UART registers. Each register is 16 bits wide. Shaded bits are zero.

When an input frame is received it is placed into the receive data register RXBUF,
and a receive interrupt occurs. The ISR will read the data from RXBUF and put it in
the software FIFO RxFifo. The ISR is not allowed to spin. So if RxFifobecomes full
data are lost. When the main thread wishes to input data it calls UART_InChar .

This function simply gets from the software FIFO. In contrast to the ISR, the
foreground is allowed to spin. So if the main program calls UART_InChar and the
RxFifo is empty, it will spin.

#define FIFOSIZE 16 // size of the FIFOs (must be power of 2)
#define FIFOSUCCESS 1 // return value on success
#define FIFOFAIL 0 // return value on failure
AddIndexFifo(Rx, FIFOSIZE, char, FIFOSUCCESS, FIFOFAIL)
AddIndexFifo(Tx, FIFOSIZE, char, FIFOSUCCESS, FIFOFAIL)
void UART _Init(void){ // should be called only once
RxFifo_Init(); // initialize FIFOs
TxFifo_Init();
UCAOCTLWO = 0x0001; // hold the USCI module in reset mode
UCAOCTLWO = 0x00C1; // UART,SMCLLK, 8bit, 1 stop,no parity, LSB first
UCAOBRW = 26; // UCBR = baud rate = 3000000/115200 = 26.0417
UCAOMCTLW = 0x0000; // clear first and second modulation, UCOS16=0
P1SELO |- 0x0C;
P1SEL1 &=~0x0C; //P1.3 and P1.2 as primary module function
NVIC_IPR4 = (NVIC_IPR4&0xFFFFFF00)(0x00000040; // priority 2
NVIC_ISERO0 = 0x00010000; // enable interrupt 16 in NVIC
UCAOCTLWO &= ~0x0001; // enable the USCI module
UCAOIE = 0x0001; // enable interrupts on receive full
// disable interrupts on transmit, start, complete
} // must modify UCxxIE while USCI module not reset
// input ASCII character from UART
// spin if RxFifo is empty
char UART_InChar(void){
char letter;
while (RxFifo_Get(&letter) == FIFOFAIL){};
return(letter);
}
/I output ASCII character to UART
// spin if TxFifo is full
void UART_OutChar(char data){
while (TxFifo_Put(data) == FIFOFAIL){}; // spin if full
UCAOIE = 0x0003; // enable interrupts on transmit empty
}
// interrupt 16 occurs on either:
// UCTXIFG TX data register is empty
// UCRXIFG RX data register is full
// vector at 0x00000080 in startup_msp432.s
void EUSCIA(0_IRQHandler(void){ char data;
if(UCAOIFG & 0x02){ // TX data register empty
if(TxFifo_Get(&data) == FIFOFAIL){

UCAOIE = 0x0001; // disable interrupts on transmit e mpty

}else{
UCAOTXBUF = data; // send data, acknowledge interrupt
}
}
if(UCAOIFG & 0x01){ // RX data register full
RxFifo_Put((char)UCAORXBUF);// clears UCRXIFG
}

}
Program 2.15. Interrupt-driven device driver for the UART uses two software
FIFOs to buffer data (UARTint_MSP432).

2.6. Synchronous Transmission and Receiving using
the SSI

SSI allows microcontrollers to communicate synchronously with peripheral devices
and other microcontrollers. The SSI system can operate as a master or as a slave.
The channel can have one master and one slave, or it can have one master and
multiple slaves. With multiple slaves, the configuration can be a star (centralized
master connected to each slave), or a ring (each node has one receiver and one
transmitter, where the nodes are connected in a circle.) The master initiates all data
communication. Figure 2.13 shows the I/O port locations of some of the synchronous
serial ports on the Texas Instruments microcontrollers.

M SP432
=—P10STE STE P1 4™ ULt
«——P1JCLK UCAD UCBO CLK P15— SSI0Tx >
—*P1250M | SIMO P16/ §S10 SSIRx |+
<+—P135SMO SOM |P17—> S5 I0Fss—>
SS10C Ik —>
“~— P20 STE STE PG 2—>
«——P21CLK UCAI UCB1 CLK P63—* s P
—>{P2250M | SIM O P64|*— 1 | o
*—P23SMO SOM | P65—> =
SSIC Ik
" FINST STEP34—™ S5 2T % —
<—P31CLK UCA2 UCB2 CLK P35 SS|p SSERx [+—
*IP3250M I SIMO PG| 5% [2F as —
~—{P33SM0 SOM IP3I—™ 33126k —
“—|P94STE STE P10 SSI3Tx [—*
“——|P95CLK UCA3 UCB3 CLK P01 ™ SS|3 SSIRx [*—
—* |P9ESOM | SMO P102|* 55 13Fss—>
“—P97SMO SOM IP103—" S§S13C Ik —>

Figure 2.13. Synchronous serial port pins on four MSP432/TM4C
microcontrollers.

Texas Instruments microcontrollers have 0 to 8 Synchronous Serial Interface or SSI
modules. Another name for this protocol is Serial Peripheral Interface or SPI. The
fundamental difference between a UART, which implements an asynchronous
protocol, and a SSI, which implements a synchronous protocol, is the manner in
which the clock is implemented. Two devices communicating with asynchronous
serial interfaces (UART) operate at the same frequency (baud rate) but have two
separate clocks. With a UART protocol, the clock signal is not included in the
interface cable between devices. Two UART devices can communicate with each
other as long as the two clocks have frequencies within +5% of each other. Two
devices communicating with synchronous serial interfaces (SSI) operate from the
same clock (synchronized). With a SSI protocol, the clock signal is included in the
interface cable between devices. Typically, the master device creates the clock, and
the slave device(s) uses the clock to latch the data (in or out.)

The SSI protocol includes four I/O lines. The slave select SSIOFss/STE is an
optional negative logic control signal from master to slave signal signifying the
channel is active. The second line, SCK/CLK, is a 50% duty cycle clock generated
by the master. The SSI0Tx/SIMO (master out slave in, MOSI) is a data line driven
by the master and received by the slave. The SSIORx/SOMI (master in slave out,
MISO) is a data line driven by the slave and received by the master. In order to work
properly, the transmitting device uses one edge of the clock to change its output, and
the receiving device uses the other edge to accept the data.

1 STE
M SP432 UCTXIFG |1 means P94 U davics
W rititta TXBUF em pty P95 CLK slave
UC3TXBUF : i
| gs| ¥ P97\ MOSI
ucRxUF | Maser T pog| som | D]]]]]]}J
"4 1~ mﬁﬂlﬂ
R ead data Shit
reg islers
UCRX IFG [I1meansRXBUF hasdata
1 SSI0Fss
LM 35 INF |Fifonotfull SS| PA3 ? '
™M 4C S5 10C Ik 10 device
. 8-=lement doias PA 2 2 slave
W rite data ;
16-bitF IFO PA5| SS10Tx
SS0.DR K -2 5510 | g
/ 8-elem ent -
B~ an ;
Read data 16 itF FO e Sh:_.f?
reg isier
RNE | Fifo notempty

Figure 2.14. A synchronous serial interface between a microcontroller and an
I/0O device.

The interface is classified as synchronous because the hardware clock is shared
between devices, see Figure 2.14. On the TM4C the shift register can be configured
from 4 to 16 bits. On the MSP432 the shift register can be configured as 7 or 8 bits.
The shift register in the master and the shift register in the slave are linked to form a
distributed register. Figure 2.14 illustrates communication between master and slave.
Typically, the microcontroller and the I/O device slave are so physically close we do
not use interface logic. The SSI on the TM4C employs two hardware FIFOs. Both
FIFOs are 8 elements deep and 4 to 16 bits wide, depending on the selected data
width. When performing I/O the software puts into the transmit FIFO by writing to the
SSI0_DR_R/UCxTXBUF register and gets from the receive FIFO by reading from
the SSI0O_DR_R/UCxRXBUF register.

When designing with SSI, you will need to consult the data sheets for your specific
microcontroller. There are many SSI examples on the book web site.

2.7. Input Capture or Input Edge Time Mode

2.7.1. Basic principles

The Texas Instruments microcontrollers have timers that are separate and distinct
from SysTick, see Figure 2.15. Input edge time mode (or input capture mode) is used
to make time measurements on input signals. We can use input capture to measure the
period or pulse width of digital-level signals. The input capture system can also be
used to trigger interrupts on rising or falling transitions of external signals. Each
timer input capture module has

An external input pin, e.g., CCP0/TAx.y

A clock, with prescale, used to measure time
Control registers to set the mode

Flag register that indicate status

Arm and enable registers to implement interrupts
A capture register, e.g., TAR/TAXCCRYy

The various members of the MSP432/TM4C family have from zero to twenty input
capture pins, and the pins are grouped into modules. Figure 2.15 shows the port pins
and timer modules used for input capture on the MSP432 and TM4C123. On the
TMA4C, the input capture and output compare pins are labeled TxCCPy. On the
MSP432, the input capture and output compare pins are labeled TAx.y. Some timer
modules are not attached to any I/O pins. For example, the TM4C1294 has eight
timers, but Timer 6 and Timer 7 do not have I/O pins. Timers without pins can be
used to generate periodic interrupts, but not for input capture. Tables 1.4, and 1.5
describe how to attach I/O pins to the timer modules.

In this book we use the term arm to describe the bit that allows/denies a specific flag
from requesting an interrupt. The Texas Instruments manuals refer to this bit as a
mask. Le., the device is armed when the mask bit is 1. Typically, there is a separate
arm bit for every flag that can request an interrupt. An external input signal is
connected to the input capture pin.

M SP432 TM 4C 123

—>[P7.1/TAOCLK P42 TA2CLK [<— Tmero TOCCPO|<™
~—[P73/TA0.0 P8.ITA20 |+ TOCCPL |+
> P24/TA0T . : PS6TA2.1 | . TiCCPO |
<= [p25/TA02 THner || Ther p5yrpz3|es || TMerl 7000 |«
= [P2 6/TA03 P66TA23 [« e
< [P27/TA0 4 P6.7/TA24 |« || Tmer2 T2CCPOI ~ 7
T2CCP]
Tmer3 T3GCPO BZ
— |P72TAICLK P8.3/TA3CLK |*— T3CCP1 |
<> [Pg0/TA10 PI0ATA30[<™ i
«—[P77/TA11 Timer || Tmer PIOSTA31 |~ || Tmer4 T4CCPOI 77
~>IP76/TA12 Al A3 P82/TA32|< T4CCP]
~—*P75/7A13 P92TA33|*> || rivar5 TSCCPO (T
—>PTATA1A PO3TA3S [+ 15CCP] |

Figure 2.15. Input capture pins on the MSP432, and the TM4C123.

During initialization we specify whether the rising or falling edge of the external
signal will trigger an input capture event. The timers can have 16, 24, 32, 48, or 64
bits. The n-bit counter decrements at the rate of the bus clock, when it hits 0, it
automatically rolls over to all ones and continues to count down (Figure 2.16).

M SP432 el ‘ = 1-TAGLK
SMCLK o TmerAx 16bitll p Counter P—
ACLK —) war
TA xC LK = | .. OxFFFF, 0x0000 0x0001, . OxFFFF, 0x0000 .. ialling edge
NGLK T E2e_ ¥ ¥ ¥ ¥y ¥ ¥ ¥ ¥y vybyy < TAxy
TA SSEL CC IFG 16-bitTAXxCCRy
TAIDEX ——
TM 4C -
Tmer0A 245 itD own Counier Rishgor

Busclock ——————|..0xFFFFFF, OxFFFFFE, . 0x000000, 0xFFFFFF | | B /g edge

Floe TR, [—ccpo
CAERIS 24-bitTAR

Figure 2.16. Rising or falling edge of the input causes the counter to be
latched into a register, setting a flag.

Two or three actions result from an input capture event: 1) the current timer value is
copied into the input capture register, 2) the input capture flag is set and 3) an
interrupt is requested if armed. This means an interrupt can be requested on a capture
event. When using the prescaler on the TM4C, the 16-bit counter is extended to 24
bits. The MSP432 counters are 16 bits. The input capture mechanism has many uses.
Three of common applications are:

1. An ISR is executed on the active edge of the external signal
2. Perform two rising edge input captures and subtract the two

to get period
3. Perform a rising edge and then a falling edge capture and
subtract the two measurements to get pulse width

2.7.2. Period measurement on the TM4C123

Next we will overview the specific input capture functions on the TM4C family. This
section is intended to supplement rather than replace the data sheets. When designing
systems with input capture, please refer to the reference manual of your specific
microcontroller. Table 2.16 shows some of the registers for Timer 0. We begin
initialization by enabling the clock for the timer and for the digital port we will be
using. We enable the digital pin and select its alternative function. We will disable
the timer during initialization by clearing the TAEN (or TBEN) bit in
the TIMERO_CTL_R register. To use 16-bit mode, we set GPTMCFG field to 4.
We clear the TAAMS (or TBAMS) bit for capture mode. We set the TACMR (or
TBCMR) bit for input edge time mode. The TAMR (or TBMR) field is set to 3 for
capture mode. In summary, we write a 0x0007 to the TIMERO_TAMR_R register to
select input capture mode. Table 2.17 lists the edge capture modes for TAEVENT
(or TBEVENT.)

When we are measuring time with prescaler, such as period measurement and pulse
width measurement, we set the 24-bit reload value to OXFFFFFF. In this way, the 24-
bit subtraction of two capture events yields the time difference between events. In
particular, we will initialize TIMERO_TAILR R to OxFFFF
and TIMERO_TAPR_R to OxFF. We arm the input capture by setting the CAEIM
(or CBEIM) bit in the TIMERO_IMR_R register. It is good practice to clear the
trigger flag in the initialization so that the first interrupt occurs do to actions
occurring after the initialization, and not due to edges that might have occurred during
power up. The trigger flags are in the TIMERO_RIS_R register. These flags are
cleared by writing 1’s into corresponding bits in the TIMERO_ICR_R register.
After all configuration bits are set, the Timer can be enabled by setting the TAEN (or
TBEN) bit in the TIMERO_CTL_R register. If interrupts are required, then the
NVIC must be configured by setting the priority and enabling the appropriate
interrupt number.

There is an 8-bit prescaler defined for each submodules A and
B: TIMERO_TAPMR_R and TIMERO_TBPMR_R . The prescalers on the TM4C
are used to extend the 16-bit timer to 24 bits. The TAEVENTDits
of TIMERO_CTL_R register specify whether the rising or falling edge of CCP0
will trigger an input capture event on Timer OA. Two or three actions result from an
input capture event: 1) the current timer value is copied into the input capture
register, TIMERO_TAR_R, 2) the input capture flag (CAERIS) is set, and 3) an
interrupt is requested if the mask bit (CAEIM) is 1. The CAERIS and CBERIS flag
bitsin the TIMERO_RIS_R register do not behave like a regular memory location.

In particular, the flag cannot be set by software

compare hardware event will set the flag.

. Rather, an input capture or output

31-3 2-0 Name
$4003.0000 GPTMCFG TIMERO_CFG_R
31-4 3 2 1-0
$4003.0004 TAAMS | TACMR | TAMR |TIMERO TAMR_R
31-4 3 2 1-0
$4003.0008 TBAMS | TBCMR TBMR |TIMERO_TBMR_R
14 13 11-10 8 6 5 3-2 0
$4003.000C[TBPWML| TBOTE |TBEVENT| TBEN |TAPWML| TAOTE [TAEVENT| TAEN |[TIMERO CTL_R
31-11 10 9 8 7-4 2 1 0
$4003.0018 CBEIM | CBMIM | TBTOIM CAEIM | CAMIM | TATOIM |TIMERO IMR_R
31-11 10 9 8 7-4 2 1 0
$4003.001C CBERIS | CBMRIS | TBTORIS CAERIS | CAMRIS | TATORIS [TIMERO_RIS_R
31-11 10 9 8 7-4 2 1 0
$4003.0020 CBEMIS | CBMMIS | TBTOMIS CAEMIS | CAMMIS | TATOMIS [TIMERO_MIS_R
31-11 10 9 8 7-4 2 1 0
$4003.0020 CBECINT|CBMCINT|TBTOCINT,] CAECINT|CAMCINT|TATOCINT|TIMERO_ICR_R
31-16 15-0
$4003.0028 TAILRH TAILRL TIMERO_TAILR_R
31-16 15-0
$4003.002C TBILRL TIMERO_TBILR_R
31-16 15-0
$4003.0030 TAMRH TAMRL TAMATCHR_R
31-16 15-0
$4003.0034 TBMRL _TBMATCHR_R
31-8 7-0
$4003.0038 TAPSR TIMERO_TAPR_R
31-8 7-0
$4003.003C TBPSR TIMERO_TBPR_R
31-8 7-0
$4003.0040 TAPSMR TIMERO_TAPMR_F
31-8 7-0
$4003.0044 TBPSMR TIMERO_TBPMR_F

31-16 15-0

$4003.0048 TARH TARL TIMER(O_TAR_R
31-16 15-0
$4003.004C TBRL TIMER(O_TBR_R

Table 2.16. Timer(registers. Each register is 32 bits wide. Shaded bits are zero. The bits
shown in bold will be used in this section. Timers 1, 2, ... have the same formats.

The other peculiar behavior of the flag is that the software must write a one to
the TIMERO_ICR_R register in order to clear the flag. If the software writes a zero
to the TIMERO_ICR_R register, no change will occur. From Table 2.16, we see the
CAERIStrigger flag is in bit 2 of the TIMERO_RIS_R register. The proper way to
clear this trigger flag is

TIMERO_ICR_R = 0x0004;

Writes the TIMERO_RIS_R register have no effect. No effect occurs in the bits to
which we write a zero in the TIMERO_ICR_R register.

TAEVENT | Active edge
00 Capture on rising
01 Capture on falling
10 Reserved
11 Capture on both rising and falling

Table 2.17. Two control bits define the active edge used for input capture (TBEVENT is the

same).

Before one implements a system that measures period, it is appropriate to consider
the issues of resolution, precision and range. The resolution of a period measurement
is defined as the smallest change in period that can reliably be detected. In the
following example, the TM4C123 bus clock is 80 MHz. This means, if the period
increases by 12.5 ns, then there will be one more Timer clock between the first rising
edge and the second rising edge. In this situation, the 24-bit subtraction will increase
by 1, therefore the period measurement resolution is 12.5 ns. The resolution is the
smallest measurable change. Resolution definesthe units of the measurement. In this
first example, if the calculation of Period results in 1000, then it represents a period
of 1000+12.5ns or 12.5ps. The precision of the period measurement is defined as the
number of separate and distinguishable measurements. If the 24-bit counter is used,
there are about 16 million different periods that can be measured. We can specify the
precision in alternatives, e.g., 224, or in bits, e.g., 24 bits. The last issue to consider is
the range of the period measurement, which is defined as the minimum and maximum
values that can reliably be measured. We are concerned what happens if the period is
too small or too large. A good measurement system should be able to detect
overflows and underflows. In addition, we would not like the system to crash, or

hang-up if the input period is out of range. Similarly, it is desirable if the system can
detect when there is no period. For edge detection, the input must be high for at least
two system clock periods and low for at least two system clock periods.

In this example, the digital input signal is connected to an input capture pin. If the
motor shaft rotates once there will be N rising edges on the pin. Each rising edge will
cause an input capture interrupt (Figure 2.17).

< NNN[T e ﬂf g U\V\f
ok 47k
Input a2t iy 220 F
C apture _ 4
TLGZZMWHF‘AESE_[\

Figure 2.17. To measure period we connect the external szgnal an input

capture.

The period is calculated as the difference in TIMERO_TAR_R latch values from
one rising edge to the other. If N=100, and the motor is spinning at 300 RPM, then the
period will be [(60000ms/min)/(300RPM)/100edges/rotation)], which will be 2.00
ms/edge, as shown in Figure 2.18.

For example, if the period is 2000 ps, the TimerOA interrupts will be requested every
160,000 cycles, and the 24-bit difference between TIMERO_TAR_R latch values
will be 160,000. This subtraction remains valid even if the timer reaches zero and
wraps around in between TimerOA interrupts. On the other hand, this method will not
operate properly if the period is larger than 2** cycles, or about 209 ms.

Tmer QA (e 10007 | Cee 010000 UKUEFFFF% (e00O00T [0000000 IJ;(FFFFFF% 0 E &F 00| 0 E BEFF g

<« 2000 ps=160000 cycles—=

- »
CCPO | .

'-._CAERIS CAERIS
Tme)_TAR_R | X XXX 0x010000 0x010000 UxFESFGGg
(xFESFO0

Period = 0x021700

Figure 2.18. Timing example showing counter rollover during 24-bit period
measurement.

The resolution is 12.5 ns because the period must increase by at least this amount
before the difference between TimerOA measurements will reliably change. Even
though a 24-bit counter is used, the precision is a little less than 24 bits, because the
shortest period that can be handled with this interrupt-driven approach is about 1 ps.
It takes about 1 ps to complete the context switch, execute the ISR software, and
return from interrupt. This factor is determined by experimental measurement. In

other words, as the period approaches 1 ps, a higher and higher percentage of the
computer execution is utilized just in the handler itself. For example, if you wanted to
limit execution time in this ISR to 5%, then the shorted period you could measure
would be 20 ps.

Because the input capture interrupt has a separate vector the software does not poll.
An interrupt is requested on each rising edge of the input signal. In this situation we
count all the cycles required to process the interrupt. The period measurement system
written for the TM4C123 is presented in Program 2.16. The 24-bit subtraction is
produced by ANDing the difference with OxXOFFFFFF, calculating the number of bus
clocks between rising edges. The first period measurement will be incorrect and

should be neglected.
uint32_t Period; // 24-bit, 12.5 ns units
uint32_t static First; // Timer0A first edge, 12.5 ns units
int32_t Done; // mailbox status set each rising

void PeriodMeasure_Init(void){
SYSCTL_RCGCTIMER_R |= 0x01; // activate timer(
SYSCTL_RCGCGPIO_R |- 0x02; // activate port B
First = 0; // first will be wrong
Done = 0; // set on subsequent
GPIO_PORTB_DIR R &= ~0x40; // make PB6 input
GPIO_PORTB_AFSEL_R |- 0x40; // enable alt funct on PB6
GPIO_PORTB_DEN_R |- 0x40; // configure PB6 as TOCCPO0
GPIO_PORTB_PCTL_R = (GPIO_PORTB_PCTL_R&0xFOFFFFFF)+0x07000000;
TIMERO_CTL_R &= ~0x00000001; // disable timer0A during setup
TIMERO_CFG_R = 0x00000004; // configure for 16-bit capture mode
TIMERO_TAMR_R = 0x00000007; // configure for rising edge event
TIMERO_CTL_R &= ~0x0000000C; // rising edge
TIMERO_TAILR_R = 0x0000FFFF; // start value
TIMERO_TAPR_R = 0xFF; // activate prescale, creating 24-bit
TIMERO_IMR_R |- 0x00000004; // enable capture match interrupt
TIMERO_ICR_R = 0x00000004; // clear timerQA capture match flag
TIMERO_CTL_R |- 0x00000001; // timer0A 24-b, +edge, interrupts
NVIC_PRI4_R = (NVIC_PRI4_R&0x00FFFFFF)|0x40000000; //Timer0A=priority 2
NVIC_ENO_R =1<<19; // enable interrupt 19 in NVIC
Enable Interrupts();

}

void Timer0A_Handler(void){
TIMERO_ICR_R = 0x00000004; /I acknowledge timer0A capture
Period = (First - TIMERO_TAR_R)&0x00FFFFFF; // 12.5ns resolution
First = TIMERO_TAR_R; // setup for next
Done = 1; // set semaphore

}

Program 2.16. 24-bit period measurement (PeriodMeasure_xxx).

2.7.3. Period measurement on the MSP432

Next we will overview the specific input capture functions on the MSP432 family.
This section is intended to supplement rather than replace the data sheets. When
designing systems with input capture, please refer to the reference manual of your
specific microcontroller. Table 2.18 shows the registers for Timer AQ. Similar
registers are available for the A1, A2, and A3 timers. The first decision is to select a
clock using the TASSEL bits. When measuring frequency or counting events we can
connect an input signal to TAxCLK and use this input to count the counter. We will
use ACLK when measuring times on the order of seconds or minutes. On the
MSP432, the ACLK can be 10 kHz, 32.768 kHz, or 100 kHz. We will use the high
speed SMCLK for most examples in this book because it provides the best time
resolution. The INCLK is an internal signal that could be selected. One example of
INCLK is the analog comparator, where a clock edge is generated when an analog
input crosses a predefined threshold. Table 2.19 shows how to select the timer clock,
which affects measurement resolution.

The second decision is to specify the prescaler. The first prescale is ID, see Table
2.20. The second prescale is TAIDEX+1. When measuring time events like period
and pulse width, the resolution of the measurement is the period of the selected clock,
T, multiplied by the prescale.

Resolution = T * 2 * (TAIDEX+1)

15-10 9-8 7-6 5-4 3 2 1 0 [Name

$4000.0000 TASSEL | ID MC TACLR | TAIE | TAIFG | TAOCTL
15-14|13-12| 11 10 8 7-5 4 3| 2 1 0
$4000.0002 | CM [CCIS| SCS | SCCI| [CAP|OUTMOD|CCIE|CCI{OUT|COV |[CCIFG| TAOCCTLO
$4000.0004 | CM [CCIS| SCS | SCCI CAP|{OUTMOD |CCIE [CCI|OUT| COV |CCIFG| TAOCCTL1
$4000.0006 | CM [CCIS| SCS | SCCI CAP|{OUTMOD |CCIE [CCI|OUT| COV |CCIFG| TAOCCTL2
$4000.0008 | CM [CCIS| SCS | SCCI CAP{OUTMOD |CCIE [CCI|OUT| COV [CCIFG| TAOCCTL3
$4000.000A| CM [CCIS| SCS | SCCI CAP|{OUTMOD |CCIE [CCI|OUT| COV |CCIFG| TAOCCTL4
$4000.000C| CM [CCIS| SCS | SCCI CAP{OUTMOD |CCIE [CCI|OUT| COV [CCIFG| TAOCCTL5
$4000.000E | CM [CCIS| SCS | SCCI CAP{OUTMOD |CCIE [CCI|OUT| COV [CCIFG| TAOCCTL6
15-0 | |

$4000.0010 16-bit counter TAOR
$4000.0012 16-bit Capture/Compare 0 Register TAOCCRO
$4000.0014 16-bit Capture/Compare 1 Register TAOCCR1
$4000.0016 16-bit Capture/Compare 2 Register TAOCCR?2
$4000.0018 16-bit Capture/Compare 3 Register TAOCCR3
$4000.001A 16-bit Capture/Compare 4 Register TAOCCR4
$4000.001C 16-bit Capture/Compare 5 Register TAOCCRS

$4000.001E 16-bit Capture/Compare 6 Register TAOCCR6
15-3 2-0
$4000.0020 TAIDEX TAOEXO0
15-0
$4000.002E TAIV TAOIV

Table 2.18. Timer A0 registers. Each register is 16 bits wide. Shaded bits are reserved. The
bits shown in bold will be used in this section. Timers 1, 2, and 3 have the same formats.

TASSEL | Selected Clock
00 TAxXCLK
01 ACLK
10 SMCLK
11 INCLK

Table 2.19. Two TASSEL bits specify the clock used to count the counter.

ID Prescale
00 /1
01 /2
10 /4
11 /8

Table 2.20. Two ID bits specify the first prescaler which can be used to slow down the
clock.

The largest elapsed time we can measure will be the resolution times 65536 (size of
the counter). For example, using ACLK counting at 10 kHz with a /64 prescale, the
resolution will be 6.4 ms, the 16-bit counter will roll over after 7 minutes.

The MC bits specify the clock mode, as shown in Table 2.21. We will use “up mode”
to create periodic interrupts. We will use “continuous mode” when measuring period
or pulse width. In this mode the counter keeps track of time and the input edge on
TAx.y latches the current time into the TAXCCRYy register. We will use “up/down
mode” to create PWM outputs.

MC | Mode control

00 Stop

01 Up mode: Timer counts up to TAXCCRO

10 Continuous mode: Timer counts up to OxFFFF

11 Up/down mode: Timer counts up to TAxCCRO
then down to 0x0000

Table 2.21. Two ID bits specify the first prescaler which can be used to slow down the

clock.

Writing a 1 to the TACLR bit will reset the timer and automatically clear the
TACLR bit. The TAIFG flag bit is set when the timer rolls over. Its associated arm
bit is TAIE. To clear this interrupt trigger, the software writes a 0 to TAIFG.

As mentioned earlier for each timer there are seven associated submodules. Five of
the submodules have a pin that could be used as an input to measure time events or as
an output to generate waveforms. Table 2.22 lists the three choices for selecting the
edge that will cause an input capture event. A capture event copies the TAXR counter
into TAXCCRYy register and sets the CCIFG flag. If armed (CCIE) this flag will
interrupt. To acknowledge the interrupt, the software writes a zero into the flag.
These are the steps to configure an input capture:

1) Connect the input signal to one of the TAx.y timer pins
2) Specify the timer function in its PXSEL1 and PxSELO register
3) Specify it as an input by clearing the direction bit in PxDIR
4) Halt the timer during initialization (M C=00)
5) Select the clock source and prescaler
6) Specify the rising, falling or both edges in the CM bits (Table
2.22)

Set CCIS to 00 to select the input pin

Set SCS to 1 to synchronize input pin to the clock (prevents
glitches)

Set CAP to 1 for capture mode

Set CCIE to arm the CCIF G capture flag
7) Set the interrupt priority in the NVIC
8) Arm the interrupt in the NVIC
9) Reset and start the timer, placing it in continuous mode

CM | Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

Table 2.22.

Two CM bits specify which edge on the TAx.y input causes the input capture.

The basic idea of period measurement is to generate two input captures on the same
edge (both rise or both fall), record the times of each edge, and calculate period as
the difference between those two times. Before one implements a system that
measures period, it is appropriate to consider the issues of resolution, precision and
range. The resolution of a period measurement is defined as the smallest change in
period that can reliably be detected. In Example 6.2, the SMCLK clock is 12 MHz.

This means, if the period increases by 83.3 ns, then there will be one more Timer
clock between the first rising edge and the second rising edge. In this situation, the
16-bit subtraction will increase by 1, therefore the period measurement resolution is
83.3 ns. The resolution is the smallest measurable change. Resolution definesthe units
of the measurement. In this first example, if the calculation of Period results in 1000,
then it represents a period of 1000+83.3ns or 83.3ps. The precision of the period
measurement is defined as the number of separate and distinguishable measurements.
If the 16-bit counter is used, there are about 65,536 different periods that can be
measured. We can specify the precision in alternatives, e.g., 2', or in bits, e.g., 16
bits. The last issue to consider is the range of the period measurement, which is
defined as the minimum and maximum values that can reliably be measured. We are
concerned what happens if the period is too small or too large. A good measurement
system should be able to detect overflows and underflows. In addition, we would not
like the system to crash, or hang-up if the input period is out of range. Similarly, it is
desirable if the system can detect when there is no period. For edge detection, the
input must be high for at least two system clock periods and low for at least two
timer clock periods.

In this example, the digital input signal is connected to an input capture pin,
P7.3/TA0.0. The diodes, 47k, and 220nF create a 0 to 3.3V signal on V,. The 10k-

4.7k create a reference voltage V,, and the 10k positive feedback resistor removes
glitches. V, is a squarewave at the same frequency as the input. Let N be the number

of rising edges as the shaft rotates once. We will set the timer period to 5.33ps. Each
rising edge will cause Timer AO to generate an input capture interrupt (Figure 2.19).

3.3V A__10 [iNos U\/[UU
M SP , .
432 10k M
vy =
+ IN914 |
— 220nF

v
P73 2
TA0.0 _|yg 4Tk
TLC 2274 0r0 PA 23@
Figure 2.19. To measure period, we connect the external signal an input
capture, P7.3 on the MSP432.

The period is calculated as the difference in TAOCCRO latch values from one rising
edge to the other. If N=100, and the motor is spinning at 300 RPM, then the period
will be [(60000ms/min)/(300RPM)/100edges/rotation)], which will be 2.00
ms/edge, see Figure 2.20.

TAOQR |FFO|FFO1(FFO2 g FFFE |FFFF | 000 (001 g 0077 | 0078 (00T g

187 5kH z -~ 2000ps=375cycles ——

P73 _ |

4CC FG V\CCIFG

TAOCCRO | XXXX | OxFFOI 0x0078 | 0x0078 g

xFFO]
Period = 0x0177

Figure 2.20. Timing example showing counter rollover during 16-bit period
measurement.

For example, if the period is 2000 ps, the capture interrupts will be requested every
2 ms, which will be every 2000/5.333 = 375 timer clocks. The 16-bit difference
between TAOCCRO latch values will be 375. This subtraction remains valid even if
the timer reaches OxFFFF and wraps around in between interrupts. On the other hand,
this method will not operate properly if the period is larger than 2' timer clock
periods, or about 349 ms.

The resolution is 5.33ps because the period must increase by at least this amount
before the difference between Timer A0 measurements will reliably change. Even
though a 16-bit counter is used, the precision is a little less than 16 bits, because the
shortest period that can be handled with this interrupt-driven approach is about 10
ps. It takes on the order of 10 ps to complete the context switch, execute the ISR
software, and return from interrupt. This factor is determined by experimental
measurement. In other words, as the period approaches 10 ps, a higher and higher
percentage of the computer execution is utilized just in the handler itself.

Because the TA0.0 input capture interrupt has a separate vector the software does not
poll. An interrupt is requested on each rising edge of the input signal. In this situation
we count all the cycles required to process the interrupt. The period measurement
system written for the MSP432 is presented in Program 2.17. The 16-bit subtraction
is produced by defining the variables as 16-bit unsigned integers. The first period
measurement will be incorrect and should be neglected.

uint16_t Period; // 16-bit, 5.33us units
uint16_t static First; // Timer A0 first edge, 5.33us units
int32_t Done; // mailbox status set each rising

void PeriodMeasure_ Init(void){
Clock_Init48MHz(); // 48 MHz bus clock; 12 MHz SMCLK
P7SELO |- 0x08; // 2) configure P7.3 as TAOCCPO
P7SEL1 &= ~0x08;
P7DIR &= ~0x08; // 3) make P7.3 in
TAOCTL &= ~0x0030; // 4) halt Timer A0
TAOCTL = 0x02C0; // 5) SMCLK, divide by 8
TAOEXO |- 0x0007; // clock divide by 8, 12MHz/64 = 187.5kHz
TAOCCTLO = 0x4910; // 6) rising, capture, sync, arm

}

NVIC_IPR2 = (NVIC_IPR2&0xFFFFFF00)|0x00000040; // 7) priority 2
NVIC_ISERO = 0x00000100; // 8) enable interrupt 8 in NVIC

TAOCTL |- 0x0024; //9) reset and start in continuous mode

Enable Interrupts();

void TAO0_0_IRQHandler(void){

}

TAOCCTLO0 &= ~0x0001; /I acknowledge TA0.0 capture
Period = TAOCCRO - First; // 5.33us resolution

First = TAOCCRO; // setup for next

Done = 1; // set semaphore

Program 2.17. 16-bit period measurement (PeriodMeasure_MSP432).

2.7.4. Pulse width measurement

The basic idea of pulse width measurement is to cause an input capture event on both
the rising and falling edges of an input signal. Each edge captures a timer value. The
difference between these two captured times will be the pulse width. Just like period
measurement, the resolution is determined by the rate at which the timer is
decremented. The maximum pulse width is 2** times the resolution, and is limited by
the 24-bit timer.

The difficulty with pulse width measurement using one timer is the need to switch
from rising to falling edge during each measurement. However, to handle shorter
pulses we will need to use two input capture pins. One pin measures the time of the
rise and the other pin measures the time of the fall. In order for input capture to
operate, the input must be high for at least two bus clocks and low for at least two
bus clocks. Otherwise the minimum pulse width does not depend on software
execution time or interrupt latency. However, the minimum period will depend on
software speed.

2.7.5. Ultrasonic distance measurement

One method to measure the distance between two objects is to transmit an ultrasonic
wave from one object at the other and listen for the reflection (Figure 2.21). The
instrument must be able to generate the sound pulse, hear the echo and measure the
time, t,, between pulse and echo. If the speed of sound, c, is known, then the

distance, d, can be calculated. Our microcontrollers also have mechanisms to
measure the pulse width ¢, .

d=ct,/2

SV

—_— Lut| oitort i | ov

Figure 2.21. An ultrasonic pulse-echo transducer measures the distance to
an object, Ping))).

2.8. Pulse Width Modulation

Generating output waves is an essential task for real-time systems, so the
microcontrollers have multiple methods to create output waves. Pulse width
modulation (PWM) is an effective and thus popular mechanism for the embedded
microcontrollers to control external devices. Typically, the period of a PWM output
is fixed, and the duty cycle is varied. The output is one for High cycles and then zero
for Low cycles. To make the period constant we will configure it so High+Low is a
constant.

«—Period ., Period .

High| Low |High| Low

Dutveve e

High _ High

High *Low Period

2.8.1. Pulse width modulation on the TM4C123

PWM outputs are so important, the TM4C has a dedicated PWM modules. The
number of PWMs and associated pins vary from one microcontroller to the next, see
Figure 2.22.

TM 4C 123 TM 4C 1294
Pwmmmﬂggﬁﬁz PWMU'_J%EH?:
wwon WOPW M2 IPH M iopy s [—
= B TR
sy ey o s HHME

Figure 2.22. PWM pins. The TM4C123 has two PWM modules, each with
four PWM generator blocks and a control block (sixteen total outputs), and
the TM4C1294 has one PWM module, with four PWM generator blocks and
a control block (eight total outputs).

The PWMO block produces the PWMO and PWM1 outputs, the PWM1 block
produces the PWM2 and PWM3 outputs, and the PWM2 block produces the PWM4
and PWMS5 outputs. The design of a PWM system considers three factors. The first
factor is period of the PWM output. Most applications choose a period, initialize the
waveform at that period, and adjust the duty cycle dynamically. The second factor is

precision, which is the total number of duty cycles that can be created. A 16-bit
channel can potentially create up to 65536 different duty cycles. However, since the
duty cycle register must be less than or equal to the period register, the precision of
the system is determined by the value written to the period register. The last
consideration is the number of channels. Different members of the TM4C family have
from zero to sixteen PWM outputs (refer to the data sheet for your specific
microcontroller.)

Program 2.18 shows the initialization on a TM4C123 for generating a PWM on the
PB6/PWMOA pin. 1) First, we activate the clock for the PWM module. 2) Second,
we activate the output pin as a digital alternate function. 3) Next, we select the clock
to be used for the PWM in RCC register. If we do not use the PWM divider, then it is
clocked from the bus clock. With the divider we can choose /2, /4, /8, /16, /32, or
/64. If the TM4C123 is running at 50 MHz, this program specifies the PWM clock to
be 25 MHz. 4) We set the PWM to countdown mode. We specify in
the PWM_0_GENA_R register that the comparator action is to set to one, and the
load action is set to zero. 5) We specify the period in the PWM_0_LOAD_R
register. 6) We specify the duty cycle in the PWM_0_CMPA_R register. 7) Lastly,
we start and enable the PWM.

We call PWMOA_Init once to turn it on, and then call PWMOA_Duty to adjust the
duty cycle. Assume the bus clock is 50 MHz, we call PWMOA_Init(25000,12500);
to create a 1 ms period 50 % duty cycle output on PWMOA (PB6).

// period is 16-bit number of PWM clock cycles in one period (3<=period)
/I duty is number of PWM clock cycles output is high (2<=duty<=period-1)
// PWM clock rate = processor clock rate/SYSCTL_RCC_PWMDIV
/1 = BusClock/2
void PWMOA_Init(uint16_t period, uint16_t duty){
SYSCTL_RCGCPWM_R |- 0x00000001; // 1) activate clock for PWMO0
// allow time to finish activating
while((SYSCTL_PRPWM_R&0x00000001)==0){};
SYSCTL_RCGCGPIO_R |= 0x00000002; // activate clock for Port B
// allow time to finish activating
while((SYSCTL_PRGPIO_R&0x00000002)==0){};
GPIO_PORTB_AFSEL_R |- 0x40; // 2) enable alt funct on PB6
GPIO_PORTB_ODR_R &= ~0x40; // disable open drain on PB6
GPIO_PORTB_DEN_R |- 0x40; /' enable digital /O on PB6
GPIO_PORTB_AMSEL_R &=~0x40; // disable analog function on PB6
/' configure PB6 as PWM
GPIO_PORTB_PCTL_R = (GPIO_PORTB_PCTL_R&0xFOFFFFFF)+0x04000000;
SYSCTL_RCC_R = 0x00100000 | /1 3) use PWM divider
((SYSCTL_RCC_R & (~0x000E0000)) +// clear PWM divider field
0x00000000); /I configure for /2 divider
PWMO0_0_CTL_R = 0; /I 4) re-loading down-counting mode
// PB6 goes low on LOAD

PWMO0_0_GENA_R = 0x000000C8; // PB6 goes high on CMPA down
PWMO0_0_LOAD_R =period-1; //5) cycles needed to count down to 0
PWMO0_0_CMPA_R = duty - 1; // 6) count value when output rises
PWMO_0_CTL_R |- 0x00000001; //7) start PWMO0 Generator 0
PWMO_ENABLE_R |- 0x00000001; // enable PWMO0 Generator 0

}

/I change duty cycle

/I duty is number of PWM clock cycles output is high (2<=duty<=period-1)

void PWMOA_Duty(uint16_t duty){
PWMO0_0_CMPA_R = duty - 1; // 6) count value when output rises

}
Program 2.18. Implementation of a 16-bit PWM output (PWM_xxx).

2.8.2. Pulse width modulation on the MSP432

On the MSP432 each Timer A module can create one to four PWM outputs by using
submodule O to define the period and using one to four of the other submodules to
create the output and set the duty cycle. In this example Timer AQ is set to up/down
mode. PWM outputs can also be created with up mode, but in this section we will
describe up/down mode.

In this example, we will set TAOCCRO to 10, and TAOCCR1 to 7 creating a 70%
duty cycle PWM output on P2.4/TAO0.1. In up/down mode, the TAOR timer will count
0,1,2...910,9,...,,2,1,0,1, 2, ... over and over. We will use toggle/reset mode
to control the output on P2.4/TA0.1. When the timer matches TAOCCRO0=10 the
TAO.1 output is cleared and the CCIFG flag in TAOCCRO register is set. Each time
the TAOR matches TAOCCR1=7 the TAO.1 output is toggled and the CCIFG flag in
TAQCCRUI register is set. The output is reset when the timer is at maximum, so the
first time it matches the timer is counting down. So, the output goes high when the
timer matches TAOQCCR1 on the way down, and is cleared when it matches on the
way up, see Figure 2.23. The period of the wave will be 2*TAOCCRAO, and the time
it is high will be 2*TAOCCR1, therefore the duty cycle will be
TAOCCR1/TAOCCRO0. Output compare events will again be requested at a rate
twice as fast as the resulting square wave frequency. One event is required for the
rising edge and another for the falling edge. In the examples below, we make
High plus Low be a constant. By adjusting the ratio of High and Low the software
can control the duty cycle.

f_____,,.--'“'ﬂ'”‘__ ~—

TAOR 4567T89A98765432101234567T89A9876543

P24TA0] | Rest | ! | Reset 1
Toge e Toge k& Toge & Toge &

Figure 2.23. The PWM output with timer in up-down mode and output
compare in toggle-reset mode.

This implementation occurs in hardware and does not require interrupts. Therefore, it
can generate waves close to 0 or 100% duty cycle. Figure 2.24 shows a system using
two PWM outputs to control two DC motors. The interface driver will be shown in
Section 10.2.

M SP432 TA DGCRZ TA 0CCRO D river
D uty cycle=
U i
TAOCCRO
TADGCRI TADCCRE]

LI | eoruss

TAOCCRO

TA02P25

TAO.1P24

Figure 2.24. The PWM output can adjust the power to two DC motors.

Program 2.19configures Timer AO for two PWM outputs. The user
calls PWM_Init once to turn it on, and then calls PWM_Duty to adjust the duty
cycle.

void PWM_Init(uint16_t period, uint16_t dutyl, uint16_t duty2){
Clock_Init48MHz(); // 48 MHz HFXTCLK, SMCLK = 12 MHz
P2DIR |- 0x30; // P2.4, P2.5 output
P2SEL0 |- 0x30; /1 P2.4, P2.5 TimerAQ functions
P2SEL1 &= ~0x30; /1 P2.4, P2.5 TimerA0 functions
TAOCCTLO = 0x0080; // CCIO toggle
TAOCCRO = period; // Period is 2*period*8*83.33ns is 1.333*period
TAOEXO0 = 0x0000; // divide by 1
TAOCCTL1 = 0x0040; // CCR1 toggle/reset
TAOCCR1 = dutyl; // CCR1 duty cycle is dutyl/period
TAOCCTL2 = 0x0040; // CCR2 toggle/reset
TAOCCR2 = duty?2; // CCR2 duty cycle is duty2/period
TAOCTL = 0x02F0; // SMCLK=12MHz, divide by 8, up-down mode
}
void PWM_Duty1(uint16_t duty1){
TAOCCR1 = dutyl; // CCR1 duty cycle is dutyl/period
}
void PWM_Duty2(uint16_t duty2){
TAOCCR2 = duty?2; // CCR2 duty cycle is duty2/period
}

Program 2.19. Software to generate a PWM output using Timer A0

(TimerAOPWM_MSP432).

Checkpoint 2.11: When does an output compare event occur when in PWM
mode?

Checkpoint 2.12: What happens during an output compare event in PWM mode?

Divide by 8 slows down the 12 MHz SMCLK to count the timer every 666.7ns.
Figure 2.25 shows the logic analyzer output when Program 2.19is called
with PWM_Init(10,7,2) creating a 70% duty cycle PWM on P2.4 and a 20% duty
cycle PWM on P2.5. Just like Figure 2.11 the timer counts 0 to 10, and then 9 to 1, so
there are 20 counts per wave. 20 counts times 666.7ns creates the 13.33us period for
P2.4 and P2.5. When the timer is 7, P2.4 is toggled, and when the timer is 2, P2.5 is

toggled.
*ﬁdd - * Remove - ,"‘i' j' i Done i .. 5 i :. 40,007 Possit 'm-_"_'-' L _'5:'_
[T T, AR B it imsina g,
P24 7 ' L
P25 4 X o) ? ' ; 1 '

Bus

3 l_;(- -6 us -2:-,5 2us
Figure 2.25. The PWM output with 13.33us period and 70% on P2.4 and
20% on P2.5.

With the counter in up mode, we can use OUTMOD=7 (reset/set) mode to create
PWM outputs. In this mode the period of the wave will be TAOCCRO0+1, and the
time it is high will be TAOCCR1, therefore the duty cycle will once again be
TAOCCR1/(TAOCCRO0+1). When creating PWMs with this approach all outputs
will go high at the same time.

2.9. Analog Output

A digital to analog convertor (DAC) converts digital signals into analog form as
illustrated in Figure 2.26. Although one can interface a DAC to a regular output port,
most DACs are interfaced using high-speed synchronous protocols. The DAC output
can be current or voltage. Additional analog processing may be required to filter,
amplify or modulate the signal. We can also use DACs to design variable gain or
variable offset analog circuits.

The DAC precision is the number of distinguishable DAC outputs (e.g., 1024
alternatives, 10 bits). The DAC range is the maximum and minimum DAC output
(volts, amps). The DAC resolution is the smallest distinguishable change in output.
The units of resolution are in volts or amps depending on whether the output is
voltage or current. The resolution is the change in output that occurs when the digital
input changes by 1.

Range(volts) = Precision(alternatives) * Resolution(volts)

The DAC accuracy is (Actual - Ideal) / Ideal where Ideal is referred to the National
Institute of Standards and Technology (INIST). One can choose the full scale range of
the DAC to simplify the use of fixed-point math. For example, if an 8-bit DAC had a
full scale range of 0 to 2.55 volts, then the resolution would be exactly 10 mV. This
means that if the DAC digital input were 12310, then the DAC output voltage would

be 1.23 volts.

o
2T D gl =y o frA nabog
896 - Input = 0 utout
— BT
= room ed inﬂ
% 640 1 .333
ok
.E.h 512
T
=
= B A nak = D igital
nalog_,. = Digi
128 1 input ADC = Outputs
0 —t—— 1

1 2 3
Analog signal (volts)

Figure 2.26. A 10-bit DAC provides analog output. A 10-bit ADC provides
analog input.

A DAC gain error is a shift in the slope of the V_, versus digital input static
response. A DAC offset error is a shift in the V , versus digital input static

response. The DAC transient response has three components: delay phase, slewing
phase, ringing phase. During the delay phase, the input has changed but the output has
not yet begun to change. During the slewing phase, the output changes rapidly. During
the ringing phase, the output oscillates while it stabilizes. For purposes of linearity,
let m, n be digital inputs, and let f(n) be the analog output of the DAC, see Figure
2.27. One quantitative measure of linearity is the correlation coefficient of a linear
regression fit of the f(n) responses. If A is the DAC resolution, it is linear if

f(n+1)-f(n) = f(m+1)-f(m) =A for all n, m
The DAC is monotonic if

sign(f(n+1)-f(n)) = sign(f(m+1)-f(m)) ~ foralln,m
Conversely, the DAC is nonlinear if

f(n+1)-f(n) # f(m+1)-f(m) for some n, m

Practically speaking all DACs are nonlinear, but the worst nonlinearity is
nonmonotonicity. The DAC is nonmonotonic if

sign(f(n+1)-f(n)) # sign(f(m+1)-f(m)) for some n, m
A A

nonl inear nonmonotoni

out out

ldeal ldeal

i =
Digital Input Digital Input

Figure 2.27. Nonlinear and nonmonotonic DACs.

Many manufacturers, like Analog Devices, Texas Instruments, Sipex and Maxim
produce DACs. These DACs have a wide range of performance parameters and
come in many configurations. The following paragraphs discuss the various issues to
consider when selecting a DAC. Although we assume the DAC is used to generate an
analog waveform, these considerations will generally apply to most DAC
applications.

Precision/range/resolution. These three parameters affect the quality of the signal
that can be generated by the system. The more bits in the DAC the finer the control
the system has over the waveform it creates. As important as this parameter is, it is
one of the more difficult specifications to establish a priori. Multiple versions of the
software (e.g., 4-bit, 8-bit, 10-bit, and 12-bit DAC) are used to see experimentally
the effect of DAC precision on the overall system performance. Figure 2.28
illustrates how DAC precision affects the quality of the generated waveform. DAC
parameters of noise include signal to noise ratio (SNR), signal to noise ratio plus
distortion (SINAD), and total harmonic distortion (THD)

i
7

Figure 2.28. The waveform on the top uses a 4-bit DAC, while on one on the
bottom uses a 12-bit DAC.

Channels. Even though multiple channels could be implemented using multiple DAC
chips, it is usually more efficient to design a multiple channel system using a multiple
channel DAC. Some advantages of using a DAC with more channels than originally
conceived are future expansion, automated calibration, and automated testing. A
multiple channel DAC allows you to update all channels at the same time.

Configuration. DACs can have voltage or current outputs. Current output DACs can
be used in a wide spectrum of applications (e.g., adding gain and filtering), but do
require external components. DACs can have internal or external references. An
internal reference DAC is easier to use for standard digital input/analog output
applications, but the external reference DAC can often be used in variable gain
applications (multiplying DAC). Sometimes the DAC generates a unipolar output,
while other times the DAC produces bipolar outputs.

Power. There are three power issues to consider. The first consideration is the type
of power required. Older devices require three power voltages (e.g., +5 and -5 V),
while most devices will operate on a single voltage supply (e.g., +2.7, +3.3, or +5
V) If a single supply can be used to power all the digital and analog components,
then the overall system costs will be reduced. The second consideration is the
amount of power required. Some devices can operate on less than 0.1 mW and are
appropriate for battery-operated systems or for systems where excess heat is a
problem. The last consideration is the need for a low-power sleep mode. Some
battery operated systems need the DAC only intermittently. In these applications, we
wish to give a shutdown command to the DAC, so that it draws less current when not
needed.

Speed. There are a couple of parameters manufacturers use to specify the dynamic
behavior of the DAC. The most common is settling time, another is maximum output
rate. When operating the DAC in variable gain mode, we are also interested in the
gain/bandwidth product of the analog amplifier. When comparing specifications
reported by different manufacturers it is important to consider the exact situation used
to collect the parameter. In other words, one manufacturer may define settling time as
the time to reach 0.1% of the final output after a full scale change in input given a
certain load on the output, while another manufacturer may define settling time as the
time to reach 1% of the final output after a 1 volt change in input under a different
load. The speed of the DAC together with the speed of the computer/software will

determine the effective frequency components in the generated waveforms. Both the
software (rate at which the software outputs new values to the DAC) and the DAC
speed must be fast enough for the given application. In other words, if the software
outputs new values to the DAC at a rate faster than the DAC can respond, then errors
will occur. Figure 2.29 illustrates the effect of DAC output rate on the quality of the
generated waveform. According to the Nyquist Theorem states the digital data rate
must be greater than twice the maximum frequency component of the desired analog
waveform. However, both waveforms in Figure 2.29 satisfy the Nyquist Theorem,
but increasing the output rate by eight improves the signal to noise ratio by eight. 31
dB is a ratio of about 35 to 1, and 49 dB is a ratio of about 281 to 1. If the goal is to
create a sine wave at a fixed frequency, we could improve the SNR greatly by using
an analog low pass filter.

. -
S A N P o, d

i
7

Experimental data of a 32-output 523 Hz sine-wave = Experimental data of a 256-output 523 Hz

sine-wave

Signal/noise ratio is 31 dB (3dB- -28dB) Signal/noise ratio is 49 dB (3dB- -46dB)

Figure 2.29. The waveform on the right was created by a system with eight
times the output rate than the left. Voltage versus time data on top and the
Fourier Transform (frequency spectrum dB versus kHz) of the data on the
bottom. There is a point in the spectrum at 0, which is the DC component.
However, the signal is the 523 Hz bump with a magnitude of 3dB,
representing the sine wave. The noise are all the other points not at 0 or 523
Hz. The largest noise on the left is -28 dB. The largest noise on the right is

-46 dB.

Interface. Three approaches exist for interfacing the DAC to the computer. In a
digital logic or parallel interface, the individual data bits are connected to a
dedicated computer output port. For example, a 12-bit DAC requires a 12-bit output
port bits to interface. The software simply writes to the parallel port(s) to change the
DAC output. The second approach is called pP-bus or microprocessor-compatible.

These devices are intended to be interfaced onto the address/data bus of an expanded
mode microcontroller. The third approach is a high-speed serial interface like I°C or
SPI. This approach requires the fewest number of I/O pins. Even if the
microcontroller does not support the SPI interface directly, these devices can be
interfaced to regular I/O pins via the bit-banging software approach.

Package. DIP packages are convenient for creating and testing an original prototype.
On the other hand, surface mount packages require less board space. Because surface
mount packages do not require holes in the PC board, circuits with these devices are
easier/cheaper to produce.

Cost. Cost is always a factor in engineering design. Beside the direct costs of the
individual components in the DAC interface, other considerations that affect cost
include: 1) power supply requirements; 2) manufacturing costs; 3) the labor involved
in individual calibration if required; and 4) software development costs.

2.10. Analog Input

2.10.1. ADC Parameters

An analog to digital converter (ADC) converts an analog signal into digital form. The
input signal is usually an analog voltage (V,,), and the output is a binary number. The
ADC precision is the number of distinguishable ADC inputs (e.g., 4096 alternatives,
12 bits). The ADC range is the maximum and minimum ADC input (volts, amps).
The ADC resolution is the smallest distinguishable change in input (volts, amps).
The resolution is the change in input that causes the digital output to change by 1.

Range(volts) = Precision(alternatives) * Resolution(volts)

Normally we don’t specify accuracy for just the ADC, but rather we give the
accuracy of the entire system (including transducer, analog circuit, ADC and
software). Therefore, accuracy is defined as part of the systems approach to data
acquisition systems. An ADC is monotonic if it has no missing codes. This means if
the analog signal is a slow rising voltage, then the digital output will hit all values
sequentially. The ADC is linear if the resolution is constant through the range. Let f(x)
be the input/output ADC transfer function. One quantitative measure of linearity is
the correlation coefficient of a linear regression fit of the f(x) responses. The ADC
speed is the time to convert, called t. The ADC cost is a function of the number and

price of internal components. There are four common encoding schemes for an ADC.
Table 2.23 shows two encoding schemes for a 12-bit unipolar ADC.

Unipolar Straight Binary | Complementary
Codes Binary

+V_ 1111,1111,1111 | 0000,0000,0000
+V_ /2 1000,0000,0000 | 0001,1111,1111
+V_/1024 | 0000,0000,0001 | 1111,1111,1110
+0.00 0000,0000,0000 | 1111,1111,1111

Table 2.23. Unipolar codes for a 12-bit ADC with a range of 0 to +V __ .

The ADCs on the MSP432 (14 bits) and TM4C (12 bits) families use straight binary.
The MSP432 has a range of 0 to 2.5V, and the TM4C has a range of 0 to 3.3 V. To
convert between straight binary and complementary binary we simply complement
(change 0 to 1, change 1 to 0) all the bits. To convert between offset binary and 2’s
complement, we complement just the most significant bit. The exclusive-or operation
can be used to complement bits.

Just like the DAC, one can choose the full scale range to simplify the use of fixed-

point math. For example, if a 10-bit ADC had a full scale range of 0 to 1.023 volts,
then the resolution would be exactly 1 mV. This means that if the ADC input voltage
were 0.234 volts, then the result would be 234,,.

The total harmonic distortion (THD) of a signal is a measure of the harmonic
distortion present and is defined as the ratio of the sum of the powers of all harmonic
components to the power of the fundamental frequency. Basically, it is a measure of
all the noise processes in an ADC and usually is given in dB full scale. A similar
parameter is signal-to-noise and distortion ratio (SINAD), which is measured by
placing a pure sine wave at the input of the ADC (signal) and measuring the ADC
output (signal plus noise). We can compare precision in bits to signal-to-noise ratio
in dB using the relation dB = 20 log,,(2"). For example, the 12-bit MAX1247 ADC

has a SINAD of 73 dB. Notice that 20 log,,(2'?) is 72 dB. The ADCs on most
microcontrollers use the successive approximation technique.

For a discussion of ADC techniques, see Chapter 8 of Volume 2.

2.10.2. Internal ADC on TM4C

Table 2.24 shows the ADC register bits required to perform periodic sampling on a
single channel. For more complex configurations refer to the specific data sheet. The
TM4C123 and TM4C1294 can sample up to 1 million samples per second, see Table
2.25. Running the ADC slower will make it more accurate, and use less power.

Address 31-2 1 0 Name
$400F.E638 ADC1 ADCO [SYSCTL_RCGCADC_R
31-14 | 13-12 | 11-10 9-8 7-6 5-4 3-2 1-0
$4003.8020 SS3 SS2 SS1 SSO |ADCO_SSPRI_R
31-16 15-12 11-8 7-4 3-0
$4003.8014 EM3 EM?2 EM1 EMO |ADCO_EMUX R
31-4 3 2 1 0
$4003.8000 ASEN3| ASEN2 [ASEN1| ASENO [ADC0O_ACTSS_R
$4003.8028 SS3 SS2 SS1 SS0O |ADCO_PSSI_ R
$4003.8004 INR3 | INR2 | INR1 | INRO |ADCO_RIS_ R
$4003.8008 MASK3 MASK2 MASK1MASKO|ADCO_IM_R
$4003.8FC4 Speed IADCO_PC_R
$4003.800C IN3 IN2 IN1 INO [ADCO_ISC_R
31-28 | 27-24 | 23-20| 19-16 | 15-12 11-8 7-4 3-0
$4003.8040 [MUX7| MUX6 |[MUX5| MUX4 | MUX3 | MUX2 | MUX1| MUX0 |[ADC0_SSMUX0_R
31-16 | 15-12 11-8 7-4 3-0
$4003.8060 MUX3 MUX2 MUX1 MUXO0 IADCO_SSMUX1_R
$4003.8080 MUX3 MUX2 MUX1 MUXO0 IADCO_SSMUX2_R
$4003.80A0 MUXO0 IADC0O_SSMUX3 R

3130 29 |28/27|26| ... |8/ 7|6| 5 (4 3[2| 1 |0
$4003.8044 [TS7IE7END7D7TS6IEG ... [D2TSYIE1[END1DITSOIEO[ENDODOADCO_SSCTLO_R
15(14| 13 |12/11|10) 9 |8| 7| 6| 5 |4 3| 2| 1 |0
$4003.8064 [TS3E3END3D3TS2IE2END2D2TS]IE1{[END1DITSOIEO[ENDODOADCO_SSCTL1_R
$4003.8084 [TS3E3END3D3TS2IE2END2D2[TS1IE1{[END1DITSOIEO[ENDODOADCO_SSCTL2_R
$4003.80A4 TSOIEO[ENDODOADCO_SSCTL3_R
31-10 11-0
$4003.8048 DATA IADCO_SSFIFOO_R
$4003.8068 DATA IADCO_SSFIFO1_R
$4003.8088 DATA IADCO_SSFIFO2_R
$4003.80A8 DATA IADCO_SSFIFO3_R

Table 2.24. Some of the ADC registers. Each register is 32 bits wide.

The ADC has four sequencers, but we will use only sequencer 3. We set the
ADC_SSPRI_R register to 0x3210 to make sequencer 3 the lowest priority. Because
we are using just one sequencer, we just need to make sure each sequencer has a
unique priority. We set bits 15-12 (EM3) in the ADC_EMUX_R register to specify
how the ADC will be triggered. Table 2.26 shows the various ways to trigger an
ADC conversion. In this section we will use timer triggering (EM3=0x5). If we
specify software start (EM3=0x0), then the software writes an 8 (SS3) to the
ADC_PSSI_R to initiate a conversion on sequencer 3. Bit 3 (INR3) in the
ADC_RIS_R register will be set when the conversion is complete.

We can enable and disable the sequencers using the ADC_ACTSS_R register. There
are four sequencers on the TM4C123. Which channel we sample is configured by
writing to the ADC_SSMUX3_R register. The ADC_SSCTL3_R register specifies
the mode of the ADC sample. We set TS0 to measure temperature and clear it to
measure the analog voltage on the ADC input pin. We set IEQ so that the INR3 bit is
set on ADC conversion, and clear it when no flags are needed. We will set IEQ for
both interrupt and busy-wait synchronization. When using sequencer 3, there is only
one sample, so ENDO will always be set, signifying this sample is the end of the
sequence. We set the DO bit to activate differential sampling, such as measuring the
analog difference between ADC1 and ADCO pins. In our example, we clear DO to
sample a single-ended analog input. The ADC_RIS_R register has flags that are set
when the conversion is complete, assuming the IEQ bit is set. The ADC_IM_R
register has interrupt arm bits. The ADC_ISC_R register has interrupt trigger bits.
The IN3 bit is set when both INR3 and MASK3 are set. We clear the INR3 and IN3
bits by writing an 8 to the ADC_ISC_R register. The interrupt vector for ADC
sequencer 3 is at 0x00000084.

Value Description

0x7 1M samples/second

0x5 500K samples/second
0x3 250K samples/second
Ox1 125K samples/second

Table 2.25. The Speed bits in the ADCO_PC_R register.

Value Event

0x0 Software start

Ox1 Analog Comparator 0

0x2 Analog Comparator 1

0x3, 0x9-0x0E | Reserved

0x4 External (GPIO PB4)

0x5 Timer

0x6 PWMO

0x7 PWM1

0x8 PWM2

OxF Always (continuously
sample)

Table 2.26. The ADC EM3, EM2, EM1, and EMO bits in the ADC_EMUX_R register.

There are 13 steps to configure the ADC to sample a single channel at a periodic
rate. The most accurate sampling method is timer-triggered sampling (EM3=0x5). On
the TM4C123, the MUX fields are 4 bits wide, allowing us to specify channels 0 to
11. On the TM4C1294, the channel ranges from 0 to 19. See Tables 1.4 and 1.5 to see
mapping from pin to channel.

Step 1. We enable the ADC clock in the SYSCTL_RCGCADC_R register.

Step 2. Bits 3 — 0 of the ADCO_PC_R register specify the maximum sampling rate of
the ADC. In this example, we will sample slower than 125 kHz, so the maximum
sampling rate is set at 125 kHz. This will require less power and produce a longer
sampling time as described the S/H section, creating a more accurate conversion.

Step 3. We will set the priority of each of the four sequencers. In this case, we are
using just one sequencer, so the priorities are irrelevant, except for the fact that no
two sequencers should have the same priority. The default configuration has Sample
Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

Step 4. Next, we need to configure the timer to run at the desired sampling frequency.
We enable the TimerO clock by setting bit 0 of the SYSCTL_RCGCTIMER_R
register. This initialization is similar to Program 2.6 with two changes. First we set
bit 5 of the TIMERO_CTL_R register to activate TAOTE, which is the Timer A
output trigger enable. Secondly, we do not arm any Timer(O interrupts. The rate at
which the timer rolls over determines the sampling frequency. Let prescale be the

value loaded into TIMERO_TAPR_R, and let period be the value loaded into
TIMERO_TAILR_R. If the period of the bus clock frequency is At, then the ADC
sampling period will be

At *(prescale + 1)*(period + 1)

The fastest sampling rate is determined by the speed of the processor handling the
ADC interrupts and by the speed of the main program consuming the data from the
FIFO. If the bus clock is 80 MHz, the slowest possible sampling rate for this example
is 80MHz/2*, which is about 0.018 Hz, which is every 53 seconds.

Step 5. Before configuring the sequencer, we need to disable it. To disable
sequencer 3, we write a 0 to bit 3 (ASEN3) in the ADCO_ACTSS_R register.
Disabling the sequencer during programming prevents erroneous execution if a
trigger event were to occur during the configuration process.

Step 6. We configure the trigger event for the sample sequencer in the
ADCO_EMUX_R register. For this example, we write a 0101 to bits 15-12 (EM3)
specifying timer trigger mode.

Step 7. For each sample in the sample sequence, configure the corresponding input
source in the ADCO0_SSMUXn register. In this example, we write the channel
number (0, 1, 2, or 3) to bits 3—0 in the ADC0_SSMUX3_R register.

Step 8. For each sample in the sample sequence, we configure the sample control
bits in the corresponding nibble in the ADC0_SSCTLn register. When programming
the last nibble, ensure that the END bit is set. Failure to set the END bit causes
unpredictable behavior. Sequencer 3 has only one sample, so we write a 0110 to the
ADCO_SSCTL3_R register. Bit 3 is the TS0 bit, which we clear because we are
not measuring temperature. Bit 2 is the IEQ bit, which we set because we want to
request an interrupt when the sample is complete. Bit 1 is the ENDO bit, which is set
because this is the last (and only) sample in the sequence. Bit 0 is the D0 bit, which
we clear because we do not wish to use differential mode.

Step 9. If interrupts are to be used, write a 1 to the corresponding mask bit in the
ADCO_IM_R register. We want an interrupt to occur when the conversion is
complete (set bit 3, MASK3).

Step 10. We enable the sample sequencer logic by writing a 1 to the corresponding
ASENn. To enable sequencer 3, we write a 1 to bit 3 (ASEN3) in the
ADCO_ACTSS_R register.

Step 11. The priority of the ADCO sequencer 3 interrupts are in bits 13—15 of the
NVIC_PRI4_R register.

Step 12. Since we are requesting interrupts, we need to enable interrupts in the
NVIC. ADC sequencer 3 interrupts are enabled by setting bit 17 in the
NVIC_ENO_R register.

Step 13. Lastly, we must enable interrupts in the PRIMASK register.

The timer starts the conversion at a regular rate. Bit 3 (INR3) in the ADCO_RIS_R
register will be set when the conversion is done. This bit is armed and enabled for
interrupting, so conversion complete will trigger an interrupt. The IN3 bit in the
ADCO_ISC_R register triggers the interrupt. The ISR acknowledges the interrupt by
writing a 1 to bit 3 (IN3). The 12-bit result is read from the ADCO_SSFIFO3_R
register. The book web site for has example code. In order to reduce latency of other
interrupt requests in the system, this ISR simply stores the 12-bit conversion in a
FIFO, to be processed later in the main program. Program 2.20 shows the
initialization and interrupt service routine to affect the periodic sampling. For the
port pin, we disable its DEN, clear its DIR, set its AFSEL and enable its AMSEL bit.

void ADCO_InitTimer0ATriggerSeq3PD3(uint32_t period){
volatile uint32_t delay;
SYSCTL_RCGCADC_R | 0x01; // 1) activate ADCO0
SYSCTL_RCGCGPIO_R |= 0x08; // Port D clock
delay = SYSCTL_RCGCGPIO_R; // allow time for clock to stabilize
GPIO_PORTD_DIR_R &= ~0x08; // make PD3 input
GPIO_PORTD_AFSEL_R |= 0x08; // enable alternate function on PD3
GPIO_PORTD_DEN_R &= ~0x08; // disable digital I/O on PD3
GPIO_PORTD_AMSEL_R |= 0x08; // enable analog functionality on PD3
ADCO0_PC_R = 0x01; /1 2) configure for 125K samples/sec
ADCO_SSPRI_R = 0x3210; /1 3) seq 0 is highest, seq 3 is lowest
SYSCTL_RCGCTIMER_R |= 0x01; // 4) activate timer(
delay = SYSCTL_RCGCGPIO_R;
TIMERO_CTL_R = 0x00000000; // disable timer0A during setup
TIMERO_CTL_R |= 0x00000020; // enable timer0A trigger to ADC

TIMERO_CFG_R =0; // configure for 32-bit timer mode
TIMERO_TAMR_R = 0x00000002; // configure for periodic mode
TIMERO_TAPR_R = 0; // prescale value for trigger

TIMERO_TAILR_R = period-1; // start value for trigger

TIMERO_IMR_R = 0x00000000; // disable all interrupts

TIMERO_CTL_R |- 0x00000001; // enable timer0OA 32-b, periodic
ADCO_ACTSS_R &=~0x08; // 5) disable sample sequencer 3
ADCO0_EMUX_R = (ADC0_EMUX_R&0xFFFFOFFF)+0x5000; // 6) timer trigger

ADCO0_SSMUX3_R =4; /! 7) PD3 is analog channel 4
ADCO0_SSCTL3_R = 0x06; // 8) set flag and end after first sample
ADCO_IM_R |- 0x08; // 9) enable SS3 interrupts

ADCO_ACTSS_R |- 0x08; // 10) enable sample sequencer 3
NVIC_PRI4_R = (NVIC_PRI4_R&0xFFFF00FF)[0x00004000; // 11)priority 2
NVIC_ENO0_R = 1<<17; // 12) enable interrupt 17 in NVIC
Enable Interrupts(); // 13) enable interrupts

}

void ADCO0Seq3_Handler(void){
ADCO_ISC_R = 0x08; /I acknowledge ADC sequence 3 completion
Fifo_Put(ADCO_SSFIFO3_R); // pass to foreground

}

Program 2.20. Software to sample data using the ADC

(ADCTOATrigger_xxx).

The

above

example
ADCSWTriggerTwoChan_xxx project samples two channels using software start.

only

samples

2.10.3. Internal ADC on MSP432

Table 2.27 shows the ADC register bits required to perform sampling on a single
channel. For more complex configurations refer to the specific data sheet. When
converting from analog to digital we can select speed (how fast it runs), power (how
much energy it takes) and accuracy (the number of bits in the result). For example, to
reduce power we can run slower or reduce the number of bits. Bits 4 — 0 in
ADC14MCTLO specify the channel to convert. See Table 2.3 to see the mapping
between I/O pins and the ADC analog input channel. For example, channel 6 exists
on pin P4.7. On the MSP432, we will need to set bits in the SEL.0 SEL1 bits to 11 to
activate the analog interface. Most of the ADC control bits can only be set when
ADCI14ENC = 0, so clearing this bit will occur first during initialization.

one

analog

31-30 | 29-27 26 25 24-22 21-19 18-17 16
0x40012000 | PDIV | SHSx | SHP | ISSH | DIVx| SSELx | CONSx| BUSY | ADC14CTLO
15-12 11-8 7 6-5 4 3-2 1 0
SHT1x | SHTOx | MSC ON ENC SC ADC14CTLO
31-28 27 -24 22 21 20-16
0x40012004 CH3MAP — CHOMAP BATmap CStartAdr | ADC14CTL1
15-6 5-4 3 2 1-0
RES DF REFBURST PWRMD | ADC14CTL1
31-16 15 14 13 12 11-8
0x40012018 WINCTH WINC | DIF VRSEL ADC14MCTLO
7 6 5 4-0
EOS ADC14INCHx ADC14MCTLO
31-16 15-0
0x40012098 Conversion_Results ADC14MEMO
31 5 4 3 2 1 0
0x4001213C | IE31 IE5 IE4 IE3 1IE2 IE1 IEO ADCI14IERO
31 5 4 3 2 1 0
0x40012144 | IFG31 IFG5 | IFG4 | IFG3 IFG2 IFG1 IFGO ADC14IFGRO

Table 2.27. The MSP432 ADC registers. Each register is 32 bits wide.

The PDIV field selects a ADC clock divider (00 is divide by 1, 01 is divide by 4, 10
is divide 32, and 11 is divide by 64). Running with a slower clock increases

input. The

accuracy but will take longer to convert. We will set the SHSx field to 000 to select
the ADC14SC signal as the sample and hold source. SHP is the sample and hold
pulse mode select. With SHP=0 the ADC runs faster. The ISSH bit can be used to
invert the sample and hold pulse. We will clear this bit. We use the 3-bit DIVx field
to select another ADC clock divider. If the value of this field is n, then there will be
a divide by n+1. Again this defines a tradeoff between accuracy and speed. The 3-bit
field SSELx defines the clock source. We will set it to 100 to select the SMCLK. For
other choices see Table 2.28.

Value ADC Clock Source
000 MODCLK

001 SYSCLK

010 ACLK

011 MCLK

100 SMCLK

101 HSMCLK

Table 2.28. The ADC clock selection SSELx bits.

The ADC has a sample and hold module (SHM) at its input. The first ADC
conversion step is to put the SHM in sample mode during which time the analog
signal is connected to a sampling capacitor. Current flows as the voltage on the
capacitor rises or falls to equalize to the analog input voltage. The second step is to
disconnect the capacitor from the analog input, hold mode. The ADC converts the
voltage on the capacitor to digital form. The longer the sampling phase, the more
accurate will be the conversion. The SHT1x and SHTO0x are 4-bit fields defining the
length of the sampling period. SHTO0x controls registers ADC14MEMO0 to
ADC14MEM7 and ADC14MEM24 to ADC14MEM31. Since we will be using
ADC14MEMO, we set SHTO0x. Table 2.29 lists the sampling periods available.

Value Sampling Period

0000 4 ADC14CLK periods

0001 8 ADC14CLK periods

0010 16 ADC14CLK periods

0011 32 ADC14CLK periods

0100 64 ADC14CLK periods

0101 96ADC14CLK periods

0110 128 ADC14CLK
periods

0110 192 ADC14CLK
periods

Table 2.29. The SHT0x SHT1x fields define the sampling period.

The MSC bit selects single or multiple conversions. We will clear this bit so when

the software starts conversion it takes sample and stops. We set the ON bit to apply
power to the ADC. We set the ENC bit to enable the ADC. As mentioned earlier we
clear the ENC bit while configuring the ADC. The software will set the SC bit to
start an ADC conversion. Software writes one to SC but this bit is automatically
cleared.

There are 32 ADC14MEMXx registers, x = 0 — 31, similar to ADC14MEMO0 and 32
ADC14MCTLx registers similar to ADC14MCTLO0 shown in Table 2.27. The 5-bit
CStartAdr field specifies the conversion start address. These bits select which
ADC14 conversion memory register is used for a single conversion or for the first
conversion in a sequence. The value of CStartAdr is 0 to 31, corresponding to
ADC14MEMO to ADC14MEM31. We will use ADCI14MEMO and
ADC14MCTLO in our example by setting CStartAdr to 0.

The RES field specifies the ADC resolution. Again we can trade off accuracy for
speed. Set RES to 00 for 8-bit conversion, set RES to 01 for 10 bits, set RES to 10
for 12 bits and set it to 11 for 14 bits. We set the REFBURST bit if we desire to turn
off the reference when not in use. In our example, we will clear this bit to have the
reference on continuously.

The PWRMD field defines the power modes. Setting it to 00 will use the most
power but allow for 14-bit conversions at the highest speed. We set PWRMD to 10
for low-power mode and can be used for 12-bit, 10-bit and 8-bit resolutions.

We perform the following steps to timer-trigger the ADC and sample data
periodically using interrupt synchronization, see Program 2.21. This method has no
sampling jitter.

Step 1. Halt the timer during initialization

Step 2. We enable the timer to use SMCLK, divide by 1, stop mode, and disable
interrupts. Interrupts will be generated by the ADC module when the conversion is
complete and not by the timer when the conversion is started.

Step 3. We configure the timer to start the ADC conversion periodically. In
particular, bits 15-10 are 0 because we do not need capture events. Bit 8 is zero to
use compare mode. Bits 7-5 are 011 to create set/reset output mode, which will be a
squarewave created automatically by the timer and sent to the ADC. The frequency of
this squarewave will set the ADC sampling rate. An analog-to-digital conversion is
initiated with a rising edge of the timer squarewave output. Bit 4 is clear because the
timer does not create interrupts.

Step 4. In this step we set the sampling period. If the SMCLK:is 12 MHz, then 1 ms
period output will be created if we write a 5999 into TAOCCR1 and we write a
11999 into TAOCCRO .

Step 5. This step configures the timer clock as divide by 1.

Step 6. Before configuring the analog reference, we make sure it is idle.

Step 7. Bits 5-4 (REFVSEL) set to 1,1 to select the 2.5V reference. This defines the
ADC range to be 0 to 2.5V. Bit 3 (REFTCOFF) is set to disable the temperature
sensor. Disabling the sensor saves power. Bit 1 (REFOUT) is clear to disconnect

the reference from P5.6 .Bit 0 (REFON) is set to enable the reference.

Step 8. After configuring the analog reference, we wait for it to stabilize.

Step 9. Before configuring the ADC, we disable it. Clearing bit 1 (ADC14ENC)
allows us to program the ADC modes.

Step 10. Before configuring the ADC, we make sure it is idle.

Step 11. We write to the ADC14CTLO0 register to set the ADC conversion mode.
Bits 31-30 (PDIV) are set to 0,0 to specify a predivide by 1. Bits 29-27 (SHSx) are
set to 0,0,1 to select TAO_C1 output as the ADC trigger source. Again, a rising edge
of the timer output will initiate an ADC conversion. We set bit 26 (SHP) to make the
sample/hold use pulse mode. We clear bit 25 (ISSH) so the sample-and-hold is not
inverted. We set bits 24-22 (DIVx) to 0,0,0 to the clock divider to 1. We set bits 21-
19 (SSELXx) to 1,0,0 to select the SMCLK to run the ADC. We set bits 18-17
(CONSEQXx) to 1,0 to set the ADC mode to Repeat-single-channel. We will set both
bits 15-12 (SHT1x) and bits 11-8 (SHTO0x) to select 32 clocks each for sample-and-
hold times 1 and 0. The longer we sample the more accurate the result, but the longer
it takes to do the conversion. We clear bit 7 (MSC) so there is one sample per rising
edge of the trigger. Set bit 4 (ON) to power up the ADC.

Step 12. We write to the ADC14CTL1 register to set additional ADC modes. We
set bits 20-16 (STARTADDx) to 0,0,0,0,0 to use ADC14MEMO as the starting
address. We set bits 5-4 (RES) to 1,1 to select 14-bit conversion requiring 16
clocks. Clearing bit 3 (DF) specifies binary unsigned mode. Clearing bit 2
(REFBURST) will power the reference continuously. Clearing bits 1-0 (PWRMD)
specifies regular power mode. It takes more power to leave the power on, but the
results will be more accurate.

Step 13. Writing to the ADC14MCTLO0 register the range and the channel. We clear
bit 14 (WINC) to disable the comparator. We clear bit 13 (DIF) to specify single-
ended mode. We set bits 11-8 (VRSEL) to 0,0,0,1 to set the positive reference to
VREF (2.5V) and the negative reference to ground. We set bit 7 (EOS) to activate an
end of sequence event. Bits 4-0 (INCHXx) set the input channel. Writing a 6 specifies
channel 6, which is P4.7.

Step 14. In this step we arm the IFGO for interrupts and disarm the other flags.

Step 15. We set the SEL0 and SEL.1 bits for P4.7 to specify analog input.

Step 16. we set the ENC bit to enable the ADC.

Step 17. We specify the priority of the ADC interrupt. Because the trigger occurs in
hardware this interrupt priority needs to high enough so the ISR is run within 1 ms
(before another sample would be triggered).

Step 18. We enable ADC interrupts in the NVIC

Step 19. Lastly, we activate the timer to begin sampling. Interrupts will be enabled in
the main program after all devices initialized

void ADCO_InitTA0TriggerCh6(uint16_t period){
TAOCTL &= ~0x0030; // 1) halt Timer A0
TAOCTL = 0x0200; // 2)SMCLK, stop mode, divide by one, no interrupt
TAOCCTL1 = 0x0060; // 3) no capture, compare mode, set/reset
TAOCCR1 = (period-1)/2; // 4) specify sampling period

TAOCCRO = (period - 1);
TAOEX0 &= ~0x0007; // 5) configure for input clock divider /1
while(REFCTL0&0x0400){}; // 6) wait for the reference to be idle
REFCTLO = 0x0039; // 7) configure reference for static 2.5V
while ((REFCTL0&0x1000) == 0){}; // 8) wait for reference to stabilize
ADC14CTL0 &= ~0x00000002; /1 9) allow programming
while(ADC14CTL0&0x00010000){}; // 10) wait for BUSY to be zero
ADC14CTLO0 = 0x0C243310; // 11) ADC mode
ADC14CTL1 = 0x00000030; // 12) ADC14MEMO, 14-bit, ref on, regular
ADC14MCTLO = 0x00000186; // 13) 0 to 2.5V, channel 6
ADCI14IERO = 0x00000001; // 14) enable ADC14IFGO0 interrupt
ADCI14IER1 = 0; // disable these interrupts
P4ASEL1 - 0x80; // 15) analog mode on A6, P4.7
P4SELO |- 0x80;
ADCI14CTLO |- 0x00000002; // 16) enable
NVIC_IPR6 = (NVIC_IPR6& 0xFFFFFF00)|0x00000040; // 17) priority 2
NVIC_ISERO = 0x01000000; // 18) enable interrupt 24 in NVIC
TAOCTL |- 0x0014; /1 19) reset and start Timer A0 in up mode

}

void ADC14_IRQHandler(void){ uint16_t result;
if((ADC14IFGR0&0x00000001) == 0x00000001){

Fifo_Put(ADC14MEMO0);} // pass to foreground

}
Program 2.21. Software to sample data using the ADC
(ADCTAOTrigger_MSP432).

Checkpoint 2.13: If the input voltage is 1.0V, what value, in 14-bit unsigned
binary mode, will the MSP432 ADC return (assuming 0 to 2.5V range)? What
will a TM4C with a 12-bit ADC return (assuming 0 to 3.3V range)?

The above example only samples one analog input. The
ADCSWTriggerTwoChan_MSP432 project samples two channels using software
start.

2.10.4. IR distance measurement

A nonmonotonic response is an input/output function that does not have a
mathematical inverse. For example, if two or more input values yield the same output
value, then the transducer is nonmonotonic. Software will have a difficult time
correcting a nonmonotonic transducer. For example, the Sharp GP2Y0A21YK IR
distance sensor has a transfer function as shown in Figure 2.30. If you read a
transducer voltage of 2 V, you cannot tell if the object is 3 cm away or 12 cm away.

out

W)

0 10 20 30 40 50 60 70
D stance b reflective obpctl (am)
Figure 2.30. The Sharp IR distance sensor exhibits nonmonotonic behavior.

The transducer in Figure 2.17 uses IR light to measure distance to a reflecting object.
These sensors require a nonuniform power, so placing a 10 pF near the power line of
the sensor reduces noise on other components. If the object is more than 6 cm away,
the output voltage is inversely related to voltage. If N is the ADC sample, then
distance can be calculated as

d=c/N where c is a calibration constant

Figure 2.31 shows this sensor has a significant amount of noise. The nonlinear
median filter, presented in Chapter 6, is a good choice to improve signal to noise
ratio.

Unfiltered GP2Y0A21YK

Figure 2.31. Noise on a GP2Y0A21YK IR distance sensor shows large
periodic spikes.

2.11. OS Considerations for 1/0 Devices

2.11.1 Board Support Package

The entire book deals with interfacing I/O devices to build embedded systems.
However, in this section we will study two considerations of how the OS can manage
I/O. It is good design practice to provide an abstraction for the I/O layer. Names for
this abstraction include hardware abstraction layer (HAL), device driver, and board
support package (BSP). From an operating system perspective, the goal is the make it
easier to port the system from one hardware platform to another. The system becomes
more portable if we create a BSP for our hardware devices. A BSP could allow you
to encapsulate the following:

Timer initialization

ISR Handlers

LED output functions

Switch input functions

Setting up the interrupt controller

Setting up communication channel
CAN, 12C, ADC, DAC, SPI, serial, graphics

Example 2.1. Design a BSP for using a periodic interrupt.

Solution: In any abstraction, we need to separate what the system does from how it
does it. What we use a periodic interrupt for is to run a task at a fixed rate. How we
do it on the microcontroller is to enable the SysTick timer and configure it to
interrupt periodically, as presented previously in Section 2.2.2. What the user needs
is an OS function that he or she can call specifying their task and how often it should
run.

We can abstract the periodic interrupt, by defining the function in Program 2.22,
which is essentially Program 2.5 with the flexibility to specify the task to run and the
period with which to run it. We have hidden from the user the details of the
microcontroller. To run the function Taskonce a second, the user
calls OS_AddPeriodicTask(1000,& Task);

uint32_t static volatile Count;

uint32_t static Period;

void (*CallBack)(void); // call back function
void SysTick_Handler(void){

Count++;
if(Count==Period){
Count = 0;
(*CallBack)(); // execute call back process

e OS_AddPeriodicTask ----------=--=--emm--
// Input: thePeriod is a time period in ms
/l fp is a function to be executed at this period
// Output: none
// Example: to toggle PD0 once a second, we can
/I void toggle(void){PORTDO0 A= 0x01;}
/I OS_AddPeriodicTask(1000,&toggle);
void OS_AddPeriodicTask(uint32_t thePeriod, void(*fp)(void)){
DisableInterrupt(); // make initialization ritual atomic
Period = thePeriod;
CallBack = fp;
Count = 0;
NVIC_ST CTRL_R =0; // disable SysTick during setup
NVIC_ST RELOAD_R =49999; // reload value, 1ms
NVIC_ST_CURRENT_R =0; // any write to current clears it
NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R&0x00FFFFFF)[0x40000000;
2
NVIC_ST_CTRL_R = 0x00000007;// enable with core clock and interrupts
Enable Interrupts();
}

Program 2.22. RTOS function to run a periodic task.

//priority

Example 2.2. Design a BSP for the LEDs.

Solution: Again, we need to separate what the system does from how it does it. We
can turn LEDs on and off. In this example, the four LEDs constitute one 4-bit device,
so we will organize the solution in that manner, as shown in Program 2.23. Again, we

have hidden from the user the fact that we are running on a TM4C using Port D.

#define LEDS (*((volatile uint32_t *)0x4000703C))

[[mmmmmm e OS_LEDInit ---------=mmmmmem e

// Initialize the set of 4 LEDs

// Input: none

// Output: none

void OS_LEDInit(void){ volatile uint32_t delay;
SYSCTL_RCGCGPIO_R |= 0x08; // activate port D
delay = SYSCTL_RCGCGPIO_R; // allow time for clock to stabilize

GPIO_PORTD_DIR_R [0x0F; // make PD3-0 out
GPIO_PORTD_AFSEL_R &= ~0x0F; // regular port function
GPIO_PORTD_DEN_R |= 0x0F; // enable digital /O on PD3-0

[[=mmmmm e OS_LED_Out -------------------—-
// Output to the 4 LEDs
// Input: number from 0 to 15, specifying which LEDs are on and off
// Output: none
void OS_LEDOut(uint32_t number){
LEDS = number; // friendly access
}

Program 2.23. BSP for four LEDs.

2.11.2 Path Expression

Path expression is a formal mechanism to specify the correct calling order in a
group of related functions. Consider a UART device driver with 4 functions, the

prototypes are

void UART _Init(void); // Initialize Serial port

char UART_InChar(void); // Wait for new serial port input
void UART_OutChar(char data); // Output 8-bit to serial port
void UART_Close(void); // Shut down serial port

It is obvious that you should not attempt to input/output until the UARTis initialized.
In this problem, we will go further and actually prevent the user from
executing UART_InChar and UART_OutChar before executing UART_Init. A
directed graph is a general method to specify the valid calling sequences (Figure
2.32). An arrow represents a valid calling sequence within the path expression. The
system “state” is determined by the function it called last. For this example, we begin
in the closed state, because the UART is initially disabled. The tail of an arrow
touches the function we called last, and the head of an arrow points to a function that
we are allowed to call next. In this method, a calling sequence is valid if there is
sequence of arrows to define it. For example, these calling sequences are valid

Init InChar InChar OutChar Close dbeij
Init OutChar OutChar OutChar OutChar dcggg
Init Close Init InChar Close dadbh

On the other hand, the following calling sequences are illegal because each has no
representative sequence of arrows

Init InChar Init OutChar Close Can’t initialize twice

Close Can’t close because already disabled
OutChar OutChar OutChar Can’t output without initialization

UART_Close

Figure 2.32. Directed graph showing path expression for the serial port

driver.

A fast, but memory inefficient method, to represent a directed graph uses a square
matrix. Since there are four functions, the matrix will be 4 by 4. The row number
(0,1,2,3) will specify the current state (the function called last), and the column
number (0,1,2,3) will specify the function that might be called next. The values in the
matrix are true(1)/false(0) specifying whether or not the next function call is legal.
Since there are 10 arrows in the directed graph, there will be exactly 10 true values
in the matrix, one for each arrow. The remaining values will be false(0). Program
2.24 shows the data structure for the directed graph. At the beginning of each call to
the serial port driver, the OS checks to verify the user has permission to execute that
function. Theglobal variable State defines the current state. For example, Path[3]
[0] will be true signifying it is OK to call UART _Init if the UART is disabled.
Weassume there is an operating system function called OS_Kill() , which should be
called if a thread makes an illegal function call, destroying the thread because it has
made a serious programming error.

int State=3; // start in the Closed state

int Path[4][4]={ /* Init InChar OutChar Close */

/* colulm 0 1 2 3 */

/¥Init rowO0*/{ 0, 1 , 1, 11}

/¥*InChar row1*/{ 0, 1 , 1 , 11}

/* OutCharrow?2*/{ 0, 1 , 1 , 11}

/*Close row3*/{ 1, 0 , 0 , 0 }}

void UART _Init(void){
if(Path[State][0]==0) OS_K:ill(); // kill if illegal
State = 0; // perform valid Init
SYSCTL_RCGCUART_R |- 0x0001; // activate UARTO0
SYSCTL_RCGCGPIO_R |- 0x0001; // activate port A
UARTO0_CTL_R &=~0x0001; // disable UART
UARTO0_IBRD_R = 3; // int(6,000,000 / (16*115,200)) = int(3.2552)
UARTO0_FBRD_R = 16;// int(0.2552 * 64 + 0.5) = 16

UARTO0_LCRH_R = 0x0070; // 8-bit word length, enable FIFO
UARTO0_CTL_R = 0x0301; // enable RXE, TXE and UART
GPIO_PORTA_AFSEL_R |- 0x03; // enable alt funct on PA1-0
GPIO_PORTA_DEN_R |- 0x03; // enable digital /O on PA1-0
}
char UART_InChar(void){
if(Path[State][1]==0) OS_K:ill(); // kill if illegal
State = 1; // perform valid InChar
while ((UARTO0_FR_R&0x0010) != 0); // wait until RXFE is 0
return((char)(UART0_DR_R&0xFF));
}
void UART_OutChar(char data){
if(Path[State][2]==0) OS_K:ill(); // kill if illegal
State = 2; // perform valid OutChar
while ((UARTO0_FR_R&0x0020) != 0); // wait until TXFF is 0
UARTO0_DR R = data;
}
void UART_Close(void){
if(Path[State][3]==0) OS_K:ill(); // kill if illegal
State = 3; // perform valid Close
UARTO0_CTL_R &=~0x0001; // disable UART

}
Program 2.24. Directed graph showing path expression for the serial port
driver.

2.12. Debugging

2.12.1. Functional Debugging

Functional debugging involves the verification of input/output parameters. It is a
static process where inputs are supplied, the system is run, and the outputs are
compared against the expected results. We will present seven methods of functional
debugging.

1. Single Stepping or Trace. Many debuggers allow you to set the program counter to
a specific address then execute one instruction at a time. StepOver will execute one
instruction, unless that instruction is a subroutine call, in which case the simulator
will execute the entire subroutine and stop at the instruction following the subroutine
call. StepOut assumes the execution has already entered a function and will finish
execution of the function and stop at the instruction following the function call.

2. Breakpoints without filtering. The first step of debugging is to stabilize the
system with the bug. In the debugging context, we stabilize the problem by creating a
test routine that fixes (or stabilizes) all the inputs. In this way, we can reproduce the
exact inputs over and over again. Once stabilized, if we modify the program, we are
sure that the change in our outputs is a function of the modification we made in our
software and not due to a change in the input parameters. A breakpoint is a
mechanism to tag places in our software, which when executed will cause the
software to stop.

3. Conditional breakpoints. One of the problems with breakpoints is that sometimes
we have to observe many breakpoints before the error occurs. One way to deal with
this problem is the conditional breakpoint. Add a global variable called count and
initialize it to zero in the ritual. Add the following conditional breakpoint to the
appropriate location, and run the system again (you can change the 32 to match the
situation that causes the error).

if (++count==32){

breakpoint(); // <= place breakpoint here

}
Notice that the breakpoint occurs only on the 32" time the break is encountered. Any
appropriate condition can be substituted.

4. Instrumentation: print statements. The use of print statements is a popular and
effective means for functional debugging. The difficulty with print statements in
embedded systems is that a standard “printer” may not be available. Another problem
with printing is that most embedded systems involve time-dependent interactions
with its external environment. The print statement itself may so slow that the
debugging instrument itself causes the system to fail. Therefore, the print statement is

usually intrusive. One exception to this rule is if the printing channel occurs in the
background using interrupts, and the time between print statements (t,) is large

compared to the time to execution one print (t,), then the print statements will be

minimally intrusive. Nevertheless, this book will focus on debugging methods that do
not rely on the availability of a printer.

5. Instrumentation: dump into array without filtering. One of the difficulties with
print statements is that they can significantly slow down the execution speed in real-
time systems. Many times the bandwidth of the print functions cannot keep pace with
data being generated by the debugging process. For example, our system may wish to
call a function 1000 times a second (or every 1 ms). If we add print statements to it
that require 50 ms to perform, the presence of the print statements will significantly
affect the system operation. In this situation, the print statements would be considered
extremely intrusive. Another problem with print statements occurs when the system is
using the same output hardware for its normal operation, as is required to perform the
print function. In this situation, debugger output and normal system output are
intertwined. To solve both these situations, we can add a debugger instrument that
dumps strategic information into arrays at run time. Assume P1 is an input and P2 is
an output port that are strategic to the system. The first step when instrumenting a
dump is to define a buffer in RAM to save the debugging measurements.
The Debug_Cnt will be used to index into the buffers. Debug Cnt must be
initialized to zero, before the debugging begins. The debugging instrument, shown in
Program 2.25, saves the strategic data into the buffer. We can then observe the
contents of the array at a later time. One of the advantages of dumping is that the
JTAG debugging allows you to visualize memory while running.

#define SIZE 100
uint8_t Debug_Buffer[SIZE][2];
unsigned int Debug_Cnt=0;
void Debug_Dump(void){ // dump P1IN and P20UT
if(Debug_Cnt < SIZE){
Debug_Buffer[Debug_Cnt][0] = P1IN;
Debug_Buffer[Debug_Cnt][1] = P20UT;
Debug_Cnt++;
}
}

Program 2.25. Instrumentation dump without filtering.

Next, you add Debug_Dump(); statements at strategic places within the system. You
can either use the debugger to display the results or add software that prints the
results after the program has run and stopped. In this way, you can collect information
in the exact same manner you would if you were using print statements.

6. Instrumentation: dump into array with filtering. One problem with dumps is that
they can generate a tremendous amount of information. If you suspect a certain

situation is causing the error, you can add a filter to the instrument. A filter is a
software/hardware condition that must be true in order to place data into the array. In
this situation, if we suspect the error occurs when the pointer nears the end of the
buffer, we could add a filter that saves in the array only when data matches a certain
condition. In the example shown in Program 2.26, the instrument saves the strategic
variables into the buffer only when P1.7 is high.

#define SIZE 100

uint8_t Debug_Buffer[SIZE][2];

unsigned int Debug_Cnt=0;

void Debug_FilteredDump(void){ // dump P1IN and P20UT

if(P1IN&0x80) & & (Debug_Cnt < SIZE)){

Debug_Buffer[Debug_Cnt][0] = P1IN;
Debug_Buffer[Debug_Cnt][1] = P20OUT;
Debug_Cnt ++;

}

}

Program 2.26. Instrumentation dump with filter.

7. Monitor using the LED heartbeat. Another tool that works well for real-time
applications is the monitor. A monitor is an independent output process, somew hat
similar to the print statement, but one that executes much faster and thus is much less
intrusive. An LCD can be an effective monitor for small amounts of information if the
time between outputs is much larger than the time to output. Another popular monitor
is the LED. You can place one or more LEDs on individual otherwise unused output
bits. Software toggles these LEDs to let you know what parts of the program are
running. An LED is an example of a Boolean monitor or heartbeat. Assume an LED
is attached to MSP432 Port 1 bit 0. Program 2.27 will toggle the LED.

#define LEDOUT (*((volatile uint8_t *)(0x42000000+32*0x4C02+4%*0)))
#define Debug_HeartBeat() (LEDOUT A= 0x01)

Program 2.27. An LED monitor, written as a C macro.

Next, you add Debug_HeartBeat(); statements at strategic places within the system.
Port 1 must be initialized so that bit 0 is an output before the debugging begins. You
can either observe the LED directly or look at the LED control signals with a high-
speed oscilloscope or logic analyzer. When using LED monitors, it is better to
modify just the one bit, leaving the other 7 as is. In this way, you can have multiple
monitors on one port.

Checkpoint 2.14: Write a debugging instrument that toggles Port 1 bit 3
(MSP432) or toggles Port A bit 3 (TM4C123).

Observation: For safety-critical systems we place debugging instruments into the
system during testing. Once the system is certified functional, we deliver the
system with the instruments still included. If we were to remove the debugging

instruments we would be obligated to retest the changed system.

2.12.2. Performance Debugging (FFT analysis)

Performance debugging involves the verification of timing behavior of our system. It
is a dynamic process where the system is run, and the dynamic behavior of the system
is compared against the expected results. We will present three methods of
performance debugging, then apply the techniques to measure execution speed.

1. Counting bus cycles. For simple programs with little and no branching and for
simple microcontrollers, we can estimate the execution speed by looking at the
assembly code and adding up the time to execute each instruction.

2. Instrumentation measuring with an independent counter. SysTick is a 24-bit
counter decremented every bus clock. It automatically rolls over when it gets to 0. If
we are sure the execution speed of our function is less than 22 bus cycles, we can use
this timer to collect timing information with only a minimal amount of intrusiveness.

3. Instrumentation Output Port. Another method to measure real-time execution
involves an output port and an oscilloscope. Connect a microcontroller output bit to
your scope. Add debugging instruments that set/clear these output bits at strategic
places. Remember to set the port’s direction register to 1. Assume an oscilloscope is
attached to TM4C123 Port F bit 2. Program 2.28 can be used to set and clear the bit.

#define PF2 (*((volatile uint32_t *)0x40025010))
#define Debug_Set() (PF2 = 0x04)
#define Debug_Clear() (PF2 = 0x00)

Program 2.28. Instrumentation output port, written as C macros.

Next, you add Debug_Set(); and Debug_Clear(); statements before and after the
code you wish to measure. Port F must be initialized so that bit 2 is an output before
the debugging begins. You can observe the signal with a high-speed oscilloscope or
logic analyzer.

Debug_Set();
Stuff(); // User code to be measured
Debug_Clear();

To illustrate these methods, we will consider measuring the execution time of a
1024-element integer FFT function written by STMicroelectronics. For details on the
FFT, see Section 6.5.

grouploop ADD butternbr;butternbyindex, LSL#(16- | 85

2) 1024

butterloop BUTFLY4_V7 pssX,index,pssX,14,pssK 1024
SUBS butternbr,butternbr, #1<<16 1024
BGE butterloop 85

ADD tmp, index, index, LSL#1 85
ADD pssX, pssX, tmp 85
DEC butternbr 85
MOVS tmp2, butternbr, LSL#16 85
IT NE 85
SUBNE pssK, pssK, tmp 85
BNE grouploop

Program 2.29. A section of the FFT assembly listing and the number of times

each instruction was executed.

The first method is to count bus cycles using the assembly listing. This approach is
only appropriate for very short programs. Counting cycles becomes difficult for long
programs with many conditional branch instructions and macro expansions. The time
to execute each assembly instruction can be found in the Cortex-M Technical
Reference Manuals. Because of the complexity of the ARM Cortex-M processor, this
method is only approximate. For example, the time to execute a divide depends on
the data, and the time to execute a branch depends on the alignment of the instruction
pipeline. A portion of the assembly output generated by the ARM Keil uVision
compiler is presented on the left side of Program 2.29, and on the right is the number
of times each instruction is executed. For most programs it is actually very difficult to
get an accurate time measurement using this technique.

The second method uses an internal timer called SysTick. The 24-bit SysTick register
(STCURRENT) that is automatically decremented at the bus frequency. When the
counter hits zero, it is reloaded to OXFFFFFF and continues to count down. If we are
sure the function will complete in a time less than 2% bus cycles, then the internal
timer can be used to measure execution speed empirically. The code in Program 2.30
first reads the SysTick counter, executes the function, and then reads the SysTick
counter again. The elapsed time is the difference in the counter before and after.
Since the execution speed may be dependent on the input data, it is often wise to
measure the execution speed for a wide range of input parameters. There is a slight
overhead in the measurement process itself. To be accurate, you could measure this
overhead and subtract it off your measurements. In this case, a constant 6 is
subtracted so that if the call to the function were completely removed the elapsed
time would return 0. Notice that in this example, the total time including parameter
passing is measured. Results show that this 1024-element FFT executes in 97,872
bus cycles.

uint32_t Before, Elapsed; // assume SysTick is initialized
int32_t x[1024], y[1024]; // assume X is filled with data
void FFT (void){

Before = STCURRENT;

crd_fft_1024_stm32(y, x, 1024); // complex FFT of 1024 values

Elapsed = (Before - STCURRENT - 6) &0x00FFFFFF;
}

Program 2.30. Empirical measurement of dynamic efficiency
(ProfileFFTxxx).

The third technique can be used in situations where a timer is unavailable or where
the execution time might be larger than 2?* counts. In this empirical technique we
attach an unused output pin to an oscilloscope or to a logic analyzer. We will set the
pin high before the call to the function and set the pin low after the function call. In
this way a pulse is created on the digital output with duration equal to the execution
time of the function. We assume Port F is available, and bit 2 is connected to the
scope. By placing the function call in a loop, the scope can be triggered. With a
storage scope or logic analyzer, the function need be called only once. Together with
an oscilloscope or logic analyzer, Program 2.31measures the execution time of the
function crd_fft_1024_stm32 (Figure 2.33). We stabilize the system by calling it
over and over. Using the scope, we can measure the width of the pulse on PF2, which
will be execution time of the FFT. Running at 16 MHz, it takes about 6.08 ms to
execute crd_fft_1024_stm32(y, x, 1024) , which is about 97,300 bus cycles.

int main(void){ int32_t x[1024], y[1024];
PortF_Init(); // Make PF2 output
while(1){
Debug_Set(); // set PF2 high
crd_fft_1024_stm32(y, x, 1024); // 1024 length FFT
Debug_Clear(); // clear PF2 low
}
}

Program 2.31. Another empirical measurement of dynamic efficiency
(ProfileFFTxxx).

-"D PicoScope 6 = | B il
| Fle [Ede ‘Yews Messwemenis Took Help |
P MLl ? % | |1 %1 80015 | merm £ (| el O B =
L]
FEE [RuiT 0w [FIELE]

Figure 2.33. Oscilloscope output measured from Program 2;31 using a
PicoScope 2104, running at 16 MHz.

2.12.3. Debugging heartbeat

A debugging heartbeat would allow us to see if and when the ISR runs. If we toggle a
pin once, we can measure when the interrupt occurred. If we toggle it three times,

like Program 2.5, we can also measure the execution time of the ISR. The first and
second edges of PC5 signify the start of the ISR. The third edgeoccurs at the end of
the ISR. The PC5/A=0x20; takes 4 instructions or 7 cycles

480D LDR r0,[pc,#52] ; pointer to PC5
6BC0 LDR rl1,[r0] ;read PC5
F0800020 EOR r1,r1,#0x20 ; toggle
63C8 STR rl,[r0] ; write PC5

These three debugging instruments add 21 bus cycles to each ISR. Thus, if the time
between interrupts is large compared to these 21 cycles, this heartbeat will be
minimally intrusive.

Figure 2.34 shows a zoomed in view of the profile pin measured during one
execution of the SysTick ISR. The first two toggles signify the ISR has started. The
time from second to third toggle illustrates the body of the ISR takes 1.2 ps of

execution time.
:."l;-f“l:ﬂkw!l = E
Bk (& Yewn [deswmrsnts Fosh Help
Ay ML il * 3|1 ol s H weu o || 7 L, S
iy o
F)
| -
|
|
| r
| 1
_— —
|
|
|
|
|
|
L ul .
™ :|. 30 ;
Sopped Q0 bl Trigoer 2ute A TR SRR £ B | Measaer veritt [l

Figure 2.34. Profile of a single execution of the SysTick ISR measured on a
TM4C123 running at 16 MHz.

Figure 2.35 shows a zoomed out view of the profile pin measured during multiple
executions of the SysTick ISR. This measurement verifies the ISR runs every 100 ms.
Because of the time scale, the three toggles appear as a single toggle. This triple-
toggle technique (TTT) allows us to measure both the time to execution of one
instance of the ISR and to measure the time between ISR executions.

w [il o (| 100 micam vl 14 4§ AL #) Ll Ty O, B 5 1

...... o B :,..4;

Fl
: i =
Running ik @ | Togger gk 1| 1.5% W 0] Kl i s ()

Figure 2.35. Profile of multiple executions of the SysTick ISR on a TM4C123
running at 16 MHz.

2.12.4. Profiling

Profiling is a type of performance debugging that collects the time history of program
execution. Profiling measures where and when our software executes. It could also
include what data is being processed. For example, if we could collect the time-
dependent behavior of the program counter, then we could see the execution patterns
of our software.

Profiling using a software dump to study execution pattern. In this section, we will
discuss software instruments that study the execution pattern of our software. In order
to collect information concerning execution we will add debugging instruments that
save the time and location in arrays (Program 2.32). By observing these data, we can
determine both a time profile (when) and an execution profile (where) of the
software execution. Running this profile revealed the sequence of places as 0, 1, 2, 2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2, and 3. Each call to Debug_Profile requires 32
cycles to execute. Therefore, this instrument is a lot less intrusive than a print
statement.

uint32_t Debug_time[20];
uint8_t Debug_place[20];

uint32_t n;

void Debug_Profile(uint8_t p){

}

if(n < 20){

}

Debug_time[n] = STCURRENT; // record current time
Debug_place[n] = p;

n++;

b

uint32_t sqrt(uint32_t s){

uint32_t t; // t*t becomes s
int n; // loop counter
Debug_Profile(0);
t =s/10+1; // initial guess
Debug_Profile(1);
for(n = 16; n; --n){ // will finish
Debug_Profile(2);
t = ((t*t+s)/1)/2;
}
Debug_Profile(3);
return t;

}
Program 2.32. A time/position profile dumping into a data array.

2.13. Exercises

2.1 Draw a flowchart for a line-tracking robot. There are two inputs from the line
sensors on the bottom, labeled Right and Left. If both sensors are true, then the robot
is on the line. If Right is true and Left is false, the robot is veering off the left. If
Right is false and Left is true, the robot is veering off the right. If both are false, the
robot is off the line. There are two outputs to the motors labeled GoRight and
GolLeft. If both outputs are true, the robot will go straight. If GoRight is true and
GolLeft is false, the robot will turn left. If GoRight is false and GoLeft is true, the
robot will turn left. If both outputs are false, then the robot will stop.

2.2 A digital output of one microcontroller is connected to a digital input of another
microcontroller. The output is configured with 2mA drive. The two microcontrollers
share a common ground.

a) When the output is high, which way does current flow along the wire between the
pins?

b) When the output is high, which way does current flow along the wire between the
pins?

¢) When the output is high how much current flows? (less than 2pA, exactly 2pA,
between exactly 2pA and 2mA, exactly 2mA, or more than 2mA).

d) When the output is low how much current flows? (less than 2pA, exactly 2pA,
between exactly 2pA and 2mA, exactly 2mA, or more than 2mA).

2.3 Consider the situation in which the output of one digital circuit is connected to the
inputs of two other digital circuits. There are no other connections on this signal, i.e.,
one output is tied to two inputs. The output specifications of the first circuit are Vy,

Vo o @nd I, The input specifications of the second and third circuits are Vi,
Vi, I, and I;;. These are the specifications, like you would find in a data sheet, not
actual measurements of voltage and current like you would measure in lab with a
DVM. Give the four inequalities relating these eight parameters (Vy, Vo, log Iows
Vi Vi, Ly, and I;) that must be true in order for the interface to operate properly. It
may be necessary to also add numbers to these inequalities.

2.4 Interface an LED to the microcontroller. Show the interface circuit, the
initialization software, and two functions: one to turn it on and one to turn it off.
Make the initialization friendly and use bit-specific addressing on the two functions.
a) The LED parameters are [,=1.5mA and V, = 1.6V

b) The LED parameters are [,=2.5mA and V, = 1.7V
c) The LED parameters are [,=25mA and V, = 1.8V

2.5 Write software that maintains hours (0 to 23), minutes (0 to 59) and seconds (0 to
59).

2.6 Rewrite the code in Program 2.5, so Counts is incremented every 1 second.
Assume the bus clock is 50 MHz.

2.7 Rewrite the code in Program 2.5, so SysTick_Init takes another input parameter,
a call-by-reference to a function. This user defined function will be called in the ISR.

2.8 Write a formula relating baud rate (in bits/sec) to bandwidth (in bytes/sec) for a
UART.

2.9 Sketch the step response of the following circuit. In particular draw the output
wave as the input signal goes from 0 to 3.3 V. 1nF*10kQ2 is 10 psec.
1nF

Vh‘{ Veut
10k *

2.10 Consider the situation in which a software FIFO queue is used to buffer data
between a main program and an output UART interrupt service routine (like Section
2.4). The main program calls UART_OutChar, which in turn puts one byte into a
software FIFO. The ISR is triggered when the UART hardware FIFO is not full. The
UART ISR gets data from the software FIFO and puts it to the hardware FIFO.
Experimental measurements show that the rate at which UART_OutChar is called
varies over time with an average rate of 1,000 times/sec. What does it mean? Choose
A-F and briefly justify your selection.
A) The system could work, but the system is CPU bound
B) The system does not work, but could be corrected by increasing software FIFO
size
C) The system could work, but the system is I/O bound
D) The system does not work, but could be corrected by increasing baud rate
E) The system works, but the software FIFO is not needed and could be
replaced by a global variable
F) The system could work, but interrupts are not needed in this system
a) The UART baud rate is 5,000 bits/sec.
b) The UART baud rate is 100,000 bits/sec.

2.11 UART interrupts are armed so that interrupts occur when new data arrives into
the microcontroller (like Section 2.4). Consider the situation in which a FIFO queue
is used to buffer data between the receiverISR and the main program.
The UART0_Handler reads UARTO_DR_R and saves the data by
calling RxFifo_Put . When the main program wants input it calls UART_InChar,
which in turn calls RxFifo_Get . Experimental observations show the software FIFO

is usually empty, and has at most 3 elements. What does it mean? Choose A-F and
briefly justify your selection.

A) The system is CPU bound

B) Bandwidth could be increased by increasing the software FIFO size

C) The system is I/O bound

D) The software FIFO could be replaced by a global variable

E) The latency is small and bounded

F) Interrupts are not needed in this system

2.12 The main program synthesizes a waveform (defines a sequence of DAC output
values) and a periodic output compare interrupt will output the data to the DAC
separated by a fixed time. A software FIFO queue is used to buffer data between a
main program (e.g., main program calls DAC_QOut , which in turn calls Fifo_Put). A
timer interrupt service routine calls Fifo_Get and actually writes to the DAC. At the
beginning of the ISR, experimental observations show this software FIFO is usually
empty, and has at most 3 elements. What does it mean? Choose A-F.
A) The system not operating properly because it is CPU bound
B) The system not operating properly but could be fixed by increasing
software FIFO size
C) The system is not operating properly because it is I/O bound
D) The system is operating properly, but the software FIFO could be
replaced by a global variable
E) The system is operating properly, but bandwidth could be increased
by increasing the timer interrupt rate
F) The system is operating properly, but interrupts are not needed in this
system

2.13 Assume you are outputting a sin wave using an n-bit DAC. What is the maximum
table size you could use, such that if you increased the size of the table beyond that
size, there would be no more improvements in waveform quality?

2.14 You wish to record sound. The frequency components you wish to analyze are
200 to 2000 Hz. The signal to noise ratio of your microphone is 50 dB. What ADC
precision and sampling rate would you choose? Justify your answer.

2.15 You wish to measure pressure from 0 to 300 mmHg with a resolution of 0.1
mmHg. The frequency components you wish to analyze are 0 to 200 Hz. What ADC
precision and sampling rate would you choose? Justify your answer.

2.16 You wish to measure distance (0 to 1 cm) using the 10-bit ADC on the
microcontroller. The sampling rate is 1000 Hz. The frequencies of interest are 0 to
100 Hz. The ADC range is 0 to 3V. The sensitivity of the transducer and amplifier is
3V/cm. The signal to noise ratio of your analog circuit is 45 dB. Which of the
following changes will improve the quality of the system the most? Justify your
answer.

A) increasing the ADC precision

B) increasing the ADC sampling rate

C) increasing the gain of the amplifier
D) changing the transducer to one with less noise

2.17 Most ADC codes are linear (Figure 2.26). Under what conditions would it be
better to design a nonlinear ADC? Give an example application needing a nonlinear
ADC.

2.18 Define ADC sampling jitter. Estimate the sampling jitter of sampling in Program
2.20.

2.19 Write a busy-wait function that samples ADC channels 1, 2, and 3. Show the
initialization routine and the input function that returns all three samples. Design in
such a way that it could operate concurrently with Program 2.20 sampling channel 0
in the background.

2.20 Write an interrupting system that samples ADC channel 1 at 200 Hz. Show the
initialization routine and the ISR. Data should be spooled into a software FIFO.
Design in such a way that it could operate concurrently with Program 2.20 sampling
channel 0 in the background. Channel 0 is not being sampled at 200 Hz.

2.21 Write a busy-wait function that collects 1000 samples of ADC channel 0 at 500
kHz. Show the initialization routine and the input function that collects the 1000

samples. Assume there are no interrupts active and this is the only ADC task. Assume
the bus clock is 50 MHz.

2.22 Consider the following BSP function that outputs an 8-bit number to a port. Add
debugging dumps that record the last 32 data values to the port.

// MSP432 version

void BSP_Out(uint8_t data){
P20UT = data;

}

// TMAC version

void BSP_Out(uint8_t data){
GPIO_PORTB DATA R =

data;

}

Write the debugging instruments in such a way that data need not be shifted. For
example,if I is the index at which the last value was written (I ranges from O to 31),
then (I-n)&0x1F will be the index of the n™ previous data.

3. Thread Management

Chapter 3 objectives are to:
* Introduce real-time operating systems
* Discuss memory management and show solution to manage a heap
* Define threads and discuss multithreading
» Use spinlock semaphores to implement thread synchronization

* Present debugging techniques applicable for real-time systems

This chapter introduces real-time operating systems. The operating system must
manage system resources and in this chapter we will begin with memory and
the processor. We will develop a heap to provide dynamic memory allocation.
Our first simple OS will employ a round robin preemptive scheduler.

3.1. Introduction to RTOS

3.1.1. Motivation

Consider a system with one input task, one output tasks and two non I/O tasks, as
shown in Figure 3.1. The non-1I/O tasks are called function3 and function4. Here are
two possible ways of structuring a solution to the problem. The left side of the figure
shows a busy-wait solution, where a single main program runs through the tasks by
checking to see if the conditions for running the task have occurred. Busy-wait
solution is appropriate for problems where the execution patterns for tasks are fixed
and well-known, and the tasks are tightly coupled. An alternative to busy-wait is to
assign one thread per task. Interrupt synchronization is appropriate for I/O even if the
execution pattern for I/O is unknown or can dynamically change at run time. The
difficultly with the single-foreground multiple-background threaded solutions
developed without an operating system stems from answering, “How to handle
complex systems with multiple foreground tasks that are loosely coupled?” A real-
time operating system (RTOS) with a thread scheduler allows us to run multiple
foreground threads, as shown on the right side of the figure. As a programmer we
simply write multiple programs that all “look” like main programs. Once we have an
operating system, we write Taskl, Task2, Task3, and Task4 such that each behaves
like a main program. One of the features implemented in an RTOS is a thread
scheduler, which will run all threads in a manner that satisfies the constraints of the
system.

Busywait Task] Thread Schedt r

R eady

/ Inputdatal /

0 ther
functiond fuﬂ ther 0 ther
] nction3 functiond
| I |

Figure 3.1. Flowcharts of a system with four loosely coupled tasks.

3.1.2. Parallel, distributed and concurrent programming

Many problems cannot be implemented using the single-threaded execution pattern.
Parallel programming allows the computer to execute multiple threads at the same
time. State-of-the art multi-core processors can execute a separate program in each of
its cores. Fork and join are the fundamental building blocks of parallel programming.
After a fork, two or more software threads will be run in parallel. Le., the threads
will run simultaneously on separate processors. Two or more simultaneous software
threads can be combined into one using a join, see Figure 3.2. Software execution
after the join will wait until all threads above the join are complete.

As an analogy, if I want to dig a big hole in my back yard, I will invite three friends
over and give everyone a shovel. The fork operation changes the situation from me
working alone to four of us ready to dig. The four digging tasks are run in parallel.
When the overall task is complete, the join operation causes the friends to go away,
and I am working alone again. A complex system may employ multiple computers,
each running its own software. We classify this configuration as distributed
programming.

Parallel ¥ D istrbuted Interruptdriven concurrent
Trieeer
Sayy L
I;”}”%”;I Initl Init? Init l%‘
Jﬂhl{_ll?l?l-}l |Elodyl| |Elﬂi:iy2| Bod

— |

I{J Rebirn from

irkrruot

£

Figure 3.2. Flowchart symbols to describe parallel, distributed, and
concurrent programming.

Concurrent programming allows the computer to execute multiple threads, but only
one at a time. Interrupts are one mechanism to implement concurrency on real-time
systems. Interrupts have a hardware trigger and a software action. An interrupt is a
parameter-less subroutine call, triggered by a hardware event. The flowchart
symbols for interrupts are also shown in Figure 3.2. The trigger is a hardware event
signaling it is time to do something. Examples of interrupt triggers we will see in this
book include new input data has arrived, output device is idle, and periodic event.
The second component of an interrupt-driven system is the software action called an
interrupt service routine (ISR). The foreground thread is defined as the execution of
the main program, and the background threads are executions of the ISRs.

Consider the analogy of a farmer plowing a field. Plowing the field is like executing
the main program in the foreground. You start plowing at one end of the field and
travel back and forth across the land and basically plowing one parcel of land at a
time in a sequential fashion. You might drive the tractor back to the barn, get some
gas, then drive back to the field and continue plowing where you left off, which is
analogous to a function call. Similarly, because of rocks or stumps you might have to
plow a section over and over to get it right, which is analogous to a program loop.
Even though you don’t always drive in a straight line, you drive the tractor in a
logical and well-defined sequence. How you drive the tractor while plowing the
field is one process, defined by one algorithm. Conversely, if the chickens escape
from their coop, you shut off the tractor, and race over to the coop. This is a real-time
event, because you have a limited time to collect the chickens before they are lost or
injured. When you are finished putting all the chickens back in the pen and fixing their
fence, you get back on the tractor and continue plowing the field where you left off.
The squawking of the chickens is analogous to hardware trigger and the chicken
collection is like executing the ISR. Interrupts are hardware events that require
software action. Understanding interrupts is critical for both designing a real-time
operating system, as well as using one.

Continuing the farmer analogy, the farmer must perform many tasks, such as buying
seed, plowing the field, planting the seed, harvesting the grain, and selling the grain.
There may be many fields to manage, and each field may be in a different stage. If
there is one farmer, he or she can only do one task at a time. He or she must develop
a schedule so all tasks are completed in an effective manner. This scheduling is like

the one in a real-time operating system (RTOS). The RTOS is given many foreground
tasks to perform and the rate to execute them. To be effective and efficient, just like
the farmer, the RTOS needs to know how long each task requires to run, and what the
relative priority is between tasks. The farm with many workers is analogous to an
RTOS running on multiple processors. In this case, synchronization and
communication are critical parts of the solution.

3.1.3. Introduction to threads

A program is a sequence of software commands connected together to affect a
desired outcome. Programs perform input, make decisions, record information, and
generate outputs. Programmers generate software using an editor with a keyboard and
display. Programs are compiled and downloaded into the flash ROM of our
microcontroller. Programs themselves are static and lifeless entities. However, when
we apply power to the microcontroller, the processor executes the machine code of
the programs in the ROM. A thread is defined as either execution itself or the action
caused by the execution. Either way we see that threads are dynamic, and thus it is
threads that breathe life into our systems. A thread therefore is a program in action,
accordingly, in addition to the program (instructions) to execute it also has the state
of the program. The thread state is captured by the current contents of the registers
and the local variables, both of which are stored on the thread’s stack.

For example, Figure 3.3 shows a system with four programs. We define Threadl as
the execution of Taskl. Another name for thread is light-weight process. Multiple
threads typically cooperate to implement the desired functionality of the system. We
could use hardware-triggered interrupts to create multiple threads. However, in this
class the RTOS will create the multiple threads that make up our system. Figure 3.3
shows the threads having separate programs. All threads do have a program to
execute, but it is acceptable for multiple threads to run the same program. Since each
thread has a separate stack, its local variables are private, which means it alone has
access to its own local variables.

gp =

be o
PSE :
P rogram
.

Figure 3.3. Each thread has its own registers and stack.

P rogram

o

It looks like in Figure 3.3 that threads have physically separate registers. The stacks

will be physically separate, but in reality there is just one set of registers that is
switched between the threads as the thread scheduler operates. The thread switcher
will suspend one thread by pushing all the registers on its stack, saving the SP,
changing the SP to point to the stack of the next thread to run, then pulling all the
registers off the new stack.

Since threads interact for a common goal, they do share resources such as global
memory, and I/O devices (Figure 3.4). However, to reduce complexity it is the best
to limit the amount of sharing. It is better to use a well-controlled means to pass data

and synchronize threads.
Thread] Thread2 Thread3
(pt . b pt +— (" pt
\ ‘_)
10 port ﬁ:-ﬁbﬂi

Figure 3.4. Threads share global memory and I/0 ports.

Some simple examples of multiple threads are the interrupt-driven I/O. In each of
these examples, the background thread (interrupt service routine) executes when the
I/O device is done performing the required I/O operation. A single foreground thread
(main program) executes during the times when no interrupts are needed. A global
data structure is used to communicate between threads. Notice that data stored on the
stack or in registers by one thread are not accessible by another thread.

Checkpoint 3.1: What is the difference between a program and a thread?

Checkpoint 3.2: Why can’t threads pass parameters to each other on the stack
like regular functions do? How do threads communicate with each other?

One way to classify threads is according to how often they are run. A periodic
thread is one that runs at a fixed time interval. ADC sampling, DAC outputs, and
digital control are examples of periodic tasks. The RTOS is responsible for
scheduling periodic threads. An aperiodic thread is one that runs often, but the times
when it needs run cannot be anticipated. Threads that are attached to human input will
fall into this category. A sporadic thread is one that runs infrequently or maybe never
at all, but is often of great importance. Examples of sporadic threads that have real-
time requirements include power failure, CO warning, temperature overheating, and
computer hardware faults.

A second way to classify threads is according to the activity that triggers the thread’s
execution. An event thread is triggered by an external event like the hardware timer,
input device or output device. The external event creates the thread, the thread
services that need, and then the thread is dismissed. A typical event thread is the
execution of an interrupt service routine. A periodic thread can be classified as an
event thread triggered by a timer. A main thread on the other hand is like a main

program, it runs for a long time performing tasks like input, storage, decisions, and
output. Main threads can be thought of as cycle-stealing threads because they run
when there are no events to service.

3.1.4. States of a main thread

A main thread can be in one of four states, as shown in Figure 3.5. The arrows in
Figure 3.5 describe the condition causing the thread to change states. In this chapter,
threads oscillate between the active and run states. To simplify the OS, we will
create all main threads at initialization and these main threads will never block,
sleep, or die.

A main thread is in the run state if it currently executing. On a microcontroller with a
single processor like the Cortex M, there can be at most one thread running at a time.
As computational requirements for an embedded system rise, we can expect
microcontrollers in the future to have multicore processors, like the ones seen now in
our desktop PC. For a multicore processor, there can be multiple threads in the run
state.

A main thread is in the active state if it ready to run but waiting for its turn. A simple
OS does not have sleeping or blocking; there will be one running thread and the other
threads are active.

Sometimes a main thread needs to wait for a fixed amount of time. The OS will not
run a main thread if it is in the sleep state. After the prescribed amount of time, the
OS will make the thread active again. Sleeping would be used for tasks that are not
real-time. Sleeping will be presented later in Section 4.4.

A main thread is in the blocked state when it is waiting for some external event like
input/output (keyboard input available, printer ready, I/O device available.) We will
implement blocking in the next chapter.

another tiread
alls05_Signa

ClS_hd%i‘n read

Figure 3.5. A main thread can be in one of four states.

calls 05_Suspend
tim e slice isover, 05 Bkes contro | aw ay

calls0S Kil |

D ead

The OS manages the execution of threads. An important situation to manage is when a
thread is stuck and cannot make progress. For example, a thread may need data from
another thread, a thread may be waiting on I/O, or a thread may need to wait for a
specified amount of time. To be more efficient, when a thread is waiting because it

cannot make progress it will block, meaning it will not run until the time at which it
can make progress. Similarly, to improve efficiency, when a thread needs to wait for
a prescribed amount of time, it will sleep, meaning it will not run until the elapsed
wait time has passed. Blocking and sleeping will free up the processor to perform
actual work. A simple OS without blocking and sleeping must simply spin while the
thread is waiting on an event. A thread that is spinning remains in the active state, and
wastes its entire time slice checking the condition over and over.

3.1.5. Real-time systems

Designing a RTOS requires many decisions to be made. Therefore, it is important to
have performance criteria with which to evaluate one alternative to another. A
common performance criterion used in Real-Time Systems is Deadline, a timing
constraint with many definitions in the literature. In this class we will define specific
timing constraints that apply to design of embedded systems. Bandwidth is defined as
the information rate. It specifies the amount of actual data per unit time that are input,
processed, or output.

In a real-time system operations performed must meet logical correctness and also be
completed on time (i.e., meet timing constraints). Non real-time systems require
logical correctness but have no timing requirements. The tolerance of a real-time
system towards failure to meet the timing requirements determines whether we
classify it as hard real time, firm real time, or soft real time. If missing a timing
constraint is unacceptable, we call it a hard real-time system. In a firm real-time
system, the value of an operation completed past its timing constraint is considered
zero but not harmful. In a soft real-time system, the value of an operation diminishes
the further it completes after the timing constraint.

Hard real time: For example, if the pressure inside a module in a chemical plant
rises above a threshold, failure to respond through an automated corrective operation
of opening a pressure valve within a timing constraint can be catastrophic. The
system managing the operations in such a scenario is a hard real-time operating
system.

Firm real time: An example of a firm real-time system is a streaming multimedia
communication system where failure to render one video frame on time in a 30
frames per second stream can be perceived as a loss of quality but does not affect the
user experience significantly.

Soft real time: An example of a soft real-time system is an automated stock trading
system where excessive delay in formulating an automated response to buy/sell may
diminish the monetary value one can gain from the trade. The delivery of email is
usually soft real time, because the value of the information reduces the longer it
takes.

Observation: Please understand that the world has not reached consensus of the

definitions of hard, firm and soft. Rather than classify names to the real-time
system, think of this issue is as a continuum. There is a continuous progression of
the consequence of missing a deadline: catastrophic (hard) — zero effect and no
harm (firm) — still some good can come from finishing after deadline (soft).
Similarly: there is a continuous progression for the value of missing a deadline:
negative value (hard), zero value (firm) and some but diminishing positive value
(soft).

To better understand real-time systems, timing constraints can be classified into two
types. The first type is event-response. The event is a software or hardware trigger
that signifies something important has occurred and must be handled. The response is
the system’s reaction to that event. Examples of event-response tasks include:

Operator pushes a button -> Software performs action

Temperature is too hot -> Turn on cooling fan
Supply voltage is too low -> Activate back up battery
Input device has new data -> Read and process input data
Output device is idle -> Perform another output

The specific timing constraint for this type of system is called latency, which is the
time between the event and the completion of the response. Let E; be the times that

events occur in our system, and T be the times these events are serviced. Latency is
defined as

A=T—-Efori=0,1,2,...,n-1

where n is the number of measurements collected. The timing constraint is the
maximum value for latency, A, that is acceptable. In most cases, the system will not

be able to anticipate the event, so latency for this type of system will always be
positive.
A second type of timing constraint occurs with prescheduled tasks. For example, we
could schedule a task to run periodically. If we define f, as the desired frequency of a
periodic task, then the desired period is At = 1/f.. Examples of prescheduled tasks
include:

Every 30 seconds -> Software checks for smoke

At 22 kHz -> Output new data to DACs creating sound

At 1 week, 1 month, 1 year-> Perform system maintenance

At 300 Hz -> Input new data from ADC measuring EKG
At 6 months of service -> Deactivate system because it is at
end of life

For periodic, the desired time to run the i’th periodic instance of the task is given as

D, =T, +i*Atfori =0, 1,2, ..., n-1

where T, is the starting time for the system. For prescheduled tasks, we define jitter

as the difference between desired time a task is supposed to run and the actual time it
is run. Let T, be the actual times the task is run, so in this case jitter is

6t.=T,—D, fori=0,1,2,...,n-1

Notice for prescheduled tasks the jitter can be positive (late) or negative (early), see
Figure 3.6. For some situations running the task early is acceptable but being late is
unacceptable. If T have the newspaper delivered to my door each morning, I do not
care how early the paper comes, as long as it arrives before I wake up. In this case,
the timing constraint is the maximum value for jitter 6t, that is acceptable.

_}‘% clual
Desired —]~
Ao
Actual tmes T, Q
Voliage - —u?{/ FTrue Input
AT 'q
A TN [
L]
* Tine

Desired tines, D,

Figure 3.6. Effect of jitter on sampled data. True input is a sinusoidal. Blue
lines depict when the voltage should be sampled. Red lines depict when the
voltage was actually sampled. There is time jitter such that every other
sample is early and every other sample is late. In the zoomed in portion this
sample is late; the consequence of being late is the actual sampled data is
lowered than the correct value. Sampling jitter causes noise in the data.

On the other hand, for some situations, it is unacceptable to be early and it is
acceptable to be late. For example, with tasks involving DACs and ADCs, as shown
in Figure 3.6, we can correlate voltage error in the signal to time jitter. If dV/dt is the
slew rate (slope) of the voltage signal, then the voltage error (noise) caused by jitter
is

6V.=6t, *dv/dt fori=0,1,2,...,n-1

The error occurs because we typically store sampled data in a simple array and
assume it was sampled at f, = 1/At. L.e., we do not record exactly when the sample

was actually performed.

For cases where the starting time, T,, does not matter, we can simplify the analysis by
looking at time differences between when the task is run, AT, = (T, — T,,). In this
case, jitter is simply

ot =AT,-At fori=0,1,2,...,n-1

We will classify a system with periodic tasks as real-time if the jitter is always less
than a small but acceptable value. In other words, the software task always meets its
timing constraint. More specifically, we must be able to place an upper bound, k, on
the time jitter.

-k < 6t,< +k forall i

For a hard real-time system, we are interested in the worst case. So we measure

Min = minimum &¢, for all measurements i
Max = maximum 6t, for all measurements i

Jitter = Max - Min = (maximum &t, — minimum &)

In most situations, the time jitter will be dominated by the time the microcontroller
runs with interrupts disabled. For lower priority interrupts, it is also affected by the
length and frequency of higher priority interrupt requests.

To further clarify this situation, we must clearly identify the times at which the T;

1

measurements are collected. We could define this time as when the task is started or
when the task is completed. When sampling an ADC, the important time is when the
ADC sampling is started. More specifically, it is the time the ADC sample/hold
module is changed from sample to hold mode. This is because the ADC captures or
latches the analog input at the moment the sample/hold is set to hold. For tasks with a
DAC, the important time is when the DAC is updated. More specifically, it is the
time the DAC is told to update its output voltage.

In this class, we use the term real-time and hard real-time to mean the same thing.
Real-time for event-response tasks means the system has small and bounded latency.
Real-time for periodic tasks means the system has small and bounded jitter. In other
words, a real-time operating system (RTOS) is one that guarantees that the difference
between when tasks are supposed to run and when they actually are run is short and
bounded.

Checkpoint 3.3: Consider a task that inputs data from the serial port. When new
data arrives the serial port triggers an event. When the software services that
event, it reads and processes the new data. The serial port has hardware to store
incoming data (2 on the MSP432, 16 on the TM4C123) such that if the buffer is
full and more data arrives, the new data is lost. Is this system hard, firm, or soft
real time?

Checkpoint 3.4: Consider a hearing aid that inputs sounds from a microphone,
manipulates the sound data, and then outputs the data to a speaker. The system
usually has small and bounded jitter, but occasionally other tasks in the hearing
aid cause some data to be late, causing a noise pulse on the speaker. Is this system
hard, firm or soft real time?

Checkpoint 3.5: Consider a task that outputs data to a printer. When the printer is
idle the printer triggers an event. When the software services that event, it sends
more data to the printer. Is this system hard, firm or soft real time?

3.1.6. Producer/Consumer problem using a mailbox

One of the classic problems our operating system must handle is communication
between threads. We define a producer thread as one that creates or produces data. A
consumer thread is a thread that consumes (and removes) data. The communication
mechanism we will use in this chapter is a mailbox (Figure 3.7). The mailbox has a
Data field and a Status field. Mailboxes will be statically allocated global
structures. Because they are global variables, it means they will exist permanently
and can be carefully shared by more than one task. The advantage of using a structure
like a mailbox for a data flow problem is that we can decouple the producer and
consumer threads. In the next chapter, we will replace the mailbox with a first in first
one (FIFO) queue. The use of a FIFO can significantly improve system performance.

Source thread 3 nk thread
Producer Consum er

Figure 3.7. The mailbox is used to send data from the producer thread to the
consumer thread.

There are many producer/consumer applications in the field of embedded systems. In
Table 3.1 the threads on the left are producers that create data, while the threads on
the right are consumers that process data.

Source/Producer Sink/Consumer

Keyboard input Program that interprets

Software that has data | Printer output

Software sends | Software receives

message message

Microphone and ADC | Software that saves
sound da