

	

EMBEDDED 	 SYSTEMS :

REAL-TIME	OPERATING	SYSTEMS	FOR
ARM	CORTEX-M	MICROCONTROLLERS

	

	

	

Volume	3
Fourth	Edition,
January	2017

	

	

	

	

	

Jonathan	W.	Valvano

Fourth	edition
January	2017

	
ARM	and	uVision	are	registered	trademarks	of	ARM	Limited.
Cortex	and	Keil	are	trademarks	of	ARM	Limited.
Stellaris	and	Tiva	are	registered	trademarks	Texas	Instruments.
Code	Composer	Studio	is	a	trademark	of	Texas	Instruments.
All	other	product	or	service	names	mentioned	herein	are	the	trademarks	of	their	respective
owners.

	
In	order	to	reduce	costs,	this	college	textbook	has	been	self-published.	For	more
information	about	my	classes,	my	research,	and	my	books,	see
http://users.ece.utexas.edu/~valvano/

	
For	corrections	and	comments,	please	contact	me	at:	valvano@mail.utexas.edu.
Please	cite	this	book	as:	J.	W.	Valvano,	Embedded	Systems:	Real-Time	Operating
Systems	for	ARM® Cortex -M	Microcontrollers,	Volume	3,
http://users.ece.utexas.edu/~valvano/,	ISBN:	978-1466468863.
	
Copyright	©	2017	Jonathan	W.	Valvano
All	rights	reserved.	No	part	of	this	work	covered	by	the	copyright	herein	may	be
reproduced,	transmitted,	stored,	or	used	in	any	form	or	by	any	means	graphic,
electronic,	or	mechanical,	including	but	not	limited	to	photocopying,	recording,
scanning,	digitizing,	taping,	web	distribution,	information	networks,	or
information	storage	and	retrieval,	except	as	permitted	under	Section	107	or	108	of
the	1976	United	States	Copyright	Act,	without	the	prior	written	permission	of	the
publisher.
ISBN-13:	978-1466468863
ISBN-10:	1466468866

	

Table	of	Contents
	

Preface	to	The	Fourth	Edition

Preface	to	Volume	3

Acknowledgements

1.	Computer	Architecture

1.1.	Introduction	to	Real-Time	Operating	Systems
1.1.1.	Real-time	operating	systems
1.1.2.	Embedded	Systems

1.2.	Computer	Architecture
1.2.1.	Computers,	processors,	and	microcontrollers
1.2.2.	Memory

1.3.	Cortex-M	Processor	Architecture
1.3.1.	Registers
1.3.2.	Stack
1.3.3.	Operating	modes
1.3.4.	Reset
1.3.5.	Clock	system

1.4.	Texas	Instruments	Cortex-M	Microcontrollers
1.4.1.	Introduction	to	I/O
1.4.2.	Texas	Instruments	TM4C123	LaunchPad	I/O	pins
1.4.3.	Texas	Instruments	TM4C1294	Connected	LaunchPad	I/O	pins
1.4.4.	Texas	Instruments	MSP432	LaunchPad	I/O	pins
1.4.5.	Interfacing	to	a	LaunchPad

1.5.	ARM	Cortex-M	Assembly	Language
1.5.1.	Syntax
1.5.2.	Addressing	modes	and	operands
1.5.3.	List	of	twelve	instructions
1.5.4.	Accessing	memory

1.5.5.	Functions
1.5.6.	ARM	Cortex	Microcontroller	Software	Interface	Standard
1.5.7.	Conditional	execution
1.5.8.	Stack	usage
1.5.9.	Floating-point	math
1.5.10.	Keil	assembler	directives

1.6.	Pointers	in	C
1.6.1.	Pointers
1.6.2.	Arrays
1.6.3.	Linked	lists

1.7.	Memory	Management
1.7.1.	Use	of	the	heap
1.7.2.	Simple	fixed-size	heap
1.7.3.	Memory	manager:	malloc	and	free

1.8.	Introduction	to	debugging
1.9.	Exercises

2.	Microcontroller	Input/Output

2.1.	Parallel	I/O
2.1.1.	TM4C	I/O	programming
2.1.2.	MSP432	I/O	programming

2.2.	Interrupts
2.2.1.	NVIC
2.2.2.	SysTick	periodic	interrupts
2.2.3.	Periodic	timer	interrupts
2.2.4.	Critical	sections
2.2.5.	Executing	periodic	tasks
2.2.6.	Software	interrupts

2.3.	First	in	First	Out	(FIFO)	Queues
2.4.	Edge-triggered	Interrupts
2.4.1.	Edge-triggered	interrupts	on	the	TM4C123
2.4.2.	Edge-triggered	Interrupts	on	the	MSP432

2.5.	UART	Interface
2.5.1.	Transmitting	in	asynchronous	mode
2.5.2.	Receiving	in	asynchronous	mode
2.5.3.	Interrupt-driven	UART	on	the	TM4C123
2.5.4.	Interrupt-driven	UART	on	the	MSP432

2.6.	Synchronous	Transmission	and	Receiving	using	the	SSI
2.7.	Input	Capture	or	Input	Edge	Time	Mode
2.7.1.	Basic	principles
2.7.2.	Period	measurement	on	the	TM4C123
2.7.3.	Period	measurement	on	the	MSP432
2.7.4.	Pulse	width	measurement
2.7.5.	Ultrasonic	distance	measurement

2.8.	Pulse	Width	Modulation
2.8.1.	Pulse	width	modulation	on	the	TM4C123
2.8.2.	Pulse	width	modulation	on	the	MSP432

2.9.	Analog	Output
2.10.	Analog	Input
2.10.1.	ADC	Parameters
2.10.2.	Internal	ADC	on	TM4C
2.10.3.	Internal	ADC	on	MSP432
2.10.4.	IR	distance	measurement

2.11.	OS	Considerations	for	I/O	Devices
2.11.1	Board	Support	Package
2.11.2	Path	Expression

2.12.	Debugging
2.12.1.	Functional	Debugging
2.12.2.	Performance	Debugging	(FFT	analysis)
2.12.3.	Debugging	heartbeat
2.12.4.	Profiling

2.13.	Exercises
3.	Thread	Management

3.1.	Introduction	to	RTOS
3.1.1.	Motivation
3.1.2.	Parallel,	distributed	and	concurrent	programming
3.1.3.	Introduction	to	threads
3.1.4.	States	of	a	main	thread
3.1.5.	Real-time	systems
3.1.6.	Producer/Consumer	problem	using	a	mailbox
3.1.7.	Scheduler

3.2.	Function	pointers
3.3.	Thread	Management
3.3.1.	Two	types	of	threads
3.3.2.	Thread	Control	Block	(TCB)
3.3.3.	Creation	of	threads
3.3.4.	Launching	the	OS
3.3.5.	Switching	threads
3.3.6.	Profiling	the	OS
3.3.7.	Linking	assembly	to	C
3.3.8.	Periodic	tasks

3.4.	Semaphores
3.5.	Thread	Synchronization
3.5.1.	Resource	sharing,	nonreentrant	code	or	mutual	exclusion
3.5.2.	Condition	variable
3.5.3.	Thread	communication	between	two	threads	using	a	mailbox

3.6.	Process	Management
3.7.	Dynamic	loading	and	linking
3.8.	Exercises

4.	Time	Management

4.1.	Cooperation
4.1.1.	Spin-lock	semaphore	implementation	with	cooperation
4.1.2.	Cooperative	Scheduler

4.2.	Blocking	semaphores

4.2.1.	The	need	for	blocking
4.2.2.	The	blocked	state
4.2.3.	Implementation
4.2.4.	Thread	rendezvous

4.3.	First	In	First	Out	Queue
4.3.1.	Producer/Consumer	problem	using	a	FIFO
4.3.2.	Little’s	Theorem
4.3.3.	FIFO	implementation
4.3.4.	Three-semaphore	FIFO	implementation
4.3.5.	Two-semaphore	FIFO	implementation
4.3.6.	One-semaphore	FIFO	implementation
4.3.7.	Kahn	Process	Networks

4.4.	Thread	sleeping
4.5.	Deadlocks
4.6.	Monitors
4.7.	Fixed	Scheduling
4.8.	Exercises

5.	Real-time	Systems

5.1.	Data	Acquisition	Systems
5.1.1.	Approach
5.1.2.	Performance	Metrics
5.1.3.	Audio	Input/Output

5.2.	Priority	scheduler
5.2.1.	Implementation
5.2.2.	Multi-level	Feedback	Queue
5.2.3.	Starvation	and	aging
5.2.4.	Priority	inversion	and	inheritance	on	Mars	Pathfinder

5.3.	Debouncing	a	switch
5.3.1.	Approach	to	debouncing
5.3.2.	Debouncing	a	switch	on	TM4C123
5.3.3.	Debouncing	a	switch	on	MSP432

5.4.	Running	event	threads	as	high	priority	main	threads
5.5.	Available	RTOS
5.5.1.	Micrium	uC/OS-II
5.5.2.	Texas	Instruments	RTOS
5.5.3.	ARM	RTX	Real-Time	Operating	System
5.5.4.	FreeRTOS
5.5.5.	Other	Real	Time	Operating	Systems

5.6.	Exercises
6.	Digital	Signal	Processing

6.1.	Basic	Principles
6.2.	Multiple	Access	Circular	Queue
6.3.	Using	the	Z-Transform	to	Derive	Filter	Response
6.4.	IIR	Filter	Design	Using	the	Pole-Zero	Plot
6.5.	Discrete	Fourier	Transform
6.6.	FIR	Filter	Design
6.7.	Direct-Form	Implementations.
6.8.	Exercises

7.	High-Speed	Interfacing

7.1.	The	Need	for	Speed
7.2.	High-Speed	I/O	Applications
7.3.	General	Approaches	to	High-Speed	Interfaces
7.3.1.	Hardware	FIFO
7.3.2.	Dual	Port	Memory
7.3.3.	Bank-Switched	Memory

7.4.	Fundamental	Approach	to	DMA
7.4.1.	DMA	Cycles
7.4.2.	DMA	Initiation
7.4.3.	Burst	versus	Single	Cycle	DMA
7.4.4.	Single	Address	versus	Dual	Address	DMA
7.4.5.	DMA	programming	on	the	TM4C123

7.6.	Exercises

8.	File	system	management

8.1.	Performance	Metrics
8.1.1.	Usage
8.1.2.	Specifications
8.1.3.	Fragmentation

8.2.	File	System	Allocation
8.2.1.	Contiguous	allocation
8.2.2.	Linked	allocation
8.2.3.	Indexed	allocation
8.2.4.	File	allocation	table	(FAT)

8.3.	Solid	State	Disk
8.3.1.	Flash	memory
8.3.2.	Flash	device	driver
8.3.3.	eDisk	device	driver
8.3.4.	Secure	digital	card	interface

8.4.	Simple	File	System
8.4.1.	Directory
8.4.2.	Allocation
8.4.3.	Free	space	management

8.5.	Write-once	File	System
8.5.1.	Usage
8.5.2.	Allocation
8.5.3.	Directory
8.5.4.	Append
8.5.5.	Free	space	management

8.6.	Readers-Writers	Problem
8.7.	Exercises

9.	Communication	Systems

9.1.	Fundamentals
9.1.1.	The	network
9.1.2.	Physical	Channel

9.1.3.	Wireless	Communication
9.1.4.	Radio

9.2.	Controller	Area	Network	(CAN)
9.2.1.	The	Fundamentals	of	CAN
9.2.2.	Texas	Instruments	TM4C	CAN

9.3.	Embedded	Internet
9.3.1.	Abstraction
9.3.2.	Message	Protocols
9.3.3.	Ethernet	Physical	Layer
9.3.4.	Ethernet	on	the	TM4C1294

9.4.	Internet	of	Things
9.4.1.	Basic	Concepts
9.4.2.	UDP	and	TCP	Packets
9.4.3.	Web	server
9.4.4.	UDP	communication	over	WiFi
9.4.5.	Other	CC3100	Applications

9.4.	Bluetooth	Fundamentals
9.4.1.	Bluetooth	Protocol	Stack
9.4.2.	Client-server	Paradigm

9.5.	CC2650	Solutions
9.5.1.	CC2650	Microcontroller
9.5.2.	Single	Chip	Solution,	CC2650	LaunchPad

9.6.	Network	Processor	Interface	(NPI)
9.6.1.	Overview
9.6.2.	Services	and	Characteristics
9.6.3.	Advertising
9.6.4.	Read	and	Write	Indications

9.7.	Application	Layer	Protocols	for	Embedded	Systems
9.7.1.	CoAP
9.7.2	MQTT

9.8.	Exercises

10.	Robotic	Systems

10.1.	Introduction	to	Digital	Control	Systems
10.2.	Binary	Actuators
10.2.1.	Electrical	Interface
10.2.2.	DC	Motor	Interface	with	PWM

10.3.	Sensors
10.4.	Odometry
10.5.	Simple	Closed-Loop	Control	Systems.
10.6.	PID	Controllers
10.6.1.	General	Approach	to	a	PID	Controller
10.6.2.	Design	Process	for	a	PID	Controller

10.7.	Fuzzy	Logic	Control
10.8.	Exercises

Appendix	1.	Glossary

Appendix	2.	Solutions	to	Checkpoints

Reference	Material
	

Preface	to	The	Fourth	Edition
There	are	two	major	additions	to	this	fourth	edition.	First,	this	version	supports	both
the	TM4C	and	the	MSP432	architectures.	The	material	for	the	LM3S	series	has	been
removed.	 Volumes	 1	 and	 2	 focused	 on	 the	 hardware	 and	 software	 aspects	 I/O
interfacing.	In	this	volume	we	provide	a	set	of	low	level	device	drivers	allowing	this
volume	 to	 focus	 on	 real-time	 operating	 systems,	 digital	 signal	 processing,	 control
systems,	 and	 the	 internet	 of	 things.	 The	 second	 addition	 is	 Bluetooth	 Low	 Energy
(BLE),	 which	will	 be	 implemented	 by	 interfacing	 a	 CC2650,	 in	 a	 similar	manner
with	 which	 IEEE802.11b	 wifi	 is	 implemented	 in	 this	 book	 using	 the	 CC3100.
Running	on	the	CC2650	will	be	an	application	programmer	interface	called	Simple
Network	 Processor	 (SNP).	 SNP	 allows	 the	 TM4C123/MSP432	microcontroller	 to
implement	 BLE	 using	 a	 simple	 set	 of	 UART	 messaging.	 Off-loading	 the	 BLE
functions	to	the	CC2650	allows	the	target	microcontroller	to	implement	system	level
functions	without	 the	 burden	 of	 satisfying	 the	 real-time	 communication	 required	 by
Bluetooth.

	

Preface	to	Volume	3
Embedded	 systems	 are	 a	 ubiquitous	 component	 of	 our	 everyday	 lives.	We	 interact
with	hundreds	of	 tiny	 computers	 every	day	 that	 are	 embedded	 into	our	houses,	 our
cars,	our	toys,	and	our	work.	As	our	world	has	become	more	complex,	so	have	the
capabilities	of	the	microcontrollers	embedded	into	our	devices.	The	ARM	Cortex-M
family	 represents	 the	 new	 class	 of	microcontrollers	 much	more	 powerful	 than	 the
devices	 available	 ten	years	 ago.	The	purpose	of	 this	 book	 is	 to	 present	 the	design
methodology	 to	 train	 young	 engineers	 to	 understand	 the	 basic	 building	 blocks	 that
comprise	 devices	 like	 a	 cell	 phone,	 an	MP3	player,	 a	 pacemaker,	 antilock	 brakes,
and	an	engine	controller.

This	 book	 is	 the	 third	 in	 a	 series	 of	 three	 books	 that	 teach	 the	 fundamentals	 of
embedded	systems	as	applied	to	the	ARM	Cortex-M	family	of	microcontrollers.	This
third	 volume	 is	 primarily	 written	 for	 senior	 undergraduate	 or	 first-year	 graduate
electrical	and	computer	engineering	students.	It	could	also	be	used	for	professionals
wishing	to	design	or	deploy	a	real-time	operating	system	onto	an	ARM	platform.	The
first	book	Embedded	Systems:	Introduction	to	ARM	Cortex-M	Microcontrollers	is	an
introduction	 to	 computers	 and	 interfacing	 focusing	 on	 assembly	 language	 and	 C
programming.	The	second	book	Embedded	Systems:	Real-Time	Interfacing	to	ARM
Cortex-M	 Microcontrollers	 focuses	 on	 interfacing	 and	 the	 design	 of	 embedded
systems.	This	 third	book	 is	an	advanced	book	 focusing	on	operating	systems,	high-
speed	interfacing,	control	systems,	and	robotics.		

An	embedded	 system	 is	 a	 system	 that	performs	a	 specific	 task	and	has	 a	 computer
embedded	 inside.	 A	 system	 is	 comprised	 of	 components	 and	 interfaces	 connected
together	 for	 a	 common	 purpose.	 This	 book	 presents	 components,	 interfaces	 and
methodologies	for	building	systems.	Specific	topics	include	microcontrollers,	design,
verification,	hardware/software	synchronization,	interfacing	devices	to	the	computer,
timing	diagrams,	real-time	operating	systems,	data	collection	and	processing,	motor
control,	analog	filters,	digital	filters,	and	real-time	signal	processing.

In	 general,	 the	 area	 of	 embedded	 systems	 is	 an	 important	 and	 growing	 discipline
within	 electrical	 and	 computer	 engineering.	 In	 the	 past,	 the	 educational	 market	 of
embedded	systems	has	been	dominated	by	simple	microcontrollers	like	the	PIC,	the
9S12,	and	 the	8051.	This	 is	because	of	 their	market	share,	 low	cost,	and	historical
dominance.	However,	as	problems	become	more	complex,	so	must	 the	systems	that
solve	 them.	 A	 number	 of	 embedded	 system	 paradigms	 must	 shift	 in	 order	 to
accommodate	this	growth	in	complexity.	First,	the	number	of	calculations	per	second
will	 increase	 from	 millions/sec	 to	 billions/sec.	 Similarly,	 the	 number	 of	 lines	 of
software	code	will	also	 increase	 from	 thousands	 to	millions.	Thirdly,	 systems	will
involve	multiple	microcontrollers	 supporting	many	simultaneous	operations.	Lastly,
the	need	for	system	verification	will	continue	to	grow	as	these	systems	are	deployed
into	safety	critical	applications.	These	changes	are	more	than	a	simple	growth	in	size
and	 bandwidth.	 These	 systems	 must	 employ	 parallel	 programming,	 high-speed
synchronization,	 real-time	operating	systems,	 fault	 tolerant	design,	priority	 interrupt

handling,	and	networking.	Consequently,	it	will	be	important	to	provide	our	students
with	 these	 types	 of	 design	 experiences.	 The	 ARM	 platform	 is	 both	 low	 cost	 and
provides	 the	 high	 performance	 features	 required	 in	 future	 embedded	 systems.
Although	 the	ARM	market	 share	 is	 large	 and	will	 continue	 to	 grow.	 Furthermore,
students	trained	on	the	ARM	will	be	equipped	to	design	systems	across	the	complete
spectrum	from	simple	 to	complex.	The	purpose	of	writing	 these	 three	books	at	 this
time	is	to	bring	engineering	education	into	the	21st	century.

This	 book	 employs	many	 approaches	 to	 learning.	 It	will	 not	 include	 an	 exhaustive
recapitulation	 of	 the	 information	 in	 data	 sheets.	 First,	 it	 begins	 with	 basic
fundamentals,	which	allows	the	reader	to	solve	new	problems	with	new	technology.
Second,	the	book	presents	many	detailed	design	examples.	These	examples	illustrate
the	process	of	design.	There	are	multiple	structural	components	that	assist	 learning.
Checkpoints,	with	answers	in	the	back,	are	short	easy	to	answer	questions	providing
immediate	 feedback	 while	 reading.	 Homework	 problems,	 which	 typically	 are
simpler	than	labs,	provide	more	learning	opportunities.	The	book	includes	an	index
and	 a	 glossary	 so	 that	 information	 can	 be	 searched.	 The	 most	 important	 learning
experiences	 in	 a	 class	 like	 this	 are	 of	 course	 the	 laboratories.	More	 detailed	 lab
descriptions	 are	 available	 on	 the	 web.	 Specifically	 for	 Volume	 1,	 look	 at	 the	 lab
assignments	 for	 EE319K.	 For	 Volume	 2	 refer	 to	 the	 EE445L	 labs,	 and	 for	 this
volume,	look	at	the	lab	assignments	for	EE445M/EE380L.6.

There	 is	 a	 web	 site	 accompanying	 this	 book
http://users.ece.utexas.edu/~valvano/arm.	Posted	here	are	ARM	Keil™	uVision®
and	 Texas	 Instruments	 Code	 Composer	 Studio™	 projects	 for	 each	 of	 the	 example
programs	in	the	book.	You	will	also	find	data	sheets	and	Excel	spreadsheets	relevant
to	the	material	in	this	book.

The	book	will	cover	embedded	systems	 for	ARM® 	Cortex™-M	microcontrollers
with	specific	details	on	the	TM4C123,	TM4C1294,	and	MSP432.	Most	of	the	topics
can	 be	 run	 on	 any	Texas	 Instruments	Cortex	M	microcontroller.	 In	 these	 books	 the
terms	MSP432	and	TM4C	will	refer	to	any	of	the	Texas	Instruments	ARM	Cortex-M
based	 microcontrollers.	 Although	 the	 solutions	 are	 specific	 for	 the	MSP432	 and
TM4C	families,	it	will	be	possible	to	use	these	books	for	other	ARM	derivatives.

Acknowledgements
I	owe	a	wonderful	debt	of	gratitude	to	Daniel	Valvano.	He	wrote	and	tested	most	of
the	software	examples	found	in	these	books.	Secondly,	he	maintains	the	example	web
site,	http://users.ece.utexas.edu/~valvano/arm.	Lastly,	 he	 meticulously	 proofread
this	manuscript.

Many	shared	experiences	contributed	to	the	development	of	this	book.	First	I	would
like	to	acknowledge	the	many	excellent	teaching	assistants	I	have	had	the	pleasure	of
working	 with.	 Some	 of	 these	 hard-working,	 underpaid	 warriors	 include	 Pankaj
Bishnoi,	 Rajeev	 Sethia,	 Adson	 da	 Rocha,	 Bao	 Hua,	 Raj	 Randeri,	 Santosh	 Jodh,
Naresh	Bhavaraju,	Ashutosh	Kulkarni,	Bryan	Stiles,	V.	Krishnamurthy,	Paul	Johnson,
Craig	Kochis,	Sean	Askew,	George	Panayi,	Jeehyun	Kim,	Vikram	Godbole,	Andres
Zambrano,	 Ann	 Meyer,	 Hyunjin	 Shin,	 Anand	 Rajan,	 Anil	 Kottam,	 Chia-ling	 Wei,
Jignesh	Shah,	Icaro	Santos,	David	Altman,	Nachiket	Kharalkar,	Robin	Tsang,	Byung
Geun	Jun,	John	Porterfield,		Daniel	Fernandez,		Deepak	Panwar,	Jacob	Egner,	Sandy
Hermawan,	Usman	Tariq,	Sterling	Wei,	Seil	Oh,	Antonius	Keddis,	Lev	Shuhatovich,
Glen	Rhodes,	Geoffrey	Luke,	Karthik	Sankar,	Tim	Van	Ruitenbeek,	Raffaele	Cetrulo,
Harshad	 Desai,	 Justin	 Capogna,	 Arindam	 Goswami,	 Jungho	 Jo,	 Mehmet	 Basoglu,
Kathryn	 Loeffler,	 Evgeni	 Krimer,	 Nachiappan	 Valliappan,	 Razik	 Ahmed,	 Sundeep
Korrapati,	 Song	 Zhang,	 	 Zahidul	Haq,	Matthew	Halpern,	 Cruz	Monrreal	 II,	 Pohan
Wu,	 Saugata	 Bhattacharyya,	 Dayo	 Lawal,	 Abhishek	 Agarwal,	 Sparsh	 Singhai,
Nagaraja	Revanna,	Mahesh	Srinivasan,	Victoria	Bill,	Alex	Hsu,	Dylan	Zika,	Chun-
Kai	Chang,	Zhao	Zheng,	Ce	Wei,	Kelsey	Taylor	Ball,	Brandon	Nguyen,	Turan	Vural,
Schuyler	 Christensen,	 Danny	 Vo,	 Justin	 Nguyen,	 Danial	 Rizvi,	 Armand	 Behroozi,
Vivian	Tan,	Anthony	Bauer,	 	 Jun	Qi	Lau,	Corey	Cormier,	Cody	Horton,	Youngchun
Kim,	 Ryan	 Chow,	 Cody	 Horton,	 Corey	 Cormier,	 and	 Dylan	 Zika.	 These	 teaching
assistants	have	contributed	greatly	to	the	contents	of	this	book	and	particularly	to	its
laboratory	 assignments.	 Since	 1981,	 I	 estimate	 I	 have	 taught	 embedded	 systems	 to
over	5000	students.	My	students	have	recharged	my	energy	each	semester	with	their
enthusiasm,	dedication,	and	quest	for	knowledge.	I	have	decided	not	to	acknowledge
them	 all	 individually.	 However,	 they	 know	 I	 feel	 privileged	 to	 have	 had	 this
opportunity.

Next,	 I	appreciate	 the	patience	and	expertise	of	my	fellow	faculty	members	here	at
the	 University	 of	 Texas	 at	 Austin.	 From	 a	 personal	 perspective	 Dr.	 John	 Pearce
provided	much	 needed	 encouragement	 and	 support	 throughout	my	 career.	Over	 the
last	 few	 years,	 I	 have	 enjoyed	 teaching	 embedded	 systems	 with	 Drs.	 Ramesh
Yerraballi,	Mattan	Erez,	Andreas	Gerstlauer,	and	William	Bard.	Bill	has	contributed
to	both	the	excitement	and	substance	of	our	laboratory	based	on	this	book.	Many	of
the	suggestions	and	corrections	from	Chris	Shore	and	Drew	Barbier	of	ARM	about
Volume	1	applied	equally	to	this	volume.	Austin	Blackstone	created	and	debugged	the
Code	 Composer	 StudioTM	 versions	 of	 the	 example	 programs	 posted	 on	 the	 web.
Austin	 also	 taught	me	 how	 to	 run	 the	 CC3000	 and	CC3100	Wifi	 examples	 on	 the
LaunchPad.

Ramesh	Yerraballi	 and	 I	have	created	 two	MOOCs,	which	have	had	over	110,000
students,	 and	 delivered	 to	 110	 countries.	 The	 new	 material	 in	 this	 book	 was
developed	under	the	watchful	eye	of	Professor	Yerraballi.	It	has	been	an	honor	and
privilege	to	work	with	such	a	skilled	and	dedicated	educator.

Andreas	Gerstlauer	has	taught	a	course	based	on	this	book	multiple	times,	and	I	have
incorporated	many	of	his	 ideas	 into	 this	edition	of	 the	book.	Furthermore,	you	will
find	 a	 rich	 set	 of	 material	 if	 you	 search	 with	 these	 keywords	Gerstlauer	 RTOS
utexas.

Sincerely,	I	appreciate	the	valuable	lessons	of	character	and	commitment	taught	to	me
by	 my	 parents	 and	 grandparents.	 I	 recall	 how	 hard	 my	 parents	 and	 grandparents
worked	to	make	the	world	a	better	place	for	the	next	generation.	Most	significantly,	I
acknowledge	 the	 love,	patience	and	support	of	my	wife,	Barbara,	and	my	children,
Ben	Dan	 and	Liz.	 In	 particular,	Dan	 designed	 and	 tested	most	 of	 the	MSP432	 and
TM4C	software	presented	in	this	book.

By	 the	 grace	 of	 God,	 I	 am	 truly	 the	 happiest	 man	 on	 the	 planet,	 because	 I	 am
surrounded	by	these	fine	people.

Jonathan	W.	Valvano

Good	luck

1.	Computer	Architecture
	

Chapter	1	objectives	are	to:

•	Present	a	brief	review	of	computer	architecture

•	 Overview	 the	 ARM® Cortex™ -M	 processor	 including	 assembly
language

•	 Introduce	 the	 Texas	 Instruments	 MSP432/TM4C	 family	 of
microcontrollers

	
The	overall	objective	of	this	book	is	to	teach	the	design	of	real-time	operating
systems	 for	 embedded	 systems.	We	define	 a	 system	as	 real	 time	 if	 there	 is	 a
small	 and	bounded	delay	between	 the	 time	when	a	 task	 should	be	completed
and	when	it	is	actually	completed.	We	will	present	both	fundamental	principles
and	 practical	 solutions.	 Interfacing	 to	 the	 microcontroller	 was	 presented	 in
detail	 in	Volume	 2	 and	 reviewed	 in	 the	 first	 two	 chapters	 of	 this	 book.	 The
overlap	allows	this	book	to	stand	alone	as	a	text	to	teach	embedded	real	time
operating	systems.	This	first	chapter	will	review	the	architecture	of	the	Texas
Instruments	 MSP432/TM4C	 family	 of	 microcontrollers.	 When	 designing
operating	 systems,	 we	 need	 to	 understand	 the	 details	 of	 the	 architecture.	 In
particular,	we	must	perform	many	functions	in	assembly	language.	Furthermore,
managing	memory	will	require	an	intimate	understanding	of	how	the	processor
accesses	memory	at	the	most	basic	level.

	

1.1.	Introduction	to	Real-Time	Operating	Systems

1.1.1.	Real-time	operating	systems
A	 computer	 system	 has	 many	 types	 of	 resources	 such	 as	 memory,	 I/O,	 data,	 and
processors.	A	real-time	operating	system	 (RTOS)	 is	 software	 that	manages	 these
resources,	guaranteeing	all	timing	constraints	are	satisfied.	Figure	1.1	illustrates	the
relationship	between	hardware	and	software.	On	the	left	is	a	basic	system	without	an
operating	 system.	 Software	 is	 written	 by	 a	 single	 vendor	 for	 a	 specific
microcontroller.	As	the	system	becomes	more	complex	(middle	figure),	an	operating
system	facilitates	the	integration	of	software	from	multiple	vendors.	By	providing	a
hardware	 abstraction	 layer	 (HAL)	 an	 operating	 system	 simplifies	 porting
application	code	from	one	microcontroller	to	another.	In	order	to	provide	additional
processing	 power,	 embedded	 systems	 of	 the	 future	 will	 require	 multiple
microcontrollers,	processors	with	specialized	coprocessors	and/or	a	microcontroller
with	 multiple	 cores	 (right	 figure).	 Synchronization	 and	 assigning	 tasks	 across
distributed	 processors	 are	 important	 factors.	 As	 these	 systems	 become	 more
complex,	the	role	of	the	operating	system	will	be	increasingly	important.

Figure	1.1.	An	operating	system	is	a	software	layer	between	the	application
software	and	the	hardware.

	

The	RTOS	must	manage	resources	like	memory,	processor	and	I/O.	The	RTOS	will
guarantee	strict	timing	constraints	and	provide	reliable	operation.	The	RTOS	will
support	synchronization	and	communication	between	tasks.	As	complex	systems	are
built	the	RTOS	manages	the	integration	of	components.	Evolution	is	the	notion	of	a
system	 changing	 to	 improve	 performance,	 features	 and	 reliability.	 The	RTOS	must
manage	change.	When	designing	a	new	system,	it	is	good	design	practice	to	build	a
new	system	by	changing	an	existing	system.	The	notion	of	portability	 is	 the	ease	at
which	one	system	can	be	changed	or	adapted	to	create	another	system.

The	response	 time	 or	 latency	 is	 the	 delay	 from	 a	 request	 to	 the	 beginning	 of	 the
service	 of	 that	 request.	 There	 are	many	 definitions	 of	 bandwidth.	 In	 this	 book	we
define	bandwidth	as	 the	number	of	 information	bytes/sec	 that	can	be	 transferred	or

processed.	We	 can	 compare	 and	 contrast	 regular	 operating	 systems	with	 real-time
operating	systems.

Regular	OS Real-time	OS
Complex Simple
Best	effort Guaranteed	response
Fairness Strict	timing	constraints
Average	bandwidth Minimum	and	maximum

limits
Unknown	components Known	components
Unpredictable	behavior Predictable	behavior
Plug	and	play Upgradable

Table	1.1.	Comparison	of	regular	and	real-time	operating	systems.
From	Table	1.1	we	see	that	real-time	operating	systems	have	to	be	simple	so	they	may	be
predictable.	 While	 traditional	 operating	 systems	 gauge	 their	 performance	 in	 terms	 of
response	time	and	fairness,	real-time	operating	systems	target	strict	timing	constraints	and
upper,	 lower	 bounds	 on	 bandwidth.	One	 can	 expect	 to	 know	 all	 the	 components	 of	 the
system	at	design	time	and	component	changes	happen	much	more	infrequently.

Checkpoint	1.1:	What	does	real	time	mean?			

1.1.2.	Embedded	Systems
An	 embedded	 system	 is	 a	 smart	 device	 with	 a	 processor	 that	 has	 a	 special	 and
dedicated	 purpose.	 The	 user	 usually	 does	 not	 or	 cannot	 upgrade	 the
hardware/software	 or	 change	 what	 the	 system	 does.	 Real	 time	 means	 that	 the
embedded	 system	 must	 respond	 to	 critical	 events	 within	 a	 strictly	 defined	 time,
called	 the	 deadline.	 A	 guarantee	 to	 meet	 all	 deadlines	 can	 only	 be	 made	 if	 the
behavior	of	the	operating	system	can	be	predicted.	In	other	words	the	timing	must	be
deterministic.	There	are	five	types	of	software	functions	the	processor	can	perform	in
an	 embedded	 system.	 Similar	 to	 a	 general-purpose	 computer,	 it	 can	 perform
mathematical	 and/or	 data	 processing	 operations.	 It	 can	 analyze	 data	 and	 make
decisions	based	on	the	data.	A	second	type	involves	handling	and	managing	time:	as
an	 input	 (e.g.,	measure	period),	an	output	 (e.g.,	output	waveforms),	and	a	means	 to
synchronize	 tasks	 (e.g.,	 run	 1000	 times	 a	 second).	A	 third	 type	 involves	 real-time
input/output	 for	 the	 purpose	 of	 measurement	 or	 control.	 The	 fourth	 type	 involves
digital	 signal	 processing	 (DSP),	 which	 are	 mathematical	 calculations	 on	 data
streams.	 Examples	 include	 audio,	 video,	 radar,	 and	 sonar.	 The	 last	 type	 is
communication	and	networking.	As	embedded	systems	become	more	complex,	how
the	components	are	linked	together	will	become	increasingly	important.

There	 are	 two	 classifications	 of	 embedded	 systems	 as	 shown	 in	 Figure	 1.2.	 A
transformative	system	 collects	 data	 from	 inputs,	makes	 decisions,	 and	 affects	 its
environment	 by	 driving	 actuators.	 The	 robot	 systems	 presented	 in	 Chapter	 10	 are

examples	of	transformative	systems.	A	reactive	system	collects	data	in	a	continuous
fashion	and	produce	outputs	also	 in	a	continuous	 fashion.	Digital	 signal	processing
algorithms	presented	in	Chapter	6	are	examples	of	reactive	systems.

Figure	1.2.	Embedded	systems	can	transform	or	react	to	the	environment.

Six	constraints	typify	an	embedded	system.	First,	they	are	small	size.	For	example,
many	systems	must	be	handheld.	Second,	they	must	have	low	weight.	If	the	device	is
deployed	in	a	system	that	moves,	e.g.,	attached	to	a	human,	aircraft	or	vehicle,	then
weight	incurs	an	energy	cost.	Third,	they	often	must	be	low	power.	For	example,	they
might	need	to	operate	for	a	long	time	on	battery	power.	Low	power	also	impacts	the
amount	of	heat	 they	 are	 allowed	 to	generate.	Fourth,	 embedded	 systems	often	must
operate	in	harsh	environments,	such	as	heat,	pressure,	vibrations,	and	shock.	They
may	 be	 subject	 to	 noisy	 power,	 RF	 interference,	 water,	 and	 chemicals.	 Fifth,
embedded	systems	are	often	used	in	safety	critical	systems.	Real-time	behavior	 is
essential.	For	 these	systems	 they	must	 function	properly	at	extremely	high	 levels	of
reliability.	 Lastly,	 embedded	 systems	 are	 extremely	 sensitive	 to	 cost.	 Most
applications	are	profit-driven.	For	high-volume	systems	a	difference	in	pennies	can
significantly	affect	profit.

Checkpoint	1.2:	What	is	an	embedded	system?			

Checkpoint	1.3:	List	the	six	constraints	typically	found	in	an	embedded	system?			

1.2.	Computer	Architecture

1.2.1.	Computers,	processors,	and	microcontrollers
Given	that	an	operating	system	is	a	manager	of	resources	provided	by	the	underlying
architecture,	it	would	serve	the	reader	well	to	get	acquainted	with	the	architecture	the
OS	 must	 manage.	 In	 this	 section	 we	 will	 delve	 into	 these	 details	 of	 the	 building
blocks	of	computer	architecture,	 followed	by	 the	 specifics	of	 the	ARM	Cortex	M4
processor	architecture,	 in	particular	TI’s	 implementation	of	 the	ARM	ISA	found	on
the	TM4C	and	MSP432.

A	 computer	 combines	 a	 central	 processing	 unit	 (CPU),	 random	 access	 memory
(RAM),	read	only	memory	(ROM),	and	input/output	(I/O)	ports.	The	common	bus	in
Figure	1.3	defines	the	von	Neumann	architecture.		Software	is	an	ordered	sequence
of	 very	 specific	 instructions	 that	 are	 stored	 in	memory,	 defining	 exactly	 what	 and
when	certain	tasks	are	to	be	performed.
	

Figure	1.3.	The	basic	components	of	a	computer	system	include	processor,
memory	and	I/O.

The	 CPU	 or	 processor	 executes	 the	 software	 by	 retrieving	 (from	 memory)	 and
interpreting	 these	 instructions	 one	 at	 a	 time.	 An	 ARM	 Cortex-M	 microcontroller
includes	 a	 processor,	 memory	 and	 input/output.	 The	 processor,	 memory	 and
peripherals	 are	 connected	 via	multiple	 buses.	Because	 instructions	 are	 fetched	 via
the	ICode	bus	and	data	are	fetched	via	the	System	bus,	the	Cortex	M	is	classified	as	a
Harvard	architecture.	Having	multiple	busses	allows	the	system	to	do	several	things
simultaneously.	 For	 example,	 the	 processor	 could	 be	 reading	 an	 instruction	 from
ROM	using	the	ICode	bus	and	writing	data	to	RAM	using	the	System	bus.
The	ARM	Cortex-M	processor	has	 four	major	 components,	 as	 illustrated	 in	Figure
1.4.	There	are	bus	 interface	units	 (BIU)	 that	 read	data	 from	the	bus	during	a	 read

cycle	and	write	data	onto	 the	bus	during	a	write	cycle.	The	BIU	always	drives	 the
address	bus	and	the	control	signals	of	the	bus.	The	effective	address	register	(EAR)
contains	the	memory	address	used	to	fetch	the	data	needed	for	the	current	instruction.
Cortex-M	 microcontrollers	 execute	 Thumb	 instructions	 extended	 with	 Thumb-2
technology.	An	overview	of	these	instructions	will	be	presented	in	Section	1.5.	Many
functions	 in	 an	 operating	 system	 will	 require	 detailed	 understanding	 of	 the
architecture	and	assembly	language.

The	control	unit	(CU)	orchestrates	the	sequence	of	operations	in	the	processor.	The
CU	 issues	 commands	 to	 the	 other	 three	 components.	The	 instruction	 register	 (IR)
contains	the	operation	code	(or	op	code)	for	the	current	instruction.	When	extended
with	Thumb-2	technology,	op	codes	are	either	16	or	32	bits	wide.

The	arithmetic	logic	unit	(ALU)	performs	arithmetic	and	logic	operations.	Addition,
subtraction,	 multiplication	 and	 division	 are	 examples	 of	 arithmetic	 operations.
Examples	of	logic	operations	are,	and,	or,	exclusive-or,	and	shift.	Many	processors
used	in	embedded	applications	support	specialized	operations	such	as	table	lookup,
multiply	and	accumulate,	and	overflow	detection.

	
Figure	1.4.	The	four	basic	components	of	a	processor.

A	very	small	microcomputer,	called	a	microcontroller,	contains	all	 the	components
of	a	computer	(processor,	memory,	I/O)	on	a	single	chip.		The	Atmel	ATtiny	and	the
TI	TM4C123	are	examples	of	microcontrollers.		Because	a	microcomputer	is	a	small
computer,	this	term	can	be	confusing	because	it	is	used	to	describe	a	wide	range	of
systems	from	a	6-pin	ATtiny4	running	at	1	MHz	with	512	bytes	of	program	memory	to
a	 personal	 computer	 with	 state-of-the-art	 64-bit	 multi-core	 processor	 running	 at
multi-GHz	speeds	having	terabytes	of	storage.	

An	application-specific	integrated	circuit	(ASIC)	is	digital	logic	that	solves	a	very
specific	problem.	See	Figure	1.5.	A	field-programmable	gate	array	(FPGA)	is	one
approach	 to	ASIC	prototyping,	 allowing	 you	 to	 program	 and	 reprogram	 the	 digital
logic.	 Verilog	 and	 VHDL	 are	 example	 FPGA	 programming	 environments.	 ASIC
design	 is	 appropriate	 for	 problems	 defined	with	 logic	 and/or	 numerical	 equations.
On	 the	 other	 hand,	 microcontrollers	 are	 appropriate	 for	 problems	 solved	 with
algorithms	 or	 sequential	 processes.	Mature	 problems	with	 high	 volume	 can	 create
ASIC	 solutions	 directly	 as	 digital	 logic	 integrated	 circuits.	 On	 the	 other	 hand,
microcontrollers	 can	 be	 used	 for	 low-volume	problems	 and	 have	 the	 advantage	 of
having	a	shorter	time	to	market.	Microcontrollers,	because	they	are	programmed	with
software,	allow	a	flexibility	to	upgrade	features,	provide	user-tailored	performance,

and	 solve	 problems	 with	 uncertain	 or	 changing	 requirements.	 Some	 systems	 have
both	microcontrollers	and	ASICs.

Figure	1.5.	A	system	implemented	with	an	ASIC	and	I/O.

In	an	embedded	system	the	software	is	converted	to	machine	code,	which	is	a	list	of
instructions,	and	stored	 in	nonvolatile	 flash	ROM.	As	 instructions	are	 fetched,	 they
are	placed	in	a	pipeline.	This	allows	instruction	fetching	to	run	ahead	of	execution.
Instructions	on	 the	Cortex-M	processor	are	 fetched	 in	order	and	executed	 in	order.
However,	 it	 can	 execute	 one	 instruction	 while	 fetching	 the	 next.	Many	 high-speed
processors	 allow	 out	 of	 order	 execution,	 support	 parallel	 execution	 on	 multiple
cores,	and	employ	branch	prediction.

On	the	ARM	Cortex-M	processor,	an	instruction	may	read	memory	or	write	memory,
but	does	not	read	and	write	memory	in	the	same	instruction.	Each	of	the	phases	may
require	 one	 or	 more	 bus	 cycles	 to	 complete.	 Each	 bus	 cycle	 reads	 or	 writes	 one
piece	of	data.	Because	of	the	multiple	bus	architecture,	most	instructions	execute	in
one	 or	 two	 cycles.	 For	 more	 information	 on	 the	 time	 to	 execute	 instructions,	 see
Table	3.1	in	the	Cortex-M	Technical	Reference	Manual.

Figure	1.6	shows	a	simplified	block	diagram	of	a	microcontroller	based	on	the	ARM
Cortex-M	processor.	It	is	a	Harvard	architecture	because	it	has	separate	data	and
instruction	buses.

Figure	1.6.	Harvard	architecture	of	an	ARM	Cortex-M-based
microcontroller.

The	instruction	set	combines	the	high	performance	typical	of	a	32-bit	processor	with
high	 code	 density	 typical	 of	 8-bit	 and	 16-bit	 microcontrollers.	 Instructions	 are
fetched	from	flash	ROM	using	the	ICode	bus.	Data	are	exchanged	with	memory	and

I/O	 via	 the	 system	 bus	 interface.	 There	 are	many	 sophisticated	 debugging	 features
utilizing	 the	 DCode	 bus.	 An	 interrupt	 is	 a	 hardware-triggered	 software	 function,
which	 is	 extremely	 important	 for	 real-time	 embedded	 systems.	 The	 latency	 of	 an
interrupt	service	is	the	time	between	hardware	trigger	and	software	response.	Some
internal	 peripherals,	 like	 the	 nested	 vectored	 interrupt	 controller	 (NVIC),
communicate	directly	with	 the	processor	via	 the	private	peripheral	bus	(PPB).	The
tight	 integration	of	 the	processor	and	 interrupt	controller	provides	 fast	execution	of
interrupt	service	routines	(ISRs),	dramatically	reducing	the	interrupt	latency.

Checkpoint	1.4:	Why	do	you	suppose	the	Cortex	M	has	so	many	busses?			

Checkpoint	1.5:	Notice	the	debugger	exists	on	the	DCode	bus.	Why	is	this	a	good
idea?			

1.2.2.	Memory
One	kibibyte	(KiB)	equals	1024	bytes	of	memory.	The	TM4C123	has	256	kibibytes
(218	bytes)	of	flash	ROM	and	32	kibibytes	(215	bytes)	of	RAM.	The	MSP432	also	has
256	kibibytes	(218	bytes)	of	flash	ROM	but	has	64	kibibytes	(216	bytes)	of	RAM.	We
view	 the	memory	 as	 continuous	 virtual	 address	 space	with	 the	 RAM	 beginning	 at
0x2000.0000,	and	the	flash	ROM	beginning	at	0x0000.0000.

The	microcontrollers	in	the	Cortex-M	family	differ	by	the	amount	of	memory	and	by
the	types	of	I/O	modules.	There	are	hundreds	of	members	in	this	family;	some	of	them
are	listed	in	Table	1.2.	The	memory	maps	of	TM4C123	and	MSP432	are	shown	in
Figure	 1.7.	 Although	 this	 course	 focuses	 on	 two	 microcontrollers	 from	 Texas
Instruments,	 all	 ARM	 Cortex-M	 microcontrollers	 have	 similar	 memory	 maps.	 In
general,	Flash	ROM	begins	at	address	0x0000.0000,	RAM	begins	at	0x2000.0000,
the	peripheral	I/O	space	is	from	0x4000.0000	to	0x5FFF.FFFF,	and	I/O	modules	on
the	private	peripheral	bus	exist	from	0xE000.0000	to	0xE00F.FFFF.	In	particular,	the
only	differences	in	the	memory	map	for	the	various	members	of	the	Cortex-M	family
are	the	ending	addresses	of	the	flash	and	RAM.

Part	number RAM Flash I/O I/O	modules
MSP432P401RIPZ 64 256 84 floating	point,	DMA
TM4C123GH6PM 32 256 43 floating	point,	CAN,	DMA,

USB,	PWM
TM4C1294NCPDT 256 1024 90 floating	point,	CAN,	DMA,

USB,	PWM,	Ethernet
STM32F051R8T6 8 64 55 DAC,	 Touch	 sensor,	DMA,

I2S,	HDMI,	PWM
MKE02Z64VQH2 4 64 53 PWM
	 KiB KiB pins 	
Table	1.2.	Memory	and	I/O	modules	(all	have	SysTick,	RTC,	timers,	UART,	I2C,	SSI,	and

ADC).
Having	multiple	buses	means	 the	processor	 can	perform	multiple	 tasks	 in	parallel.
On	the	TM4C123,	general	purpose	input/output	(GPIO)	ports	can	be	accessed	using
either	the	PPB	or	AHPB.	The	following	is	some	of	the	tasks	that	can	occur	in	parallel

ICode	bus Fetch	opcode	from	ROM
DCode	bus Read	constant	data	from	ROM
System	bus Read/write	data	from	RAM	or	I/O,	fetch	opcode	from	RAM
PPB Read/write	data	from	internal	peripherals	like	the	NVIC
AHPB Read/write	data	from	internal	peripherals	like	the	USB

Instructions	and	data	are	accessed	using	a	common	bus	on	a	von	Neumann	machine.
The	Cortex-M	processor	 is	a	Harvard	architecture	because	 instructions	are	 fetched
on	 the	 ICode	bus	and	data	 accessed	on	 the	 system	bus.	The	address	 signals	on	 the
ARM	 Cortex-M	 processor	 include	 32	 lines,	 which	 together	 specify	 the	 memory
address	 (0x0000.0000	 to	 0xFFFF.FFFF)	 that	 is	 currently	 being	 accessed.	 The
address	 specifies	 both	 which	 module	 (input,	 output,	 RAM,	 or	 ROM)	 as	 well	 as
which	cell	within	the	module	will	communicate	with	the	processor.	The	data	signals
contain	the	information	that	 is	being	transferred	and	also	include	32	bits.	However,
on	the	system	bus	it	can	also	transfer	8-bit	or	16-bit	data.	The	control	signals	specify
the	timing,	the	size,	and	the	direction	of	the	transfer.

Figure	1.7.	Memory	map	of	the	TM4C123	with	256k	ROM	and	32k	RAM	and
the	MSP432	with	256k	ROM	and	64k	RAM.

Checkpoint	1.6:	What	do	we	put	in	RAM	and	what	do	we	put	in	ROM?			

Checkpoint	1.7:	Can	software	write	into	the	ROM	of	our	microcontroller?			

The	 ARM	 Cortex-M	 processor	 uses	 bit-banding	 to	 allow	 read/write	 access	 to
individual	bits	in	RAM	and	some	bits	in	the	I/O	space.	There	are	two	parameters	that
define	bit-banding:	the	address	and	the	bit	you	wish	to	access.	Assume	you	wish	to
access	 bit	 b	 of	 RAM	 address	 0x2000.0000+n,	 where	 b	 is	 a	 number	 0	 to	 7.	 The
aliased	address	for	this	bit	will	be

0x2200.0000	+	32*n	+	4*b

Reading	 this	 address	will	 return	 a	 0	 or	 a	 1.	Writing	 a	 0	 or	 1	 to	 this	 address	will
perform	an	atomic	read-modify-write	modification	to	the	bit.

If	we	consider	32-bit	word-aligned	data	in	RAM,	the	same	bit-banding	formula	still
applies.	Let	the	word	address	be	0x2000.0000+n.	n	starts	at	0	and	increments	by	4.
In	this	case,	we	define	b	as	the	bit	from	0	to	31.	In	little-endian	format,	bit	1	of	the
byte	 at	 0x2000.0001	 is	 the	 same	 as	 bit	 9	 of	 the	word	 at	 0x2000.0000.The	 aliased
address	for	this	bit	will	still	be

0x2200.0000	+	32*n	+	4*b

Examples	of	bit-banded	addressing	are	 listed	 in	Table	1.3.	Writing	a	1	 to	 location
0x2200.0018	 will	 set	 bit	 6	 of	 RAM	 location	 0x2000.0000.	 Reading	 location
0x2200.0024	will	return	a	0	or	1	depending	on	the	value	of	bit	1	of	RAM	location
0x2000.0001.

RAM
address

Offset
n

Bit	b Bit-banded
alias

0x2000.0000 0 0 0x2200.0000
0x2000.0000 0 1 0x2200.0004
0x2000.0000 0 2 0x2200.0008
0x2000.0000 0 3 0x2200.000C
0x2000.0000 0 4 0x2200.0010
0x2000.0000 0 5 0x2200.0014
0x2000.0000 0 6 0x2200.0018
0x2000.0000 0 7 0x2200.001C
0x2000.0001 1 0 0x2200.0020
0x2000.0001 1 1 0x2200.0024

Table	1.3.	Examples	of	bit-banded	addressing.
Checkpoint	1.8:	What	address	do	you	use	to	access	bit	3	of	the	byte	at
0x2000.1010?

Checkpoint	1.9:	What	address	do	you	use	to	access	bit	22	of	the	word	at
0x2001.0000?

The	 other	 bit-banding	 region	 is	 the	 I/O	 space	 from	 0x4000.0000	 through
0x400F.FFFF.	 In	 this	 region,	 let	 the	 I/O	 address	 be	 0x4000.0000+n,	 and	 let	 b
represent	the	bit	0	to	7.	The	aliased	address	for	this	bit	will	be	0x4200.0000	+	32*n
+	4*b

Checkpoint	1.10:	What	address	do	you	use	to	access	bit	7	of	the	byte	at
0x4000.0030?

	

1.3.	Cortex-M	Processor	Architecture

1.3.1.	Registers
The	registers	on	an	ARM	Cortex-M	processor	are	depicted	in	Figure	1.8.	R0	to	R12
are	 general	 purpose	 registers	 and	 contain	 either	 data	 or	 addresses.	 Register	 R13
(also	 called	 the	 stack	 pointer,	 SP)	 points	 to	 the	 top	 element	 of	 the	 stack.	Actually,
there	 are	 two	 stack	 pointers:	 the	main	 stack	 pointer	 (MSP)	 and	 the	 process	 stack
pointer	 (PSP).	 Only	 one	 stack	 pointer	 is	 active	 at	 a	 time.	 In	 a	 high-reliability
operating	 system,	 we	 could	 activate	 the	 PSP	 for	 user	 software	 and	 the	 MSP	 for
operating	system	software.	This	way	the	user	program	could	crash	without	disturbing
the	operating	system.	Most	of	the	commercially	available	real-time	operating	systems
available	 on	 the	Cortex	M	will	 use	 the	 PSP	 for	 user	 code	 and	MSP	 for	OS	 code.
Register	R14	(also	called	the	link	register,	LR)	is	used	to	store	the	return	location	for
functions.	The	LR	is	also	used	in	a	special	way	during	exceptions,	such	as	interrupts.
Register	R15	(also	called	the	program	counter,	PC)	points	 to	the	next	instruction	to
be	fetched	from	memory.	The	processor	fetches	an	instruction	using	the	PC	and	then
increments	the	PC	by	the	length	(in	bytes)	of	the	instruction	fetched.	

	Checkpoint	1.11:	How	are	registers	R13	R14	and	R15	special?			

	

Figure	1.8.	The	registers	on	the	ARM	Cortex-M	processor.

The	 ARM	 Architecture	 Procedure	 Call	 Standard,	 AAPCS,	 part	 of	 the	 ARM
Application	Binary	Interface	(ABI),	uses	registers	R0,	R1,	R2,	and	R3	to	pass	input
parameters	 into	a	C	function	or	an	assembly	subroutine.	Also	according	 to	AAPCS
we	 place	 the	 return	 parameter	 in	 Register	 R0.	 The	 standard	 requires	 functions	 to
preserve	 the	 contents	 of	R4-R11.	 In	 other	words,	 functions	 save	R4-R11,	 use	R4-

R11,	 and	 then	 restore	 R4-R11	 before	 returning.	 Another	 restriction	 is	 to	 keep	 the
stack	aligned	to	64	bits,	by	pushing	and	popping	an	even	number	of	registers.

There	are	three	status	registers	named	Application	Program	Status	Register	(APSR),
the	 Interrupt	 Program	 Status	 Register	 (IPSR),	 and	 the	 Execution	 Program	 Status
Register	 (EPSR)	 as	 shown	 in	 Figure	 1.9.	 	 These	 registers	 can	 be	 accessed
individually	or	in	combination	as	the	Program	Status	Register	(PSR).

	
Figure	1.9.	The	program	status	register	of	the	ARM	Cortex-M	processor.

The	N,	Z,	V,	C,	and	Q	bits	 signify	 the	 status	of	 the	previous	ALU	operation.	Many
instructions	set	these	bits	to	signify	the	result	of	the	operation.	In	general,	the	N	bit	is
set	 after	 an	arithmetical	or	 logical	operation	 signifying	whether	or	not	 the	 result	 is
negative.	Similarly,	the	Z	bit	is	set	if	the	result	is	zero.	The	C	bit	means	carry	and	is
set	on	an	unsigned	overflow,	and	the	V	bit	signifies	signed	overflow.	The	Q	bit	is	the
sticky	 saturation	 flag,	 indicating	 that	 “saturation”	 has	 occurred,	 and	 is	 set	 by
the SSAT and USAT 	instructions.

The	T	bit	will	 always	 be	 1,	 indicating	 the	ARM	Cortex-M	 processor	 is	 executing
Thumb	 instructions.	 The	 ICI/IT	 bits	 are	 used	 by	 interrupts	 and	 by	 IF-THEN
instructions.	 The	 ISR_NUMBER	 indicates	 which	 interrupt	 if	 any	 the	 processor	 is
handling.	Bit	0	of	the	special	register	PRIMASK	is	the	interrupt	mask	bit,	or	I	bit.	If
this	 bit	 is	 1	 most	 interrupts	 and	 exceptions	 are	 not	 allowed.	 If	 the	 bit	 is	 0,	 then
interrupts	are	allowed.	Bit	0	of	the	special	register	FAULTMASK	is	the	fault	mask
bit.	 If	 this	 bit	 is	 1	 all	 interrupts	 and	 faults	 are	 disallowed.	 If	 the	 bit	 is	 0,	 then
interrupts	and	faults	are	allowed.	The	nonmaskable	interrupt	(NMI)	is	not	affected	by
these	 mask	 bits.	 The	 BASEPRI	 register	 defines	 the	 priority	 of	 the	 executing
software.	 It	 prevents	 interrupts	 with	 lower	 or	 equal	 priority	 from	 interrupting	 the
current	 execution	 but	 allows	 higher	 priority	 interrupts.	 For	 example	 if	BASEPRI
equals	3,	then	requests	with	level	0,	1,	and	2	can	interrupt,	while	requests	at	levels	3
and	higher	will	be	postponed.	The	details	of	interrupt	processing	will	be	presented	in
detail,	later	in	the	book.

Checkpoint	1.12:	Where	is	the	I	bit	and	what	does	it	mean?			

1.3.2.	Stack

The	stack	is	a	last-in-first-out	temporary	storage.	Managing	the	stack	is	an	important
function	for	the	operating	system.	To	create	a	stack,	a	block	of	RAM	is	allocated	for
this	temporary	storage.	On	the	ARM	Cortex-M	processor,	the	stack	always	operates
on	32-bit	data.	The	stack	pointer	(SP)	points	to	the	32-bit	data	on	the	top	of	the	stack.
The	 stack	 grows	 downwards	 in	memory	 as	we	 push	 data	 on	 to	 it	 so,	 although	we
refer	to	the	most	recent	item	as	the	“top	of	the	stack”	it	is	actually	the	item	stored	at
the	lowest	address!	To	push	data	on	the	stack,	the	stack	pointer	is	first	decremented
by	4,	and	then	the	32-bit	information	is	stored	at	the	address	specified	by	SP.	To	pop
data	from	the	stack,	the	32-bit	information	pointed	to	by	SP	is	first	retrieved,	and	then
the	stack	pointer	is	 incremented	by	4.	SP	points	to	the	last	 item	pushed,	which	will
also	be	 the	next	 item	to	be	popped.	The	processor	allows	for	 two	stacks,	 the	main
stack	and	the	process	stack,	with	independent	copies	of	the	stack	pointer.		The	boxes
in	 Figure	 1.10	 represent	 32-bit	 storage	 elements	 in	 RAM.	 The	 grey	 boxes	 in	 the
figure	refer	to	actual	data	stored	on	the	stack,	and	the	white	boxes	refer	to	locations
in	memory	that	do	not	contain	stack	data.	This	figure	illustrates	how	the	stack	is	used
to	push	the	contents	of	Registers	R0,	R1,	and	R2	in	that	order.	Assume	Register	R0
initially	contains	the	value	1,	R1	contains	2	and	R2	contains	3.	The	drawing	on	the
left	shows	the	initial	stack.	The	software	executes	these	six

PUSH	{R0}
PUSH	{R1}
PUSH	{R2}
POP	{R3}
POP	{R4}
POP	{R5}

	

Figure	1.10.	Stack	picture	showing	three	numbers	first	being	pushed,	then
three	numbers	being	popped.

We	can	push	and	pop	multiple	registers;	these	six	instructions	could	be	replaced	with
	

PUSH	{R0-R2}
POP		{R3-R5}

	
The	instruction PUSH	{R0} 	saves	the	value	of	R0	on	the	stack.	It	first	decrements	SP
by	4,	and	then	it	stores	the	contents	of	R0	into	the	memory	location	pointed	to	by	SP.
The	right-most	drawing	shows	the	stack	after	the	push	occurs	three	times.	The	stack
contains	 the	numbers	1	2	and	3,	with	3	on	 top.	The	 instruction POP{R3} 	 retrieves

data	from	the	stack.	It	first	moves	the	value	from	memory	pointed	to	by	SP	into	R3,
and	then	it	increments	SP	by	4.	After	the	pop	occurs	three	times	the	stack	reverts	to
its	original	state	and	registers	R3,	R4	and	R5	contain	3	2	1	respectively.	We	define
the	32-bit	word	pointed	to	by	SP	as	the	top	entry	of	the	stack.	If	it	exists,	we	define
the	32-bit	data	immediately	below	the	top,	at	SP+4,	as	next	to	top.	Proper	use	of	the
stack	requires	following	these	important	rules

1.	Functions	should	have	an	equal	number	of	pushes	and	pops
2.	Stack	accesses	(push	or	pop)	should	not	be	performed	outside	the
allocated	area
3.	Stack	reads	and	writes	should	not	be	performed	within	the	free
area
4.	Stack	push	should	first	decrement	SP,	then	store	the	data
5.	Stack	pop	should	first	read	the	data,	and	then	increment	SP
	

Functions	 that	 violate	 rule	 number	 1	 will	 probably	 crash	 when	 incorrect	 data	 are
popped	 off	 at	 a	 later	 time.	 Violations	 of	 rule	 number	 2	 can	 be	 caused	 by	 a	 stack
underflow	or	overflow.	Overflow	occurs	when	the	number	of	elements	became	larger
than	the	allocated	space.	Stack	underflow	is	caused	when	there	are	more	pops	than
pushes,	and	is	always	the	result	of	a	software	bug.	A	stack	overflow	can	be	caused
by	 two	reasons.	 If	 the	software	mistakenly	pushes	more	 than	 it	pops,	 then	 the	stack
pointer	will	eventually	overflow	its	bounds.	Even	when	there	is	exactly	one	pop	for
each	push,	a	stack	overflow	can	occur	if	the	stack	is	not	allocated	large	enough.	The
processor	will	generate	a	bus	fault	when	the	software	tries	read	from	or	write	to	an
address	 that	 doesn’t	 exist.	 If	 valid	 RAM	 exists	 below	 the	 stack	 then	 further	 stack
operations	will	corrupt	data	in	this	memory.

First,	we	will	consider	the	situation	where	the	allocated	stack	area	is	placed	at	 the
beginning	of	RAM.	For	example,	assume	we	allocate	4096	bytes	for	the	stack	from
0x2000.0000	to	0x2000.0FFF;	see	the	left	side	of	Figure	1.11.	The	SP	is	initialized
to	 0x2000.1000,	 and	 the	 stack	 is	 considered	 empty.	 If	 the	 SP	 becomes	 less	 than
0x2000.0000	a	stack	overflow	has	occurred.	The	stack	overflow	will	cause	a	bus
fault	because	there	is	nothing	at	address	0x1FFF.FFFC.	If	the	software	tries	to	read
from	 or	 write	 to	 any	 location	 greater	 than	 or	 equal	 to	 0x2000.1000	 then	 a	 stack
underflow	 has	 occurred.	 At	 this	 point	 the	 stack	 and	 global	 variables	 exist	 at
overlapping	addresses.	Stack	underflow	is	a	very	difficult	bug	to	recognize,	because
the	first	consequence	will	be	unexplained	changes	to	data	stored	in	global	variables.

Figure	1.11.	Drawings	showing	two	possible	ways	to	allocate	the	stack	area
in	RAM.

Next,	we	will	consider	the	situation	where	the	allocated	stack	area	is	placed	at	 the
end	 of	 RAM.	 The	 TM4C123	 has	 32	 KiB	 of	 RAM	 from	 0x2000.0000	 to
0x2000.7FFF.	 So	 in	 this	 case	 we	 allocate	 the	 4096	 bytes	 for	 the	 stack	 from
0x2000.7000	 to	 0x2000.7FFF,	 shown	 on	 the	 right	 side	 of	 Figure	 1.11.	 The	 SP	 is
initialized	to	0x2000.8000,	and	the	stack	is	considered	empty.	If	the	SP	becomes	less
than	0x2000.7000	a	stack	overflow	has	occurred.	The	stack	overflow	will	not	cause
a	bus	fault	because	there	is	memory	at	address	0x2000.6FFC.	Stack	overflow	in	this
case	 is	 a	 very	 difficult	 bug	 to	 recognize,	 because	 the	 first	 consequence	 will	 be
unexplained	 changes	 to	 data	 stored	below	 the	 stack	 region.	 If	 the	 software	 tries	 to
read	from	or	write	to	any	location	greater	than	or	equal	to	0x2000.8000	then	a	stack
underflow	has	occurred.	In	this	case,	stack	underflow	will	cause	a	bus	fault.

Executing	 an	 interrupt	 service	 routine	 will	 automatically	 push	 eight	 32-bit	 words
ontothe	stack.	Since	 interrupts	are	 triggered	by	hardware	events,	exactly	when	 they
occur	 is	not	under	 software	control.	Therefore,	violations	of	 rules	3,	4,	and	5	will
cause	erratic	behavior	when	operating	with	 interrupts.	Rules	4	and	5	are	 followed
automatically	by	the PUSH and POP 	instructions.

1.3.3.	Operating	modes
The	 ARM	 Cortex-M	 processor	 has	 two	 privilege	 levels	 called	 privileged	 and
unprivileged.	Bit	0	of	 the	CONTROL	 register	 is	 the	 thread	mode	privilege	 level
(TPL).	 If	TPL	 is	1	 the	processor	 level	 is	privileged.	 If	 the	bit	 is	0,	 then	processor
level	 is	unprivileged.	Running	at	 the	unprivileged	 level	prevents	 access	 to	various
features,	 including	 the	 system	 timer	 and	 the	 interrupt	 controller.	 Bit	 1	 of	 the
CONTROL	register	is	the	active	stack	pointer	selection	(ASPSEL).	If	ASPSEL	is	1,
the	processor	uses	 the	PSP	 for	 its	 stack	pointer.	 If	ASPSEL	 is	0,	 the	MSP	 is	used.
When	designing	a	high-reliability	operating	system,	we	will	run	the	user	code	at	an
unprivileged	 level	using	 the	PSP	and	 the	OS	code	at	 the	privileged	 level	using	 the
MSP.

The	processor	knows	whether	it	is	running	in	the	foreground	(i.e.,	the	main	program)
or	in	the	background	(i.e.,	an	interrupt	service	routine).	ARM	defines	the	foreground
as	 thread	mode,	 and	 the	 background	 as	handler	mode.	 Switching	 between	 thread

and	 handler	 modes	 occurs	 automatically.	 The	 processor	 begins	 in	 thread	 mode,
signified	by	 ISR_NUMBER=0.	Whenever	 it	 is	 servicing	an	 interrupt	 it	 switches	 to
handler	mode,	signified	by	setting	ISR_NUMBER	to	specify	which	interrupt	is	being
processed.	All	interrupt	service	routines	run	using	the	MSP.	In	particular,	the	context
is	saved	onto	whichever	stack	pointer	is	active,	but	during	the	execution	of	the	ISR,
the	MSP	 is	used.	For	a	high	 reliability	operation	all	 interrupt	service	 routines	will
reside	 in	 the	 operating	 system.	 User	 code	 can	 be	 run	 under	 interrupt	 control	 by
providing	 hooks,	 which	 are	 function	 pointers.	 The	 user	 can	 set	 function	 pointers
during	 initialization,	 and	 the	 operating	 system	 will	 call	 the	 function	 during	 the
interrupt	service	routine.
	

Observation:	Processor	modes	and	the	stack	are	essential	components	of
building	a	reliable	operating	system.	In	particular	the	processor	mode	is	an
architectural	feature	that	allows	the	operating	system	to	restrict	access	to	critical
system	resources.

1.3.4.	Reset
A	reset	occurs	immediately	after	power	is	applied	and	can	also	occur	by	pushing	the
reset	button	available	on	most	boards.	After	a	reset,	the	processor	is	in	thread	mode,
running	at	 a	privileged	 level,	 and	using	 the	MSP	stack	pointer.	The	32-bit	value	at
flash	ROM	 location	 0	 is	 loaded	 into	 the	SP.	All	 stack	 accesses	 are	word	 aligned.
Thus,	 the	 least	 significant	 two	 bits	 of	 SP	must	 be	 0.	A	 reset	 also	 loads	 the	 32-bit
value	at	location	4	into	the	PC.	This	value	is	called	the	reset	vector.	All	instructions
are	halfword	aligned.	Thus,	 the	 least	significant	bit	of	PC	must	be	0.	However,	 the
assembler	will	set	 the	least	significant	bit	 in	the	reset	vector,	so	the	processor	will
properly	initialize	the	Thumb	bit	(T)	in	the	PSR.	On	the	Cortex-M	processor,	 the	T
bit	 should	 always	 be	 set	 to	 1.	 On	 reset,	 the	 processor	 initializes	 the	 LR	 to
0xFFFFFFFF.

1.3.5.	Clock	system
Normally,	 the	 execution	 speed	 of	 a	 microcontroller	 is	 determined	 by	 an	 external
crystal.	The	Texas	Instruments	MSP-EXP432P401R	board	has	a	48	MHz	crystal.	The
Texas	 Instruments	 EK-TM4C123GXL	 and	 EK-TM4C1294-XL	 boards	 have	 a	 16
MHz	crystal.	The	TM4C	microcontrollers	have	a	phase-lock-loop	(PLL)	that	allows
the	software	 to	adjust	 the	execution	speed	of	 the	computer.	Typically,	 the	choice	of
frequency	 involves	 the	 tradeoff	 between	 software	 execution	 speed	 and	 electrical
power.	 In	 other	 words,	 slowing	 down	 the	 bus	 clock	 will	 require	 less	 power	 to
operate	and	generate	less	heat.	Speeding	up	the	bus	clock	obviously	allows	for	more
calculations	per	second.

The	 default	 bus	 speed	 of	 the	 MSP432	 and	 TM4C	 microcontrollers	 is	 that	 of	 the

internal	 oscillator.	 For	 example,	 the	 default	 bus	 speed	 for	 the	MSP432	 is	 3	MHz
±0.5%.	The	default	bus	speed	for	the	TM4C	internal	oscillator	is	16	MHz	±1%.	The
internal	 oscillator	 is	 significantly	 less	 precise	 than	 the	 crystal,	 but	 it	 requires	 less
power	and	does	not	need	an	external	crystal.	This	means	 for	most	applications	we
will	activate	the	main	oscillator	using	the	crystal	so	we	can	have	a	stable	bus	clock.
We	will	 call	 library	 functions	 to	 select	 the	 clock	 source	 and	bus	 frequency.	 In	 this
book,	we	will	assume	the	MSP432	is	running	at	48	MHz,	the	TM4C123	is	running	at
80	MHz,	and	the	TM4C1294	is	running	at	120	MHz.	For	more	details	on	the	clock
systems	refer	to	Volume	2	of	this	series.

1.4.	Texas	Instruments	Cortex-M	Microcontrollers

1.4.1.	Introduction	to	I/O
I/O	 is	 an	 important	 part	 of	 embedded	 systems	 in	 general.	 One	 of	 the	 important
features	of	an	operating	system	is	to	manage	I/O.	Input	and	output	are	the	means	of	an
embedded	 system	 to	 interact	 with	 its	 world.	 The	 external	 devices	 attached	 to	 the
microcontroller	 provide	 functionality	 for	 the	 system.	 These	 devices	 connect	 to	 the
microcontroller	through	ports.	A	pin	is	a	specific	wire	on	the	microcontroller	through
which	 we	 perform	 input	 or	 output.	 A	 collection	 of	 pins	 grouped	 by	 common
functionality	is	called	a	port.	An	input	port	is	hardware	on	the	microcontroller	that
allows	 information	 about	 the	 external	 world	 to	 enter	 into	 the	 computer.	 The
microcontroller	also	has	hardware	called	an	output	port	 to	send	information	out	 to
the	 external	 world.	 The	 GPIO	 (General	 Purpose	 Input	 Output)	 pins	 on	 a
microcontroller	are	programmable	to	be	digital	input,	digital	output,	analog	input	or
complex	and	protocol	(like	UART	etc.)	specific.

Microcontrollers	use	most	of	their	pins	for	I/O	(called	GPIO),	see	Figure	1.12.	Only
a	 few	pins	are	not	used	 for	 I/O.	Examples	of	pins	not	used	 for	 I/O	 include	power,
ground,	reset,	debugging,	and	the	clock.	More	specifically,	the	TM4C123	uses	43	of
its	 64	pins	 for	 I/O.	The	TM4C1294	uses	90	of	 its	 128	pins	 for	 I/O.	Similarly,	 the
MSP432	uses	84	of	its	100	pins	for	I/O.	

Figure	1.12.	Most	of	the	pins	on	the	microcontroller	can	perform
input/output.

An	 interface	 is	 defined	 as	 the	 collection	 of	 the	 I/O	 port,	 external	 electronics,
physical	 devices,	 and	 the	 software,	 which	 combine	 to	 allow	 the	 computer	 to
communicate	with	the	external	world.	An	example	of	an	input	interface	is	a	switch,
where	 the	 operator	 toggles	 the	 switch,	 and	 the	 software	 can	 recognize	 the	 switch
position.	An	example	of	an	output	 interface	 is	 a	 light-emitting	diode	 (LED),	where
the	software	can	turn	the	light	on	and	off,	and	the	operator	can	see	whether	or	not	the
light	is	shining.		There	is	a	wide	range	of	possible	inputs	and	outputs,	which	can	exist

in	either	digital	or	analog	form.	In	general,	we	can	classify	I/O	interfaces	 into	four
categories

Parallel/Digital	-	binary	data	are	available	simultaneously	on	a
group	of	lines

Serial	-	binary	data	are	available	one	bit	at	a	time	on	a	single
line

Analog	-	data	are	encoded	as	an	electrical	voltage,	current	or
power

Time	-	data	are	encoded	as	a	period,	frequency,	pulse	width	or
phase	shift
	

In	a	system	with	memory-mapped	I/O,	 as	 shown	 in	Figure	1.13,	 the	 I/O	ports	are
connected	 to	 the	 processor	 in	 a	manner	 similar	 to	memory.	 I/O	 ports	 are	 assigned
addresses,	and	the	software	accesses	I/O	using	reads	and	writes	to	the	specific	I/O
addresses.		These	addresses	appear	like	regular	memory	addresses,	except	accessing
them	results	in	manipulation	of	a	functionality	of	the	mapped	I/O	port,	hence	the	term
memory-mapped	 I/O.	As	 a	 result,	 the	 software	 inputs	 from	 an	 input	 port	 using	 the
same	instructions	as	it	would	if	it	were	reading	from	memory.	Similarly,	the	software
outputs	from	an	output	port	using	the	same	instructions	as	it	would	if	it	were	writing
to	memory.

Figure	1.13.	Memory-mapped	input/output.

Most	 pins	 on	 Cortex	 M	 microcontrollers	 can	 be	 used	 for	 general	 purpose	 I/O
(GPIO)	 called	 regular	 functions	 or	 for	 more	 complex	 functions	 called	 alternate
functions.	 For	 example,	 port	 pins	 PA1	 and	 PA0	 on	 the	 TM4C123	 can	 be	 either
regular	 parallel	 port	 pins,	 or	 an	 asynchronous	 serial	 port	 called	 universal
asynchronous	receiver/transmitter	(UART).

Some	of	the	alternative	functions	used	in	this	book	are:

•		UART Universal	asynchronous	receiver/transmitter
•		SSI	or	SPI Synchronous	serial	interface	or	serial	peripheral

interface
•		I2C	 Inter-integrated	circuit
•		Timer Periodic	interrupts
•		PWM Pulse	width	modulation
•		ADC	 Analog	to	digital	converter,	measurement	analog	signals
	

The	 UART	 can	 be	 used	 for	 serial	 communication	 between	 computers.	 It	 is
asynchronous	and	allows	for	simultaneous	communication	in	both	directions.	The	SSI
(also	 called	SPI)	 is	 used	 to	 interface	medium-speed	 I/O	devices.	 In	 this	 class,	we
will	use	SSI	to	interface	a	graphics	display.	I2C	is	a	simple	I/O	bus	that	we	will	use
to	interface	low	speed	peripheral	devices.	In	this	class	we	use	I2C	to	interface	a	light
sensor	and	a	 temperature	 sensor.	We	will	use	 the	 timer	modules	 to	create	periodic
interrupts.	PWM	outputs	could	be	used	to	apply	variable	power	to	motor	interfaces.
However,	 in	 this	class	we	use	PWM	to	adjust	 the	volume	of	 the	buzzer.	The	ADC
will	 be	 used	 to	measure	 the	 amplitude	 of	 analog	 signals,	 and	will	 be	 important	 in
data	acquisition	systems.	In	this	class	we	will	connect	the	microphone,	joystick	and
accelerometer	to	the	ADC.	

Joint	Test	Action	Group	(JTAG),	standardized	as	the	IEEE	1149.1,	is	a	standard	test
access	 port	 used	 to	 program	 and	 debug	 the	 microcontroller	 board.	 Each
microcontroller	uses	four	port	pins	for	the	JTAG	interface.

Checkpoint	1.13:	What	is	the	difference	between	a	pin	and	a	port?			

Checkpoint	1.14:	List	four	types	of	input/output.			

1.4.2.	Texas	Instruments	TM4C123	LaunchPad	I/O	pins
Figure	 1.14	 draws	 the	 I/O	 port	 structure	 for	 the	 TM4C123GH6PM.	 This
microcontroller	 is	 used	 on	 the	 EK-TM4C123GXL	 LaunchPad.	 Pins	 on	 the	 TM4C
family	 can	 be	 assigned	 to	 as	 many	 as	 eight	 different	 I/O	 functions.	 	 Pins	 can	 be
configured	 for	digital	 I/O,	 analog	 input,	 timer	 I/O,	or	 serial	 I/O.	For	 example	PB4
can	be	a	digital	I/O,	ADC,	SSI,	PWM,	timer	or	CAN	pin.	There	are	two	buses	used
for	I/O.	The	digital	I/O	ports	are	connected	to	both	the	advanced	peripheral	bus	and
the	advanced	high-performance	bus	(runs	faster).	Because	of	the	multiple	buses,	the
microcontroller	 can	 perform	 I/O	 bus	 cycles	 simultaneous	 with	 instruction	 fetches
from	flash	ROM.	The	TM4C123GH6PM	has	eight	UART	ports,	four	SSI	ports,	four
I2C	 ports,	 two	 12-bit	ADCs,	 twelve	 timers,	 two	 PWMs,	 a	CAN	port,	 and	 a	USB
interface.	 There	 are	 43	 I/O	 lines.	 There	 are	 twelve	 ADC	 inputs;	 each	 ADC	 can
convert	up	to	1M	samples	per	second.	Table	1.4	lists	the	regular	and	alternate	names
of	the	port	pins.

Each	 pin	 has	 one	 configuration	 bit	 in	 the	GPIOAMSEL	 register.	We	 set	 this	 bit	 to
connect	the	port	pin	to	the	ADC	or	analog	comparator.	For	digital	functions,	each	pin

also	has	four	bits	in	the	GPIOPCTL	register,	which	we	set	to	specify	the	alternative
function	for	 that	pin	(0	means	regular	 I/O	port).	Not	every	pin	can	be	connected	 to
every	alternative	function.	See	Table	1.4.

Pins	PC3	–	PC0	were	left	off	Table	1.4	because	these	four	pins	are	reserved	for	the
JTAG	 debugger,	 and	 should	 not	 be	 used	 for	 regular	 I/O.	 Notice,	 most	 alternate
function	modules	 (e.g.,	 U0Rx)	 only	 exist	 on	 one	 pin	 (PA0).	While	 other	 functions
could	be	mapped	 to	 two	or	 three	pins	 (CAN0Rx	could	be	mapped	 to	PB4,	PE4	or
PF3.)

The	 two	 pins	 PD7	 and	 PF0	 are	 associated	with	NMI;	 these	 two	 pins	 are	 initially
locked.	This	means	if	you	plan	to	use	PD7	or	PF0	you	will	need	to	unlock	it	by	first
writing	0x4C4F434B	to	the	lock	register	and	then	setting	bits	in	the	commit	register.
This	code	unlocks	PF0

		 GPIO_PORTF_LOCK_R	=	0x4C4F434B;			//	unlock	GPIO	Port	F
		 GPIO_PORTF_CR_R	=	0x1F;											//	allow	changes	to	PF4-0

	

Figure	1.14.	I/O	port	pins	for	the	TM4C123GH6PM	microcontroller.

For	example,	if	we	wished	to	use	UART7	on	pins	PE0	and	PE1,	we	would	set	bits
1,0	 in	 the	 digital	 enable	 register	 (enable	 digital),	 clear	 bits	 1,0	 in
the GPIO_PORTE_AMSEL_R 	register	(disable	analog)	and	set	the	PMCx	bits	in
the	 	 for	 PE0	 PE1	 to	 0001	 (enable	 alternate	 function)	 in
the GPIO_PORTE_PCTL_R 	register.	If	we	wished	to	sample	an	analog	signal	on
PD0,	we	would	clear	bit	0	in	the	digital	enable	register	(disable	digital),	and	set	bit

0	 in	 the	 GPIOAMSEL	 (enable	 analog),	 and	 activate	 one	 of	 the	 ADCs	 to	 sample
channel	7.

The	 TM4C	 LaunchPad	 evaluation	 board	 (Figure	 1.15)	 is	 a	 low-cost	 development
board	 available	 as	 part	 number	 EK-TM4C123GXL	 from	 www.ti.com	 and	 from
regular	electronic	distributors	like	Digikey,	Mouser,	and	Avnet.	The	kit	provides	an
integrated	 Stellaris	 In-Circuit	 Debug	 Interface	 (ICDI),	 which	 allows	 programming
and	debugging	of	the	onboard	TM4C	microcontroller.	One	USB	cable	is	used	by	the
debugger	 (ICDI),	 and	 the	 other	USB	 allows	 the	 user	 to	 develop	USB	 applications
(device).	The	user	can	select	board	power	to	come	from	either	the	debugger	(ICDI)
or	the	USB	device	(device)	by	setting	the	Power	selection	switch.
	
The	LaunchPad	 board	 can	 also	 be	 used	 as	 a	 JTAG	debugger	 for	 another	 target	 by
removing	 the	 VDD	 jumper	 and	 connecting	 the	 target	 to	 PC0=TCK,	 PC1=TMS,
PC2=TDI,	and	PC3=TDO
	

IO Ain 0 1 2 3 4 5 6 7 8 9 14
PA0 	 Port U0Rx 	 	 	 	 	 	 CAN1Rx 	 	
PA1 	 Port U0Tx 	 	 	 	 	 	 CAN1Tx 	 	
PA2 	 Port 	 SSI0Clk 	 	 	 	 	 	 	 	
PA3 	 Port 	 SSI0Fss 	 	 	 	 	 	 	 	
PA4 	 Port 	 SSI0Rx 	 	 	 	 	 	 	 	
PA5 	 Port 	 SSI0Tx 	 	 	 	 	 	 	 	
PA6 	 Port 	 	 I2C1SCL 	 M1PWM2 	 	 	 	 	
PA7 	 Port 	 	 I2C1SDA 	 M1PWM3 	 	 	 	 	
PB0 USB0ID Port U1Rx 	 	 	 	 	 T2CCP0 	 	 	
PB1 USB0VBUS Port U1Tx 	 	 	 	 	 T2CCP1 	 	 	
PB2 	 Port 	 	 I2C0SCL 	 	 	 T3CCP0 	 	 	
PB3 	 Port 	 	 I2C0SDA 	 	 	 T3CCP1 	 	 	
PB4 Ain10 Port 	 SSI2Clk 	 M0PWM2 	 	 T1CCP0 CAN0Rx 	 	
PB5 Ain11 Port 	 SSI2Fss 	 M0PWM3 	 	 T1CCP1 CAN0Tx 	 	
PB6 	 Port 	 SSI2Rx 	 M0PWM0 	 	 T0CCP0 	 	 	
PB7 	 Port 	 SSI2Tx 	 M0PWM1 	 	 T0CCP1 	 	 	
PC4 C1- Port U4Rx U1Rx 	 M0PWM6 	 IDX1WT0CCP0 U1RTS 	 	
PC5 C1+ Port U4Tx U1Tx 	 M0PWM7 	 PhA1WT0CCP1 U1CTS 	 	
PC6 C0+ Port U3Rx 	 	 	 	 PhB1WT1CCP0USB0epen 	 	
PC7 C0- Port U3Tx 	 	 	 	 	 WT1CCP1 USB0pflt 	 	
PD0 Ain7 Port SSI3Clk SSI1Clk I2C3SCL M0PWM6M1PWM0 	 WT2CCP0 	 	 	
PD1 Ain6 Port SSI3Fss SSI1Fss I2C3SDAM0PWM7M1PWM1 	 WT2CCP1 	 	 	
PD2 Ain5 Port SSI3Rx SSI1Rx 	 M0Fault0 	 	 WT3CCP0USB0epen 	 	
PD3 Ain4 Port SSI3Tx SSI1Tx 	 	 	 IDX0WT3CCP1 USB0pflt 	 	
PD4 USB0DM Port U6Rx 	 	 	 	 	 WT4CCP0 	 	 	
PD5 USB0DP Port U6Tx 	 	 	 	 	 WT4CCP1 	 	 	
PD6 	 Port U2Rx 	 	 M0Fault0 	 PhA0WT5CCP0 	 	 	
PD7 	 Port U2Tx 	 	 	 	 PhB0WT5CCP1 NMI 	 	
PE0 Ain3 Port U7Rx 	 	 	 	 	 	 	 	 	
PE1 Ain2 Port U7Tx 	 	 	 	 	 	 	 	 	
PE2 Ain1 Port 	 	 	 	 	 	 	 	 	 	

PE3 Ain0 Port 	 	 	 	 	 	 	 	 	 	
PE4 Ain9 Port U5Rx 	 I2C2SCL M0PWM4M1PWM2 	 	 CAN0Rx 	 	
PE5 Ain8 Port U5Tx 	 I2C2SDAM0PWM5M1PWM3 	 	 CAN0Tx 	 	
PF0 	 Port U1RTS SSI1Rx CAN0Rx 	 M1PWM4PhA0 T0CCP0 NMI C0o 	
PF1 	 Port U1CTS SSI1Tx 	 	 M1PWM5 PhB0 T0CCP1 	 C1o TRD1
PF2 	 Port 	 SSI1Clk 	 M0Fault0 M1PWM6 	 T1CCP0 	 	 TRD0
PF3 	 Port 	 SSI1Fss CAN0Tx 	 M1PWM7 	 T1CCP1 	 	 TRCLK
PF4 	 Port 	 	 	 	 M1Fault0 IDX0 T2CCP0 USB0epen 	 	

Table	1.4.	PMCx	bits	in	the	GPIOPCTL	register	on	the	LM4F/TM4C	specify	alternate
functions.	PB1,	PB0,	PD4	and	PD5	are	hardwired	to	the	USB	device.	PA0	and	PA1	are
hardwired	to	the	serial	port.	PWM	is	not	available	on	LM4F120.

Figure	1.15.	Tiva	TM4C123	Launchpad	Evaluation	Board	based	on	the
TM4C123GH6PM.

Pins	PA1	–	PA0	create	a	serial	port,	which	is	linked	through	the	debugger	cable	to	the
PC.	The	serial	link	is	a	physical	UART	as	seen	by	the	TM4C	and	mapped	to	a	virtual
COM	 port	 on	 the	 PC.	 The	 USB	 device	 interface	 uses	 PD4	 and	 PD5.	 The	 JTAG
debugger	requires	pins	PC3	–	PC0.	The	LaunchPad	connects	PB6	to	PD0,	and	PB7	to
PD1.	If	you	wish	to	use	both	PB6	and	PD0	you	will	need	to	remove	the	R9	resistor.
Similarly,	to	use	both	PB7	and	PD1	remove	the	R10	resistor.

The	TM4C123	LaunchPad	evaluation	board	has	two	switches	and	one	3-color	LED.
See	Figure	1.16.	The	switches	are	negative	 logic	and	will	 require	activation	of	 the
internal	 pull-up	 resistors.	 In	 particular,	 you	 will	 set	 bits	 0	 and
4inGPIO_PORTF_PUR_R 	 register.	 The	 LED	 interfaces	 on	 PF3	 –	 PF1	 are
positive	logic.	To	use	the	LED,	make	the	PF3	–	PF1	pins	an	output.	To	activate	the
red	 color,	 output	 a	 one	 to	 PF1.	 The	 blue	 color	 is	 on	 PF2,	 and	 the	 green	 color	 is
controlled	by	PF3.	The	0-Ω	resistors	(R1,	R2,	R11,	R12,	and	R13)	can	be	removed
to	disconnect	the	corresponding	pin	from	the	external	hardware.

The	LaunchPad	has	 four	10-pin	connectors,	 labeled	as	 J1	 J2	 J3	 J4	 in	Figures	1.15
and	 1.17,	 to	 which	 you	 can	 attach	 your	 external	 signals.	 The	 top	 side	 of	 these
connectors	 has	male	 pins	 and	 the	 bottom	 side	 has	 female	 sockets.	 The	 intent	 is	 to
stack	boards	 together	 to	make	a	 layered	 system	see	Figure	1.17.	Texas	 Instruments

also	supplies	Booster	Packs,	which	are	pre-made	external	devices	that	will	plug	into
this	40-pin	connector.	The	Booster	Packs	for	the	MSP430	LaunchPad	are	compatible
(one	simply	plugs	these	20-pin	connectors	into	the	outer	two	rows)	with	this	board.
The	 inner	10-pin	headers	(connectors	J3	and	J4)	are	not	 intended	to	be	compatible
with	other	TI	LaunchPads.	J3	and	J4	apply	only	to	Tiva	Booster	Packs.

There	are	a	number	of	good	methods	 to	connect	external	circuits	 to	 the	LaunchPad.
One	method	is	to	purchase	a	male	to	female	jumper	cable	(e.g.,	item	number	826	at
www.adafruit.com).	A	second	method	is	to	solder	a	solid	wire	into	a	female	socket
(e.g.,	Hirose	DF11-2428SCA)	creating	a	male	to	female	jumper	wire.

Figure	1.16.	Switch	and	LED	interfaces	on	the	Texas	Instruments	TM4C123
LaunchPad	Evaluation	Board.	The	zero	ohm	resistors	can	be	removed	so	the
corresponding	pin	can	be	used	for	its	regular	purpose.

Figure	1.17.	Interface	connectors	on	the	Texas	Instruments	TM4C123
LaunchPad	Evaluation	Board.

1.4.3.	Texas	Instruments	TM4C1294	Connected	LaunchPad
I/O	pins

Figure	1.18	shows	the	90	I/O	pins	available	on	the	TM4C1294NCPDT,	which	is	the
microcontroller	used	on	the	Connected	LaunchPad.	Pins	on	the	TM4C	family	can	be
assigned	 to	 as	 many	 as	 seven	 different	 I/O	 functions,	 see	 Table	 1.5.	 Pins	 can	 be
configured	for	digital	I/O,	analog	input,	timer	I/O,	or	serial	I/O.	For	example	PA0	can

be	digital	 I/O,	 serial	 input,	 I2C	clock,	Timer	 I/O,	or	CAN	receiver.	There	are	 two
buses	used	for	I/O.	Unlike	the	TM4C123,	the	digital	I/O	ports	are	only	connected	to
the	advanced	high-performance	bus.	The	microcontroller	can	perform	I/O	bus	cycles
simultaneous	with	 instruction	fetches	 from	flash	ROM.	The	TM4C1294NCPDT	has
eight	UART	ports,	four	SSI	ports,	ten	I2C	ports,	two	12-bit	ADCs,	eight	timers,	two
CAN	ports,	 a	USB	 interface,	 8	PWM	outputs,	 and	 an	Ethernet	 port.	Of	 the	 90	 I/O
lines,	twenty	pins	can	be	used	for	analog	inputs	to	the	ADC.	The	ADC	can	convert	up
to	1M	samples	per	second.	Table	1.5	lists	the	regular	and	alternate	functions	of	the
port	pins.

Figure	1.18.	I/O	port	pins	for	the	TM4C1294NCPDT	microcontroller.

Figure	1.19	shows	the	pin	locations	of	the	two	Booster	Pack	connectors.	There	are
three	methods	to	connect	external	circuits	to	the	Connected	LaunchPad.	One	method
uses	male	 to	 female	 jumper	 cable	 (e.g.,	 item	number	826	at	www.adafruit.com)	or
solder	 a	 solid	wire	 into	 a	 female	 socket	 (e.g.,	Hirose	DF11-2428SCA)	 creating	 a
male-to-female	jumper	wire.	In	this	method,	you	connect	the	female	socket	to	the	top
of	the	LaunchPad	and	the	male	pin	into	a	solderless	breadboard.	The	second	method
uses	male-to-male	wires	interfacing	to	the	bottom	of	the	LaunchPad.	The	third	method
uses	 two	49-pin	 right-angle	headers	 so	 the	entire	LaunchPad	can	be	plugged	 into	a
breadboard.	 You	 will	 need	 one	 each	 of	 Samtec	 parts	 TSW-149-09-L-S-RE	 and
TSW-149-08-L-S-RA.	This	configuration	is	shown	in	Figure	1.20,	and	directions	can
be	found	at	http://users.ece.utexas.edu/~valvano/arm/TM4C1294soldering.pdf

The	 Connected	 LaunchPad	 has	 two	 switches	 and	 four	 LEDs.	 Switch	 SW1	 is
connected	to	pin	PJ0,	and	SW2	is	connected	to	PJ1.	These	two	switches	are	negative
logic	and	require	enabling	the	internal	pull	up	(PUR).	A	reset	switch	will	reset	the

microcontroller	and	your	 software	will	 start	when	you	 release	 the	 switch.	Positive
logic	 LEDs	 D1,	 D2,	 D3,	 and	 D4	 are	 connected	 to	 PN1,	 PN0,	 PF4,	 and	 PF0
respectively.	A	 power	LED	 indicates	 that	 3.3	 volt	 power	 is	 present	 on	 the	 board.
R19	 is	 a	 0	Ω	 resistor	 connecting	 PA3	 and	 PQ2.	 Similarly,	 R20	 is	 a	 0	Ω	 resistor
connecting	PA2	and	PQ3.	You	need	to	remove	R19	if	you	plan	to	use	both	PA3	and
PQ2.	You	need	to	remove	R20	if	you	plan	to	use	both	PA2	and	PQ3.	See	Figures	1.20
and	1.21.

Figure	1.19.	Interface	connectors	on	the	EK-TM4C1294-XL	LaunchPad
Evaluation	Board.

Figure	1.20.	EK-TM4C1294-XL	Connected	LaunchPad.

Jumper	JP1	has	six	pins	creating	 three	 rows	of	 two.	Exactly	one	 jumper	should	be
connected	in	the	JP1	block,	which	selects	the	power	source.	The	top	position	is	for
BoosterPack	 power.	 The	 middle	 position	 draws	 power	 from	 the	 USB	 connector,
labeled	OTG,	 on	 the	 left	 side	 of	 the	 board	 near	 the	Ethernet	 jack.	We	 recommend
placing	 the	 JP1	 jump	 in	 the	 bottom	 position	 so	 power	 is	 drawn	 from	 the	 ICDI
(Debug)	USB	connection.	Under	normal	conditions,	you	should	place	jumpers	in	both
J2	and	J3.	Jumpers	J2	and	J3	facilitate	measuring	current	to	the	microcontroller.	We
recommend	 you	 place	 JP4	 and	 JP5	 in	 the	 “UART”	 position	 so	 PA1	 and	 PA0	 are
connected	 to	 the	 PC	 as	 a	 virtual	 COM	 port.	 Your	 code	 runs	 on	 the	 128-pin
TM4C1294	microcontroller.	There	is	a	second	TM4C	microcontroller	on	the	board,

which	acts	as	the	JTAG	debugger	for	your	TM4C1294.	You	connect	the	Debug	USB
to	a	PC	in	order	to	download	and	debug	software	on	the	board.	The	other	USB	is	for
user	applications.

Pin Analog 1 2 3 5 6 7 11 13 14 15
PA0 - U0Rx I2C9SCL T0CCP0 - - CAN0Rx - - - -
PA1 - U0Tx I2C9SDA T0CCP1 - - CAN0Tx - - - -
PA2 - U4Rx I2C8SCL T1CCP0 - - - - - - SSI0Clk
PA3 - U4Tx I2C8SDA T1CCP1 - - - - - - SSI0Fss
PA4 - U3Rx I2C7SCL T2CCP0 - - - - - - SSI0XDAT0
PA5 - U3Tx I2C7SDA T2CCP1 - - - - - - SSI0XDAT1
PA6 - U2Rx I2C6SCL T3CCP0 USB0EPEN - - - SSI0XDAT2 - EPI0S8
PA7 - U2Tx I2C6SDA T3CCP1 USB0PFLT - - USB0EPEN SSI0XDAT3 - EPI0S9
PB0 USB0ID U1Rx I2C5SCL T4CCP0 - - CAN1Rx - - - -
PB1 USB0VBUSU1Tx I2C5SDA T4CCP1 - - CAN1Tx - - - -
PB2 - - I2C0SCL T5CCP0 - - - - - USB0STP EPI0S27
PB3 - - I2C0SDA T5CCP1 - - - - - USB0CLK EPI0S28
PB4 AIN10 U0CTS I2C5SCL - - - - - - - SSI1Fss
PB5 AIN11 U0RTS I2C5SDA - - - - - - - SSI1Clk
PC4 C1- U7Rx - - - - - - - - EPI0S7
PC5 C1+ U7Tx - - - - RTCCLK - - - EPI0S6
PC6 C0+ U5Rx - - - - - - - - EPI0S5
PC7 C0- U5Tx - - - - - - - - EPI0S4
PD0 AIN15 - I2C7SCL T0CCP0 C0o - - - - - SSI2XDAT1
PD1 AIN14 - I2C7SDA T0CCP1 C1o - - - - - SSI2XDAT0
PD2 AIN13 - I2C8SCL T1CCP0 C2o - - - - - SSI2Fss
PD3 AIN12 - I2C8SDA T1CCP1 - - - - - - SSI2Clk
PD4 AIN7 U2Rx - T3CCP0 - - - - - - SSI1XDAT2
PD5 AIN6 U2Tx - T3CCP1 - - - - - - SSI1XDAT3
PD6 AIN5 U2RTS - T4CCP0 USB0EPEN - - - - - SSI2XDAT3
PD7 AIN4 U2CTS - T4CCP1 USB0PFLT - - - - - SSI2XDAT2
PE0 AIN3 U1RTS - - - - - - - - -
PE1 AIN2 U1DSR - - - - - - - - -
PE2 AIN1 U1DCD - - - - - - - - -
PE3 AIN0 U1DTR - - - - - - - - -
PE4 AIN9 U1RI - - - - - - - - SSI1XDAT0
PE5 AIN8 - - - - - - - - - SSI1XDAT1
PF0 - - - - EN0LED0 M0PWM0 - - - SSI3XDAT1TRD2
PF1 - - - - EN0LED2 M0PWM1 - - - SSI3XDAT0TRD1
PF2 - - - - - M0PWM2 - - - SSI3Fss TRD0
PF3 - - - - - M0PWM3 - - - SSI3Clk TRCLK
PF4 - - - - EN0LED1 M0FAULT0 - - - SSI3XDAT2TRD3
PG0 - - I2C1SCL - EN0PPS M0PWM4 - - - - EPI0S11
PG1 - - I2C1SDA - - M0PWM5 - - - - EPI0S10
PH0 - U0RTS - - - - - - - - EPI0S0
PH1 - U0CTS - - - - - - - - EPI0S1
PH2 - U0DCD - - - - - - - - EPI0S2
PH3 - U0DSR - - - - - - - - EPI0S3
PJ0 - U3Rx - - EN0PPS - - - - - -
PJ1 - U3Tx - - - - - - - - -
PK0 AIN16 U4Rx - - - - - - - - EPI0S0

PK1 AIN17 U4Tx - - - - - - - - EPI0S1
PK2 AIN18 U4RTS - - - - - - - - EPI0S2
PK3 AIN19 U4CTS - - - - - - - - EPI0S3
PK4 - - I2C3SCL - EN0LED0 M0PWM6 - - - - EPI0S32
PK5 - - I2C3SDA - EN0LED2 M0PWM7 - - - - EPI0S31
PK6 - - I2C4SCL - EN0LED1 M0FAULT1 - - - - EPI0S25
PK7 - U0RI I2C4SDA - RTCCLK M0FAULT2 - - - - EPI0S24
PL0 - - I2C2SDA - - M0FAULT3 - - - USB0D0 EPI0S16
PL1 - - I2C2SCL - - PhA0 - - - USB0D1 EPI0S17
PL2 - - - - C0o PhB0 - - - USB0D2 EPI0S18
PL3 - - - - C1o IDX0 - - - USB0D3 EPI0S19
PL4 - - - T0CCP0 - - - - - USB0D4 EPI0S26
Pin Analog 1 2 3 5 6 7 11 13 14 15
PL5 - - - T0CCP1 - - - - - USB0D5 EPI0S33
PL6 USB0DP - - T1CCP0 - - - - - - -
PL7 USB0DM - - T1CCP1 - - - - - - -
PM0 - - - T2CCP0 - - - - - - EPI0S15
PM1 - - - T2CCP1 - - - - - - EPI0S14
PM2 - - - T3CCP0 - - - - - - EPI0S13
PM3 - - - T3CCP1 - - - - - - EPI0S12
PM4TMPR3 U0CTS - T4CCP0 - - - - - - -
PM5TMPR2 U0DCD - T4CCP1 - - - - - - -
PM6TMPR1 U0DSR - T5CCP0 - - - - - - -
PM7TMPR0 U0RI - T5CCP1 - - - - - - -
PN0 - U1RTS - - - - - - - - -
PN1 - U1CTS - - - - - - - - -
PN2 - U1DCD U2RTS - - - - - - - EPI0S29
PN3 - U1DSR U2CTS - - - - - - - EPI0S30
PN4 - U1DTR U3RTS I2C2SDA - - - - - - EPI0S34
PN5 - U1RI U3CTS I2C2SCL - - - - - - EPI0S35
PP0 C2+ U6Rx - - - - - - - - SSI3XDAT2
PP1 C2- U6Tx - - - - - - - - SSI3XDAT3
PP2 - U0DTR - - - - - - - USB0NXT EPI0S29
PP3 - U1CTS U0DCD - - - RTCCLK - - USB0DIR EPI0S30
PP4 - U3RTS U0DSR - - - - - - USB0D7 -
PP5 - U3CTS I2C2SCL - - - - - - USB0D6 -
PQ0 - - - - - - - - - SSI3Clk EPI0S20
PQ1 - - - - - - - - - SSI3Fss EPI0S21
PQ2 - - - - - - - - - SSI3XDAT0EPI0S22
PQ3 - - - - - - - - - SSI3XDAT1EPI0S23
PQ4 - U1Rx - - - - DIVSCLK - - - -

Table	1.5.	PMCx	bits	in	the	GPIO_PORTx_PCTL_R	register	on	the	TM4C1294	specify
alternate	functions.	PD7	can	be	NMI	by	setting	PCTL	bits	31-28	to	8.	PL6	and	PL7	are
hardwired	to	the	USB.

Each	pin	has	one	configuration	bit	in	the	AMSEL	register.	We	set	this	bit	to	connect
the	port	pin	to	the	ADC	or	analog	comparator.	For	digital	functions,	each	pin	also	has
four	bits	 in	 the	PCTL	 register,	which	we	set	 to	 specify	 the	alternative	 function	 for
that	pin	(0	means	regular	 I/O	port).	Table	1.5	shows	 the	4-bit	PCTL	 configuration
used	to	connect	each	pin	to	its	alternate	function.	For	example,	column	“3”	means	set

4-bit	field	in	PCTL	to	0011.

Pins	PC3	–	PC0	were	left	off	Table	1.5	because	these	four	pins	are	reserved	for	the
JTAG	 debugger	 and	 should	 not	 be	 used	 for	 regular	 I/O.	 Notice,	 some	 alternate
function	 modules	 (e.g.,	 U0Rx)	 only	 exist	 on	 one	 pin	 (PA0),	 while	 other	 functions
could	be	mapped	to	two	or	 three	pins.	For	example,	 	T0CCP0	could	be	mapped	to
one	of	the	following:	PA0,	PD0,	or	PL4.

The	PCTL	bits	in	Table	1.5	can	be	tricky	to	understand.	For	example,	if	we	wished	to
use	 UART6	 on	 pins	 PP0	 and	 PP1,	 we	 would	 set	 bits	 1,0	 in	 the	 DEN	 register
(enable),	clear	bits	1,0	in	the	AMSEL	register	(disable),	write	a	0001,0001	to	bits
7–0	 in	 the	 PCTL	 register	 (UART)	 GPIO_PORTP_PCTL_R	 =
(GPIO_PORTP_PCTL_R&0xFFFFFFFF)+0x00000011;	 and	 set	 bits	 1,0	 in	 the
AFSEL	register	(enable	alternate	function).	If	we	wished	to	sample	an	analog	signal
on	PD0,	we	would	set	bit	0	in	the	alternate	function	select	register	AFSEL,	clear	bit
0	 in	 the	digital	enable	 register	DEN	 (disable	digital),	 set	bit	0	 in	 the	analog	mode
select	 register	AMSEL	 (enable	 analog),	 and	 activate	 one	 of	 the	 ADCs	 to	 sample
channel	15.

Jumpers	 JP4	and	JP5	select	whether	 the	 serial	port	on	UART0	(PA1	–	PA0)	or	on
UART2	(PD5	–	4)	is	linked	through	the	debugger	cable	to	the	PC.	The	serial	link	is	a
physical	UART	as	seen	by	the	TM4C1294	and	is	mapped	to	a	virtual	COM	port	on
the	PC.	The	USB	device	interface	uses	PL6	and	PL7.	The	JTAG	debugger	requires
pins	PC3	–	PC0.

Figure	1.21.	Switch	and	LED	interfaces	on	the	Connected	LaunchPad
Evaluation	Board.	The	zero	ohm	resistors	can	be	removed	so	all	the	pins	can
be	used.	See	Chapter	9	for	Ethernet	connections.

To	 use	 the	 negative	 logic	 switches,	 make	 the	 pins	 digital	 inputs,	 and	 activate	 the
internal	pull-up	resistors.	In	particular,	you	will	activate	the	Port	J	clock,	clear	bits	0
and	 1inGPIO_PORTJ_DIR_R 	 register,	 set	 bits	 0	 and
1inGPIO_PORTJ_DEN_R 	 register,	 and	 set	 bits	 0	 and
1inGPIO_PORTJ_PUR_R 	register.	The	LED	interfaces	are	positive	logic.	To	use
the	LEDs,	make	 the	PN1,	PN0,	PF4,	and	PF0	pins	an	output.	You	will	activate	 the

Port	N	clock,	set	bits	0	and	1inGPIO_PORTN_DIR_R 	register,	and	set	bits	0	and
1inGPIO_PORTN_DEN_R 	register.	You	will	activate	the	Port	F	clock,	set	bits	0
and	 4inGPIO_PORTF_DIR_R 	 register,	 and	 set	 bits	 0	 and
4inGPIO_PORTF_DEN_R 	register.

	

1.4.4.	Texas	Instruments	MSP432	LaunchPad	I/O	pins
Figure	1.22	draws	the	I/O	port	structure	for	the	MSP432P401R.	This	microcontroller
is	used	on	 the	MSP-EXP432P401R	LaunchPad.	 	Pins	can	be	configured	 for	digital
I/O,	 analog	 input,	 timer	 I/O,	 or	 serial	 I/O.	For	 example	P1.2	 can	be	digital	 I/O	or
serial	receive	input.

Because	 of	 the	 multiple	 buses,	 the	 microcontroller	 can	 perform	 I/O	 bus	 cycles
simultaneous	with	instruction	fetches	from	flash	ROM.	The	MSP432P401R	has	four
UART	ports,	eight	SPI	ports,	 four	 I2C	ports,	a	14-bit	ADC,	and	four	 timers.	There
are	84	I/O	lines.	There	are	24	ADC	inputs,	and	the	ADC	can	convert	up	to	1	million
samples	per	second.

Figure	1.22.	I/O	port	pins	for	the	MSP432P401R	microcontroller.	(Six	pins
on	Port	J	not	shown).

The	MSP432	LaunchPad	evaluation	board	(Figure	1.23)	is	a	low-cost	development
board	 available	 as	 part	 number	 MSP-EXP432P401R	 from	 www.ti.com	 and	 from
regular	 electronic	 distributors	 like	 Digikey,	 Mouser,	 element14,	 and	 Avnet.	 The
board	 includes	 XDS110-ET,	 an	 open-source	 onboard	 debugger,	 which	 allows
programming	 and	 debugging	 of	 the	MSP432	microcontroller.	The	USB	 interface	 is
used	by	the	debugger	and	includes	a	serial	channel.	

Figure	1.23.	LaunchPad	based	on	the	MSP432P401RIPZ.

The	MSP432	LaunchPad	evaluation	board	has	 two	switches,	one	3-color	LED	and
one	 red	 LED,	 as	 shown	 in	 Figure	 1.24.	 The	 switches	 are	 negative	 logic	 and	will
require	activation	of	 the	 internal	pull-up	resistors.	 In	 this	class	we	will	not	use	 the
switches	and	LEDs	on	the	LaunchPad,	but	rather	focus	on	the	hardware	provided	by
the	MK-II	BoosterPack.

Figure	1.24.	Switch	and	LED	interfaces	on	the	LaunchPad	Evaluation
Board.	The	jumpers	can	be	removed	so	the	corresponding	pin	can	be	used
without	connection	to	the	external	circuits.

The	LaunchPad	has	four	10-pin	connectors,	labeled	as	J1	J2	J3	J4	in	Figure	1.25,	to
which	you	can	attach	your	external	signals.	The	top	side	of	these	connectors	has	male
pins,	and	the	bottom	side	has	female	sockets.

Figure	1.25.	Interface	connectors	on	the	MSP432	LaunchPad	Evaluation
Board,	67	I/O	pins.

1.4.5.	Interfacing	to	a	LaunchPad
The	LaunchPad	ecosystem	allows	boards	to	stack	together	to	make	a	layered	system,
see	Figure	1.26.	The	engineering	community	has	developed	BoosterPacks,	which	are
pre-made	external	devices	that	will	plug	into	this	40-pin	connector.	In	addition	to	the
40-pin	 header	 on	 all	 LaunchPads,	 the	 MSP432	 and	 TM4C1294	 LaunchPads	 have
additional	headers	on	the	end.

	

Figure	1.26.	An	embedded	system	with	MSP432	LaunchPad	and	a	Grove
BoosterPack	from	Seeedstudio.

There	are	a	number	of	good	methods	 to	connect	external	circuits	 to	 the	LaunchPad.
One	method	is	to	purchase	a	male	to	female	jumper	cable	(e.g.,	item	number	826	at
www.adafruit.com).	A	second	method	is	to	solder	a	solid	wire	into	a	female	socket
(e.g.,	 Hirose	 DF11-2428SCA)	 creating	 a	 male	 to	 female	 jumper	 wire.	 The	 third
method	is	to	use	BoosterPacks,	so	you	will	not	need	to	connect	individual	wires	to
the	LaunchPad.	Figure	1.27	shows	the	MSP432	with	a	CC2650	BoosterPack.

Figure	1.27.	A	MSP432	LaunchPad	with	a	BOOSTXL-CC2650MA
BoosterPack.

1.5.	ARM	Cortex-M	Assembly	Language
This	 section	 focuses	 on	 the	 ARM	 Cortex-M	 assembly	 language.	 There	 are	 many
ARM	 processors,	 and	 this	 book	 focuses	 on	 Cortex-M	 microcontrollers,	 which
executes	Thumb	 instructions	 extended	with	Thumb-2	 technology.	This	 section	 does
not	present	all	the	Thumb	instructions.	Rather,	we	present	a	few	basic	instructions.	In
particular,	we	will	show	only	twelve	instructions,	which	will	be	both	necessary	and
sufficient	 to	construct	your	operating	system.	For	further	details,	please	refer	 to	 the
appendix	or	to	the	ARM	Cortex-M	Technical	Reference	Manual.

1.5.1.	Syntax
Assembly	instructions	have	four	fields	separated	by	spaces	or	 tabs	as	 illustrated	in
Figure	1.28.

Labels:	 The	 label	 field	 is	 optional	 and	 starts	 in	 the	 first	 column	 and	 is	 used	 to
identify	the	position	in	memory	of	the	current	instruction.	You	must	choose	a	unique
name	for	each	label.

Opcodes	or	 pseudo-ops:	The	opcode	 field	 specifies	which	processor	 command	 to
execute.	 The	 twelve	 op	 codes	 we	 will	 present	 in	 this	 bookare LDR	 STR	MOV
PUSH	POP	B	BL	BXADD 	SUB	CPSID 	and CPSIE .	If	there	is	a	label	there	must
be	at	least	one	space	or	one	tab	between	the	label	and	the	opcode.	If	there	is	no	label
then	there	must	be	at	least	one	space	or	one	tab	at	the	beginning	of	the	line.	There	are
also	pseudo-ops	that	the	assembler	uses	to	control	features	of	the	assembly	process.
Examples	of	pseudo-ops	you	will	encounter	in	this	class	are AREA	EQU	IMPORT
EXPORT and ALIGN .	An	op	code	generates	machine	instructions	that	get	executed
by	 the	 processor	 at	 run	 time,	while	 a	 pseudo-op	 code	generates	 instructions	 to	 the
assembler	that	get	interpreted	at	assembly	time.	

Operands:	 The	 operand	 field	 specifies	 where	 to	 find	 the	 data	 to	 execute	 the
instruction.	 Thumb	 instructions	 have	 0,	 1,	 2,	 3,	 or	 more	 operands,	 separated	 by
commas.

Comments:	 The	 comment	 field	 is	 optional	 and	 is	 ignored	 by	 the	 assembler,	 but
allows	 you	 to	 describe	 the	 software,	making	 it	 easier	 to	 understand.	You	 can	 add
optional	spaces	between	operands	in	the	operand	field.	However,	a	semicolon	must
separate	 the	 operand	 and	 comment	 fields.	 Good	 programmers	 add	 comments	 to
explain	what	 you	 are	 doing,	why	 you	 are	 doing	 it,	 how	 it	was	 tested,	 and	 how	 to
change	it	in	the	future.	Everything	after	the	semicolon	is	a	comment.

Figure	1.28.	Assembly	instructions	have	four	fields:	labels,	opcodes,
operands,	and	comments.

The	 assembler	 translates	 assembly	 source	 code	 into	 object	 code,	 which	 are	 the
machine	instructions	executed	by	the	processor.	All	object	code	is	halfword-aligned.
With	Thumb-2,	instructions	can	be	16	or	32	bits	wide,	and	the	program	counter	bit	0
will	 always	be	0.	The	 listing	 is	 a	 text	 file	 containing	 a	mixture	of	 the	object	 code
generated	by	the	assembler	together	with	our	original	source	code.

Address											Object	code						Label		Opcode		Operand																	comment
0000006A		F100	0001		Incr	ADD			R0,R0,#1			;	increment	the	count
0000006E		4770												BX				LR										;	return

	
When	we	build	a	project	all	 files	are	assembled	or	compiled,	 then	 linked	 together.
The	address	values	shown	 in	 the	 listing	are	 the	 relative	 to	 the	particular	 file	being
assembled.	When	 the	 entire	 project	 is	 built,	 the	 files	 are	 linked	 together,	 and	 the
linker	 decides	 exactly	 where	 in	 memory	 everything	 will	 be.	 After	 building	 the
project,	it	can	be	downloaded,	which	programs	the	object	code	into	flash	ROM.

In	general,	the	assembler	creates	for	each	label	an	entry	in	the	symbol	table	that	maps
the	symbolic	label	to	the	address	in	memory	of	that	line	of	code.	The	exception	to	this
rule	is	when	a	label	is	used	with	the EQU pseudo-op.	The	result	of	anEQU 	pseudo-
op	is	to	place	an	entry	in	the	symbol	table	mapping	the	symbolic	label	with	the	value
of	the	operand.

	

1.5.2.	Addressing	modes	and	operands
A	 fundamental	 issue	 in	 software	 design	 is	 the	 differentiation	 between	 data	 and
addresses.	 Another	 name	 for	 address	 is	 pointer.	 It	 is	 in	 assembly	 language
programming	 in	 general	 and	 addressing	 modes	 in	 specific	 that	 this	 differentiation
becomes	clear.	When	we	put	the	number	1000	into	Register	R0,	whether	this	is	data
or	address	depends	on	how	the	1000	is	used.

The	 addressing	 mode	 is	 the	 format	 the	 instruction	 uses	 to	 specify	 the	 memory
location	to	read	or	write	data.	We	will	see	five	addressing	modes	in	this	class:

Immediate Data	within	the	instruction MOV	R0,#1
Indexed Data	pointed	to	by	register LDR	R0,[R1]
Indexed	with	offset Data	pointed	to	by	register LDR	R0,[R1,#4]
PC-relative Location	is	offset	relative	to	PC BL		Incr
Register-list List	of	registers PUSH	{R4,LR}

	
No	addressing	mode:Some	instructions	operate	completely	within	the	processor	and
require	 no	 memory	 data	 fetches.	 For	 example,	 the ADD 	 R1,R2,R3 	 instruction
performs	R2+R3	and	stores	the	sum	into	R1.	

Immediate	addressing	mode:If	 the	data	 is	 found	 in	 the	 instruction	 itself,	 likeMOV
R0,#1 ,	the	instruction	uses	immediate	addressing	mode.

Indexed	addressing	mode:	A	register	that	contains	the	address	or	location	of	data	is
called	a	pointer	or	index	register.	Indexed	addressingmode	uses	a	register	pointer	to
access	memory.	There	are	many	variations	of	indexed	addressing.	In	this	class,	you
will	 use	 two	 types	 of	 indexed	 addressing.	 The	 form [Rx] 	 uses	 Register	Rx	 as	 a
pointer,	where	Rxis	any	of	the	Registers	from	R0	to	R12.	The	second	type	you	will
need	is	called	indexed	with	offset,	which	has	the	form [Rx,#n] ,	where	n	is	a	number
from	 -255	 to	 4095.	 This	 addressing	 mode	 will	 access	 memory	 at	Rx+n,	 without
modifying	Rx.

PC-relative	addressing	mode:	The	addressing	mode	that	uses	the	PC	as	the	pointer	is
called	PC-relative	 addressing	mode.	 It	 is	used	 for	branching,	 for	 calling	 functions,
and	 accessing	 constant	 data	 stored	 in	 ROM.	 The	 addressing	 mode	 is	 called	 PC-
relative	because	the	machine	code	contains	the	address	difference	between	where	the
program	is	now	and	the	address	to	which	the	program	will	access.

There	are	many	more	addressing	modes,	but	for	now,	these	few	addressing	modes,	as
illustrated	below,	are	enough	to	get	us	started.

Checkpoint	1.15:	What	does	the	addressing	mode	specify?			

Checkpoint	1.16:	How	does	the	processor	differentiate	between	data	and
addresses?			

1.5.3.	List	of	twelve	instructions
We	will	 only	 need	 12	 assembly	 instructions	 in	 order	 to	 design	 our	 own	 real-time
operating	system.	The	following	lists	the	load	and	store	instructions	we	will	need.

			LDR	Rd,	[Rn]						;	load	32-bit	memory	at	[Rn]	to	Rd
			STR		Rt,	[Rn]						;	store	Rt	to	32-bit	memory	at	[Rn]
			LDR	Rd,	[Rn,	#n]	;	load	32-bit	memory	at	[Rn+n]	to	Rd
			STR	Rt,	[Rn,	#n]	;	store	Rt	to	32-bit	memory	at	[Rn+n]
	

Let	M	 be	 the	 32-bit	 value	 specified	 by	 the	 12-bit	 constant	#imm12 .	WhenRd 	 is
absent	 for	 add	and	 subtract,	 the	 result	 is	placed	back	 inRn .	The	 following	 lists	 a
few	more	instructions	we	will	need.

			MOV			Rd,	Rn									;Rd	=	Rn				
			MOV			Rd,	#imm12					;Rd	=	M
			ADD			Rd,	Rn,	Rm					;Rd	=	Rn	+	Rm				
			ADD			Rd,	Rn,	#imm12	;Rd	=	Rn	+	M
			SUB			Rd,	Rn,	Rm					;Rd	=	Rn	-	Rm				
			SUB			Rd,	Rn,	#imm12	;Rd	=	Rn	-	M
			CPSID	I														;disable	interrupts,	I=1				
			CPSIE	I														;enable	interrupts,	I=0

	
Normally	 the	computer	executes	one	 instruction	after	another	 in	a	 linear	 fashion.	 In
particular,	the	next	instruction	to	execute	is	typically	found	immediately	following	the
current	instruction.	We	use	branch	instructions	to	deviate	from	this	straight	line	path.
These	branches	use	PC-relative	addressing.

			B					label					;branch	to	label		
			BX				Rm								;branch	indirect	to	location	specified	by	Rm
			BL				label					;branch	to	subroutine	at	label		

	

These	are	the	push	and	pop	instructions	we	will	need

			PUSH	{Rn,Rm}			;	push	Rn	and	Rm	onto	the	stack
			PUSH		{Rn-Rm}			;	push	all	registers	from	Rn	to	Rm	onto	stack
			POP			{Rn,Rm}			;	pop	two	32-bit	numbers	off	stack	into	Rn,	Rm
			POP			{Rn-Rm}		;	pop	multiple	32-bit	off	stack	to	Rn	-	Rm

	
When	pushing	and	popping	multiple	registers,	it	does	not	matter	the	order	specified
in	 the	 instruction.	 Rather,	 the	 registers	 are	 stored	 in	memory	 such	 that	 the	 register
with	the	smaller	number	is	stored	at	the	address	with	a	smaller	value.	For	example,
consider	the	execution	of PUSH 	{R1,R4-R6} .	Assume	the	registers	R1,	R4,	R5,	and
R6	initially	contain	the	values	1,	4,	5,	and	6	respectively.	Figure	1.29shows	the	value
from	 lowest-numbered	R1	 is	positioned	at	 the	 lowest	 stack	address.	 If	 four	entries
are	 popped	with	 the POP 	 {R0,R2,R7,R9} 	 instruction,	 the	 value	 from	 the	 lowest
stack	address	is	loaded	into	the	lowest-numbered	R0.

Observation:	To	push	32-bit	data	on	the	stack,	first	the	SP	is	decremented	by	4,
and	then	the	data	are	stored	from	a	register	to	the	RAM	location	pointed	to	by	SP.

Observation:	To	pop	32-bit	data	from	the	stack,	first	the	data	are	read	from	the
RAM	location	pointed	to	by	the	SP	into	a	register,	and	then	the	SP	is	incremented
by	4.

	

Figure	1.29.	Stack	drawings	showing	how	multiple	registered	are	pushed	and
popped.

Checkpoint	1.17:	How	is	the	SP	modified	by	the	PUSH	{R1,R4-R6}	instruction?

1.5.4.	Accessing	memory
One	of	the	basic	operations	we	must	perform	is	reading	and	writing	global	variables.
Since	all	calculations	are	performed	in	registers,	we	must	first	bring	the	value	into	a
register,	modify	 the	 register	value,	and	 then	store	 the	new	value	back	 into	memory.
Consider	 a	 simple	 operation	 of	 incrementing	 a	 global	 variable	 in	 both	 C	 and
assembly	 language.	 Variables	 can	 exist	 anywhere	 in	 RAM,	 however	 for	 this
illustration	 assume	 the	 variable count is	 located	 in	 memory	 at	 0x20000100.	 The
first LDR 	 instruction	 gets	 a	 pointer	 to	 the	 variable	 in	 R0	 as	 illustrated	 in	 Figure
1.30.	This	means	R0	will	have	the	value	0x20000100.	This	value	is	a	pointer	to	the
variable count .	 The	 way	 it	 actually	 works	 is	 the	 assembler	 places	 a	 constant
0x20000100	 in	 code	 spaceand	 translates	 the =count into	 the	 correct	 PC-relative
access	to	the	constant	(e.g., LDR	R0,[PC,#28]).	The	second LDR dereferences	 the
pointer	 to	 fetch	 the	 value	 of	 the	 variable	 into	 R1.	 More	 specifically,	 the
second LDR will	 read	 the	 32-bit	 contents	 at	 0x20000100	 and	 put	 it	 in	 R1.
The ADD instruction	 increments	 the	 value,	 and	 the STR instruction	 writes	 the	 new
value	 back	 into	 the	 global	 variable.	 More	 specifically,	 the STR 	 instruction	 will
store	the	32-bit	value	from	R1	into	at	memory	at	0x20000100.

			LDR	R0,=count	;address	of	count
			LDR	R1,[R0]		;value	of	count
			ADD	R1,R1,#1
			STR	R1,[R0]		;store	new	value

	
count	=	count+1;

	

		Figure	1.30.	Indexed	addressing	using	R0	as	a	register	pointer	to	access
memory.	Data	is	moved	into	R1.	Code	space	is	where	we	place	programs,
and	data	space	is	where	we	place	variables.	The	dotted	arrows	in	this	figure
represent	the	motion	of	information,	and	the	solid	arrow	is	a	pointer.

Let’s	 work	 through	 code	 similar	 to	 what	 we	 will	 use	 in	 Chapter	 3as	 part	 of	 our
operating	system.	The	above	example	used	indexed	addressing	with	an	implicit	offset
of	0.	However,	you	will	also	need	to	understand	indexed	addressing	with	an	explicit
offset.	In	this	example,	assume RunPt 	points	to	a	linked	list	as	shown	in	Figure	1.31.
A	node	of	the	list	is	a	structure	(struct	in	C)	with	multiple	entries	of	different	types.	A
linked	list	is	a	set	of	nodes	where	one	of	the	entries	of	the	node	is	a	pointer	or	link	to
another	node	of	the	same	type.	In	this	example,	the	second	entry	of	the	list	is	a	pointer
to	 the	next	 node	 in	 the	 list.	 Figure	1.31	 shows	 three	of	many	nodes	 that	 are	 strung
together	in	a	sequence	defined	by	their	pointers.

Figure	1.31.	A	linked	list	where	the	second	entry	is	a	pointer	to	the	next
node.	Arrows	are	pointers	or	links,	and	dotted	lines	are	used	to	label
components	in	the	figure.

As	 our	 operating	 system	 runs	 it	 will	 need	 to	 traverse	 the	 list. RunPt will	 always
points	to	a	node	in	the	list.	However,	we	may	wish	to	change	it	to	point	to	the	next
node	 in	 the	 list.	 In	 C,	 we	 would	 execute RunPt=RunPt->next; 	 However,	 in
assembly	this	translates	to

						LDR			R1,=RunPt				;	R1	points	to	variable	RunPt,	PC-rel
						LDR			R0,[R1]						;	R0=	value	of	variable	RunPt
						LDR			R2,[R0,#4]			;	next	entry
						STR			R2,[R1]						;	update	RunPt

Figure	 1.32draws	 the	 action	 caused	 by	 above	 the	 four	 instructions.	 Assume

initiallyRunPt points	to	the	middle	node	of	the	list.	Each	entry	of	the	node	is	32	bits
or	four	bytes	of	memory.	The	first	two	instructions	read	the	value	of RunPt into	R0.
Since RunPt points	to	the	middle	node	in	the	linked	list	in	this	figure,	R0	will	also
point	to	this	node.	Since	each	entry	is	4	bytes,	R0+4	points	to	the	second	entry,	which
is	 the	 next	 pointer.	 The	 instructionLDR	 R2,[R0,#4] will	 read	 the	 32-bit	 value
pointed	to	by	R0+4	and	place	it	in	R2.	Even	though	the	memory	address	is	calculated
as	R0+4,	the	Register	R0	itself	is	not	modified	by	this	instruction.	R2	now	points	to
the	right-most	node	in	the	list.	The	last	instruction	updates RunPt 	so	it	now	points	to
the	right-most	node	shown	in	the	Figure	1.32.

Figure	1.32.	An	example	of	indexed	addressing	mode	with	offset,	data	is	in
memory.	Arrows	in	this	figure	represent	pointers	(not	the	motion	of
information).

A	really	important	concept.	We	use	the LDR instruction	to	load	data	from	RAM	to	a
register	and	the STR 	 instruction	 to	store	data	 from	a	register	 to	RAM.	In	real	 life,
when	we	move	a	box	to	the	basement,	push	a	broom	across	the	floor,	load	bags	into
the	 trunk,	 store	 spoons	 in	 a	 drawer,	 pop	 a	 candy	 into	 your	 mouth,	 or	 transfer
employees	 to	 a	new	 location,	 there	 is	 a	physical	object	 and	 the	 action	changes	 the
location	of	that	object.	Assembly	language	uses	these	same	verbs,	but	the	action	will
be	different.	 In	most	cases,	 the	processor	creates	a	copy	of	 the	data	and	places	 the
copy	 at	 the	 new	 location.	 In	 other	words,	 since	 the	 original	 data	 still	 exists	 in	 the
previous	location,	there	are	now	two	copies	of	the	information.	The	exception	to	this
memory-access-creates-two-copies-rule	is	a	stack	pop.	When	we	pop	data	from	the
stack,	it	no	longer	exists	on	the	stack	leaving	us	just	one	copy.	Having	the	information
in	 two	 places	 will	 create	 a	 very	 tricky	 problem	 that	 our	 operating	 system	 must
handle.

Let’s	 revisit	 the	 simple	 example	 of	 incrementing	 a	 global	 variable.	 In	C,	 the	 code
would	be count=count+1; 	In	assembly,	the	compiler	creates	code	like	this:

			LDR	R0,=count	;address	of	count
		LDR	R1,[R0]			;value	of	count
;two	copies	of	count:	in	memory	and	in	R1
			ADD	R1,#1
;two	copies	of	count	with	different	values
		STR	R1,[R0]		;store	new	value
	

The	instructionLDR	R1,[R0] 		loads	the	contents	of	the	variable count 	into	R1.	At
this	point,	there	are	two	copies	of	the	data,	the	original	in	RAM	and	the	copy	in	R1.
After	the	ADD	instruction,	the	two	copies	have	different	values.	When	designing	an
operating	 system,	we	will	 take	 special	 care	 to	handle	 shared	 information	 stored	 in
global	 RAM,	 making	 sure	 we	 access	 the	 proper	 copy.	 In	 Section	 2.2.4,	 we	 will
discuss	 in	 detail	 the	 concept	 of	 race	 conditions	 and	 critical	 sections.	 These	 very
important	 problems	 arise	 from	 the	 problem	 generated	 by	 this	 concept	 of	 having
multiple	copies	of	information.

1.5.5.	Functions
Subroutines,	procedures,	and	functions	are	programs	that	can	be	called	to	perform
specific	tasks.	They	are	important	conceptual	tools	because	they	allow	us	to	develop
modular	 software.	 	 The	 programming	 languages	 Pascal,	 FORTRAN,	 and	 Ada
distinguish	between	functions,	which	return	values,	and	procedures,	which	do	not.	On
the	other	hand,	the	programming	languages	C,	C++,	Java,	and	Lisp	do	not	make	this
distinction	 and	 treat	 functions	 and	 procedures	 as	 synonymous.	 Object-oriented
programming	 languages	 use	 the	 term	method	 to	 describe	 functions	 that	 are	 part	 of
classes;	Objects	being	instantiation	of	classes.	In	assembly	language,	we	use	the	term
subroutine	 for	 all	 subprograms	 whether	 or	 not	 they	 return	 a	 value.	 Modular
programming	allows	us	 to	build	complex	 systems	using	 simple	components.	 In	 this
section	 we	 present	 a	 short	 introduction	 on	 the	 syntax	 for	 defining	 assembly
subroutines.	We	define	a	subroutine	by	giving	it	a	name	in	the	label	field,	followed
by	instructions,	which	when	executed,	perform	the	desired	effect.	The	last	instruction
in	a	subroutine	will	be BX	LR ,	which	we	use	to	return	from	the	subroutine.

The	 function	 in	 Program	 1.1	 and	 Figure	 1.33will	 increment	 the	 global
variable count .	The AREA	DATA directive	specifies	the	following	lines	are	placed
in	 data	 space	 (typically	 RAM).	 The SPACE	 4 	 pseudo-op	 allocates4	 uninitialized
bytes.	The AREA	CODE directive	specifies	the	following	lines	are	placed	in	code
space	(typically	ROM).	The |.text| connects	this	program	to	the	C	code	generated	by
the	 compiler. ALIGN=2 	 will	 force	 the	 machine	 code	 to	 be	 halfword-aligned	 as
required.

In	assembly	language,	we	will	use	 the BL instruction	 to	call	 this	subroutine.	At	 run
time,	 the BL 	 instruction	will	 save	 the	 return	address	 in	 the	LR	register.	The	 return
address	is	the	location	of	the	instruction	immediately	after	the BL instruction.	At	the

end	of	the	subroutine,	the BX	LR 	instruction	will	get	the	return	address	from	the	LR
register,	 returning	 the	 program	 to	 the	 place	 from	which	 the	 subroutine	was	 called.
More	 precisely,	 it	 returns	 to	 the	 instruction	 immediately	 after	 the	 instruction	 that
performed	 the	 subroutine	 call.	 The	 comments	 specify	 the	 order	 of	 execution.	 The
while-loop	causes	instructions	4–10	to	be	repeated	over	and	over.

Figure	1.33.	A	flowchart	of	a	simple	function	that	adds	1	to	a	global
variable.

					AREA		DATA
count	SPACE	4		;	32-bit	data
	 	 	 	 	 AREA	
|.text|,CODE,READONLY,ALIGN=2
function
						LDR	R0,=count	;5
						LDR	R1,[R0]		;6	value	of	count
						ADD	R1,#1					;7
						STR	R1,[R0]	;8	store	new	value
					BX	LR								;9
Start	LDR	R0,=count	;1
						MOV	R1,#0					;2
						STR	R1,[R0]	;3	store	new	value
loop		BL		function		;4
						B			loop						;10

	
uint32_t	count
	
void	function(void){
		count++;	//	5,6,7,8
}										//	9
	
	
int	main(void){
		count	=	0;	//	1,2,3
		while(1){
			function();	//	4
		}												//	10
}

Program	1.1.	Assembly	and	C	versions	that	initialize	a	global	array	of	ten
elements.	The	numbers	illustrate	the	execution	sequence.

While	using	a	register	(LR)	to	store	the	return	address	is	very	effective,	it	does	pose
a	 problem	 if	 one	 function	 were	 to	 call	 a	 second	 function.	 In	 Program
1.2 someother calls function .	Because	the	return	address	is	saved	in	the	LR,	if	one
function	calls	another	function	it	must	save	the	LR	before	calling	and	restore	the	LR
after	 the	 call.	 In	 Program	 1.2,	 the	 saving	 and	 restoring	 is	 performed	 by
the PUSH and POP 	instructions.

function
;
;
							BX				LR	

void	function(void){
		//
		//
}

someother
;
							PUSH		{R4,LR}
							BL				function
							POP			{R4,LR}
;
							BX				LR													

	
void	someother(void){
		//
				function();
		//
}

Program	1.2.	Assembly	and	C	versions	that	define	a	simple	function.

Checkpoint	1.18:	When	software	calls	a	function	(subroutine),	where	is	the
return	address	saved?			

1.5.6.	ARM	Cortex	Microcontroller	Software	Interface
Standard

	
The	 ARM	 Architecture	 Procedure	 Call	 Standard,	 AAPCS,	 part	 of	 the	 ARM
Application	Binary	Interface	(ABI),	uses	registers	R0,	R1,	R2,	and	R3	to	pass	input
parameters	 into	 a	 C	 function.	 R0	 is	 the	 first	 parameter,	 R2	 is	 the	 second,	 etc.
Functions	 must	 preserve	 the	 values	 of	 registers	 R4–R11.	 Also	 according	 to
AAPCSwe	place	the	return	parameter	in	Register	R0.	AAPCS	requires	we	push	and
pop	an	even	number	of	registers	to	maintain	an	8-byte	alignment	on	the	stack.	In	this
book,	 the	 SP	will	 always	 be	 the	main	 stack	 pointer	 (MSP),	 not	 the	 Process	 Stack
Pointer	(PSP).	Recall	that	all	object	code	is	halfword	aligned,	meaning	bit	0	of	the
PC	is	always	clear.	When	the BL instruction	is	executed,	bits	31–1	of	register	LR	are
loaded	with	the	address	of	the	instruction	after	the BL ,	and	bit	0	is	set	to	one.	When
the BX	LR 	instruction	is	executed,	bits	31–1	of	register	LR	are	put	back	into	the	PC,
and	bit	0	of	LR	goes	into	the	T	bit.	On	the	ARM	Cortex-M	processor,	the	T	bit	should
always	 be	 1,	 meaning	 the	 processor	 is	 always	 in	 the	 Thumb	 state.	 Normally,	 the
proper	value	of	bit	0	is	assigned	automatically.

ARM’s	 Cortex	 Microcontroller	 Software	 Interface	 Standard	 (CMSIS)	 is	 a
standardized	 hardware	 abstraction	 layer	 for	 the	 Cortex-M	 processor	 series.	 The
purpose	 of	 the	 CMSIS	 initiative	 is	 to	 standardize	 a	 fragmented	 industry	 on	 one
superior	hardware	and	software	microcontroller	architecture.

The	CMSIS	enables	consistent	and	simple	software	 interfaces	 to	 the	processor	and
core	MCU	 peripherals	 for	 silicon	 vendors	 and	middleware	 providers,	 simplifying
software	re-use,	reducing	the	learning	curve	for	new	microcontroller	developers,	and
reducing	the	time	to	market	for	new	devices.	Learn	more	about	CMSIS	directly	from
ARM	at	www.onarm.com.

The	 CMSIS	 is	 defined	 in	 close	 cooperation	 with	 various	 silicon	 and	 software
vendors	 and	 provides	 a	 common	 approach	 to	 interface	 to	 peripherals,	 real-time

operating	 systems,	 and	middleware	 components.	 The	CMSIS	 is	 intended	 to	 enable
the	 combination	 of	 software	 components	 from	 multiple	 middleware	 vendors.	 The
CMSIS	components	are:

CMSIS-CORE:	API	for	the	Cortex-M	processor	core	and	peripherals.	It	provides	at
standardized	 interface	 for	Cortex-M0,	Cortex-M3,	Cortex-M4,	SC000,	 and	SC300.
Included	are	also	SIMD	intrinsic	functions	for	Cortex-M4	SIMD	instructions.

CMSIS-DSP:	DSP	Library	Collection	with	over	60	Functions	for	various	data	types:
fixed-point	(fractional	q7,	q15,	q31)	and	single	precision	floating-point	(32-bit).	The
library	 is	 available	 for	 Cortex-M0,	 Cortex-M3,	 and	 Cortex-M4.	 The	 Cortex-M4
implementation	is	optimized	for	the	SIMD	instruction	set.

CMSIS-RTOS	API:	Common	API	 for	Real-Time	operating	 systems.	 It	 provides	 a
standardized	 programming	 interface	 that	 is	 portable	 to	 many	 RTOS	 and	 enables
software	 templates,	 middleware,	 libraries,	 and	 other	 components	 that	 can	 work
across	supported	RTOS	systems.

CMSIS-SVD:	System	View	Description	 for	Peripherals.	Describes	 the	peripherals
of	 a	 device	 in	 an	 XML	 file	 and	 can	 be	 used	 to	 create	 peripheral	 awareness	 in
debuggers	or	header	files	with	peripheral	register	and	interrupt	definitions.

Checkpoint	1.19:	What	is	the	purpose	of	AAPCS?			

1.5.7.	Conditional	execution
If-then-else	 control	 structures	 are	 commonly	 found	 in	 computer	 software.	 If
the BHS or	 the BGE 	 were	 to	 branch,	 the	 instruction	 pipeline	 would	 have	 to	 be
flushed	 and	 refilled.	 In	 order	 to	 optimize	 execution	 speed	 for	 short	 if-then	 and	 if-
then-else	 control	 structures,	 the	 ARM	 Cortex-M	 processoremploys	 conditional
execution.	The	conditional	execution	begins	with	the IT 	instruction,	which	specifies
the	number	of	instructions	in	the	control	structure	(1	to	4)	and	the	conditional	for	the
first	instruction.	The	syntax	is

IT{x{y{z}}}	cond
where x 	 y and z 	 specify	 the	 existence	 of	 the	 optional	 second,	 third,	 or	 fourth
conditional	instruction	respectively.	We	can	specify	x 	y and z as T for	execute	if	true
or E for	else.	The cond 	field	choices	are	listed	in	Table	1.6.

	
Suffix Flags Meaning
EQ Z	=	1 Equal
NE Z	=	0 Not	equal
CS or 	HS C	=	1 Higher	or	same,	unsigned	≥
CC or
LO

C	=	0 Lower,	unsigned	<

MI N	=	1 Negative
PL N	=	0 Positive	or	zero
VS V	=	1 Overflow
VC V	=	0 No	overflow
HI C	=	1	and	Z	=	0 Higher,	unsigned	>
LS C	=	0	or	Z	=	1 Lower	or	same,	unsigned	≤
GE N	=	=	V Greater	than	or	equal,	signed	≥
LT N	!=	V Less	than,	signed	<
GT Z	=	0	and	N	=	V Greater	than,	signed	>
LE Z	=	1	or	N	!=	V Less	than	or	equal,	signed	≤
AL Can	 have	 any

value
Always.	 This	 is	 the	 default	 when	 no
suffix	is	specified.

Table	1.6.	Condition	code	suffixes	used	to	optionally	execution	instruction.
The	 conditional	 suffixes	 for	 the	 1	 to	 4	 following	 instruction	 must	 match	 the
conditional	 field	 of	 the IT instruction.	 In	 particular,	 the	 conditional	 for	 the	 true
instructions	 exactly	 match	 the	 conditional	 for	 the IT 	 instruction.	 Furthermore,	 the
else	 instructions	must	 have	 the	 logical	 complement	 conditional.	 If	 the	 condition	 is
true	the	instruction	is	executed.	If	the	condition	is	false,	the	instruction	is	fetched,	but
not	executed.	The	following	illustrates	the	use	of	if-then	conditional	execution.	The
two	T’s	in ITT 	means	there	are	two	true	instructions.

Change	LDR			R1,=Num			;	R1	=	&Num
							LDR			R0,[R1]			;	R0	=	Num
							CMP			R0,#25600
							ITT			LO
							ADDLO	R0,R0,#1		;	if(R0<25600)	R0	=	Num+1
							STRLO	R0,[R1]			;	if(R0<25600)	Num	=	Num+1
						BX				LR								;	return

The	following	illustrates	the	use	of	if-then-else	conditional	execution.The	one	T	and
one	E	in ITE 	means	there	is	one	true	and	one	false	instruction.

Change	LDR			R1,=Num		;	R1	=	&Num
							LDR			R0,[R1]			;	R0	=	Num
							CMP			R0,#100
							ITE			LT
							ADDLT	R0,R0,#1		;	if(R0<	100)	R0	=	Num+1
							MOVGE	R0,#-100		;	if(R0>=100)	R0	=	-100
							STR			R0,[R1]			;	update	Num
							BX				LR								;	return

The	following	assembly	converts	one	hex	digit	(0–15)	in	R0	to	ASCII	in	R1.	The	one
T	and	one	E	in ITE 	means	there	is	one	true	and	one	else	instruction.

							CMP			R0,#9					;	Convert	R0	(0	to	15)	into	ASCII	

							ITE			GT								;	Next	2	are	conditional
							ADDGT	R1,R0,#55	;	Convert	0xA	->	'A'
							ADDLE	R1,R0,#48	;	Convert	0x0	->	'0'
	

By	 themselves,	 the	 conditional	 branch	 instructions	 do	 not	 require	 a
preceding IT instruction.	 However,	 a	 conditional	 branch	 can	 be	 used	 as	 the	 last
instruction	of	 an IT 	 block.	There	 are	 a	 lot	 of	 restrictions	on	 IT.	For	more	details,
refer	to	the	programming	reference	manual.

This	 macro	 creates	 a	 new	 assembly	 instruction	 that	 is	 faster	 thanMUL .	 This
approach	 can	 be	 used	 to	 multiply	 by	 any	 constant	 in	 the	 form	 of	 2n±1.	 If	 x	 is	 a
variable,	then	15x	=	(x<<4)-x.

				MACRO
				MUL15	$Rd,$Rn																
				RSB			$Rd,$Rn,$Rn,LSL	#4
				MEND
	

This	approach	can	also	be	used	to	multiply	by	any	constant	in	the	form	of	1±2-n.	For
example,	 to	 multiply	 by	 7/8	 we	 implement	 x	 -	 (x>>3).	 ThemacroMUL7_8 is
unsigned	multiply	by	7/8.

				MACRO
				MUL7_8	$Rd,$Rn																
				SUB			$Rd,$Rn,$Rn,LSR	#3
				MEND

1.5.8.	Stack	usage
The	 stack	 can	 be	 used	 to	 store	 temporary	 information.	 If	 a	 subroutine	 modifies	 a
register,	 it	 is	a	matter	of	programmer	style	as	 to	whether	or	not	 it	 should	save	and
restore	the	register.	According	to	AAPCS	a	subroutine	can	freely	change	R0–R3	and
R12,	but	save	and	restore	any	other	register	it	changes.	In	particular,	if	one	subroutine
calls	another	subroutine,	then	it	must	save	and	restore	the	LR.	AAPCS	also	requires
pushing	and	popping	multiples	of	8	bytes,	which	means	an	even	number	of	registers.
In	the	following	example,	assume	the	function	modifies	register	R0,	R4,	R7,	R8	and
calls	another	function.	The	programming	style	dictates	registers	R4	R7	R8	and	LR	be
saved.	Notice	 the	 return	address	 is	pushed	on	 the	 stack	as	LR,	but	popped	off	 into
PC.	When	multiple	registers	are	pushed	or	popped,	the	data	exist	in	memory	with	the
lowest	 numbered	 register	 using	 the	 lowest	 memory	 address.	 In	 other	 words,	 the
registers	in	the	{	}	can	be	specified	in	any	order.	Of	course	remember	to	balance	the
stack	by	having	the	same	number	of	pops	as	pushes.
	

Func			PUSH	{R4,R7,R8,LR}	;	save	registers	as	needed
							;	body	of	the	function

							POP		{R4,R7,R8,PC}		;	restore	registers	and	return

The	ARM	processor	has	a	lot	of	registers,	and	we	appropriately	should	use	them	for
temporary	 information	 such	 as	 function	 parameters	 and	 local	 variables.	 However,
when	there	are	a	lot	of	parameters	or	local	variables	we	can	place	them	on	the	stack.	
Program	 1.3	 allocates	 a	 40-byte	 localbuffer	 on	 the	 stack.	 The SUB 	 instruction
allocates	 10	 words	 on	 the	 stack.	 Figure	 1.34shows	 the	 stack	 before	 and	 after	 the
allocation.	The	SP	points	to	the	first	location	of data .	The	local	variable i 	is	held	in
R0.	The	flexible	second	operand	for	the	STR	instruction	uses	SP	as	the	base	pointer,
and	 R0*4	 as	 the	 offset.	 The ADD 	 instruction	 deallocates	 the	 local	 variable,
balancing	the	stack.

//	C	language	implementation
	
void	Set(void){
uint32_t	data[10];
int	i;
		for(i=0;	i<10;	i++){
				data[i]	=	i;
		}
}

Set			SUB			sp,sp,#0x28		;allocate
						MOVS		r0,#0x00					;i=0
						B					test
loop		STR			r0,[sp,r0,LSL	#2]
						ADDS		r0,r0,#1					;i++
test		CMP			r0,#0x0A
						BLT			loop
						ADD			sp,sp,#0x28		;deallocate
						BX				LR

Program	1.3.	Assembly	and	C	versions	that	initialize	a	local	array	of	ten
elements.

	

Figure	1.34.	A	stack	picture	showing	a	local	array	of	ten	elements	(40	bytes).

	

We	will	also	use	the	stack	to	save	program	state	during	interrupt	processing.

1.5.9.	Floating-point	math		
If	the	range	of	numbers	is	unknown	or	large,	then	the	numbers	must	be	represented	in
a	floating-point	format.	Conversely,	we	can	use	fixed	point	when	the	range	of	values
is	 small	 and	 known.	 The	 IEEE	 Standard	 for	 Binary	 Floating-Point	 Arithmetic	 or
ANSI/IEEE	Std	754-1985	is	the	most	widely-used	format	for	floating-point	numbers.
There	 are	 three	 common	 IEEE	 formats:	 single-precision	 (32-bit),	 double-precision
(64-bit),	 and	 double-extended	 precision	 (80-bits).	 The	 32-bit	 short	 real	 format	 as
implemented	 by	 the	 TM4C	 is	 presented	 here.	 The	 floating-point	 format,	 f,	 for	 the
single-precision	 data	 type	 is	 shown	 in	 Figure	 1.35.	 Computers	 use	 binary	 floating
point	because	it	is	faster	to	shift	than	it	is	to	multiply/divide	by	10.

Bit	31 Mantissa	sign,	s=0	for	positive,	s=1	for	negative
Bits	30:23 8-bit	biased	binary	exponent	0	≤	e	≤	255
Bits	22:0 24-bit	mantissa,	m,	expressed	as	a	binary	fraction,
A	binary	1	as	the	most	significant	bit	is	implied.
m	=	1.m1m2m3...m23

	

	
Figure	1.35.	32-bit	single-precision	floating-point	format.

The	value	of	a	single-precision	floating-point	number	is

f	=	(-1)s	•	2e-127•	m

The	 range	of	values	 that	can	be	 represented	 in	 the	 single-precision	 format	 is	 about
±10-38	 to	±10+38.	 The	 24-bit	mantissa	 yields	 a	 precision	 of	 about	 7	 decimal	 digits.
The	 floating-point	 value	 is	 zero	 if	 both	e	 and	m	 are	 zero.	Because	 of	 the	 sign	 bit,
there	 are	 two	 zeros,	 positive	 and	 negative,	 which	 behave	 the	 same	 during
calculations.
	

There	are	some	special	cases	for	floating-point	numbers.	When	e	is	255,	the	number
is	 considered	 as	 plus	 or	minus	 infinity,	which	probably	 resulted	 from	an	overflow
during	 calculation.	When	 e	 is	 0,	 the	 number	 is	 considered	 as	 denormalized.	 The
value	of	the	mantissa	of	a	denormalized	number	is	less	than	1.	A	denormalized	short
result	number	has	the	value,

f	=	(-1)s	•	2-126•	m where	m	=	0.m1m2m3...m23

Observation:	The	floating-point	zero	is	stored	in	denormalized	format.

When	 two	 floating-point	 numbers	 are	 added	 or	 subtracted,	 the	 smaller	 one	 is	 first
unnormalized.	The	mantissa	of	the	smaller	number	is	shifted	right	and	its	exponent	is
incremented	until	 the	two	numbers	have	the	same	exponent.	Then,	the	mantissas	are

added	or	subtracted.	Lastly,	 the	result	 is	normalized.	To	illustrate	 the	floating-point
addition,	 consider	 the	 case	 of	 10+0.1.	 First,	 we	 show	 the	 original	 numbers	 in
floating-point	format.	The	mantissa	is	shown	in	binary	format.

							10.0	=	(-1)0	•23	•	1.01000000000000000000000
						+	0.1	=	(-1)0	•2-4•	1.10011001100110011001101
	
Every	time	the	exponent	is	incremented	the	mantissa	is	shifted	to	the	right.	Notice	that
7	binary	digits	are	 lost.	The	0.1	number	 is	unnormalized,	but	now	the	 two	numbers
have	the	same	exponent.	Often	the	result	of	the	addition	or	subtraction	will	need	to	be
normalized.	In	this	case	the	sum	did	not	need	normalization.

							10.0	=	(-1)0	•23	•	1.01000000000000000000000
						+	0.1	=	(-1)0	•23	•	0.00000011001100110011001	1001101
							10.1	=	(-1)0	•23	•	1.01000011001100110011001
	

When	two	floating-point	numbers	are	multiplied,	 their	mantissas	are	multiplied	and
their	exponents	are	added.	When	dividing	two	floating-point	numbers,	their	mantissas
are	divided	and	their	exponents	are	subtracted.	After	multiplication	and	division,	the
result	is	normalized.

Roundoff	is	the	error	that	occurs	as	a	result	of	an	arithmetic	operation.	For	example,
the	multiplication	of	two	64-bit	mantissas	yields	a	128-bit	product.	The	final	result	is
normalized	into	a	normalized	floating-point	number	with	a	64-bit	mantissa.	Roundoff
is	 the	error	caused	by	discarding	 the	 least	 significant	bits	of	 the	product.	Roundoff
during	 addition	 and	 subtraction	 can	 occur	 in	 two	 places.	 First,	 an	 error	 can	 result
when	the	smaller	number	is	shifted	right.	Second,	when	two	n-bit	numbers	are	added
the	result	is	n+1	bits,	so	an	error	can	occur	as	the	n+1	sum	is	squeezed	back	into	an
n-bit	result.

Truncation	 is	 the	error	that	occurs	when	a	number	is	converted	from	one	format	to
another.	 For	 example,	when	 an	 80-bit	 floating-point	 number	 is	 converted	 to	 32-bit
floating-point	format,	40	bits	are	lost	as	the	64-bit	mantissa	is	truncated	to	fit	into	the
24-bit	mantissa.	Recall,	 the	number	0.1	could	not	be	exactly	represented	as	a	short
real	floating-point	number.	This	is	an	example	of	truncation	as	the	true	fraction	was
truncated	to	fit	into	the	finite	number	of	bits	available.

If	the	range	is	known	and	small	and	a	fixed-point	system	can	be	used,	then	a	32-bit
fixed-point	 number	 system	 will	 have	 better	 resolution	 than	 a	 32-bit	 floating-point
system.	 For	 a	 fixed	 range	 of	 values	 (i.e.,	 one	 with	 a	 constant	 exponent),	 a	 32-bit
floating-point	system	has	only	23	bits	of	precision,	while	a	32-bit	fixed-point	system
has	9	more	bits	of	precision.

Figure	1.36	shows	the	floating-point	registers	on	the	Cortex	M4.	Software	can	access
these	registers	in	any	combination	of	32	single-precision	registers	named	S0	to	S31
or	16	double-precision	registers	D0	to	D15.	In	particular,	registers	S0	and	S1	are	the
same	 as	 register	 D0.	 This	 section	 will	 focus	 on	 single	 precision	 floating-point
operations.

Figure	1.36.	The	TM4C	has	32	single-precision	floating-point	registers	that
overlap	with	16	double-precision	floating-point	registers.

The	 following	 lists	 the	 general	 form	 for	 some	 of	 the	 load	 and	 store	 instructions.
Because	the	constant	is	stored	into	memory,	and	the	assembly	creates	a	PC	relative
access,	 the	constant	can	be	any	single-precision	 floating-point	value.	St	Sd	Sn	 and
Sm	represent	any	of	the	32	single-precision	floating-point	registers.	Rn	and	Rd	are
regular	integer	registers.

			VLDR.F32	Sd,	[Rn]						;	load	32-bit	float	at	[Rn]	to	Sd
			VSTR.F32	St,	[Rn]						;	store	32-bit	St	to	memory	at	[Rn]
			VLDR.F32	Sd,	[Rn,	#n]	;	load	32-bit	memory	at	[Rn+n]	to	Sd
			VSTR.F32	St,	[Rn,	#n]	;	store	32-bit	St	to	memory	[Rn+n]
			VLDR.F32	Sd,	=constant	;	load	32-bit	constant	into	Sd

	
The	move	instructions	get	their	data	from	the	machine	instruction	or	from	within	the
processor	and	do	not	require	additional	memory	access	instructions.	The	immediate
value	is	any	number	that	can	be	expressed	as	±n*2-r,	where	16	≤	n	≤	31,	and	0	≤	r	≤
7.

			VMOV.F32	Sd,	Sn				;	set	Sd	equal	to	the	value	in	Sn
			VMOV.F32	Sd,	#imm		;	set	Sd	equal	to	imm
			VMOV				Rd,	Sn				;	set	Rd	equal	to	the	value	in	Sn
			VMOV					Sd,	Rn				;	set	Sd	equal	to	the	value	in	Rn

	

These	 are	 some	 of	 the	 arithmetic	 operations,	 which	 operate	 on	 the	 floating-point
registers.	 Arithmetic	 operations	 can	 cause	 overflow,	 underflow,	 divide	 by	 zero
floating-point	exceptions.	In	particular,	bits	in	the SYSEXC_RIS_R 	register	will	get
set	if	there	is	a	floating-point	error.

	

			VADD.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn+Sm
			VSUB.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn-Sm
			VMUL.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn*Sm

			VDIV.F32	Sd,	Sn,	Sm				;	set	Sd	equal	to	Sn/Sm
			VNEG.F32	Sd,	Sm								;	set	Sd	equal	to	-Sm
			VABS.F32	Sd,	Sm								;	set	Sd	equal	to	the	absolute	value	of	Sm
			VSQRT.F32	Sd,	Sm							;	set	Sd	equal	to	the	square	root	of	Sm

	
The	following	example	implements	a	digital	60	Hz	notch	filter	(see	Section	6.4).	The
new	ADC	input	is	passed	by	value	in	register	S0	and	the	filter	outputis	returned	by
value	also	in	register	S0.	In	C,	we	define	a	single-precision	floating-point	variable
using float .

float	y,y1,y2;	//	outputs
float	x,x1,x2;	//	input
//	fs	=	1000	Hz
//	cutoff	60	Hz
//	alpha	=	0.99
float	Notch60Hz(float	in){
		x2	=	x1;	x1	=	x;	x	=	in;
		y2	=	y1;	y1	=	y;
		y	=	x
						-	1.8595529717765*x1
						+	x2
						+	1.84095744205874*y1
						-	0.9801*y2;
		return	y;
}
						AREA				DATA,	ALIGN=2
y				SPACE			4		;	current	filter	output
y1			SPACE			4		;	filter	output	1ms	ago
y2			SPACE			4		;	filter	output	2ms	ago
x				SPACE			4		;	current	filter	input
x1				SPACE			4		;	input	1ms	ago
x2			SPACE			4		;	input	2ms	ago
						AREA	|.text|,CODE,READONLY,ALIGN=2
						THUMB
;	Input:	S0	is	new	input
;	Output:	S0	is	filter	output
Notch60Hz
					LDR						R0,=x
					VLDR.F32	S1,[R0,#4]	;read	previous	x1
					VSTR.F32	S1,[R0,#8]	;S1	is	x2
					VLDR.F32	S2,[R0,#0]	;read	previous	x
					VSTR.F32	S2,[R0,#4]	;S2	is	x1
					VSTR.F32	S0,[R0,#0]	;S0	is	x	=	in
					LDR						R1,=y
					VLDR.F32	S3,[R1,#4]	;read	previous	y1
					VSTR.F32	S3,[R1,#8]	;S3	is	y2
					VLDR.F32	S4,[R1,#0]	;read	previous	y
					VSTR.F32	S4,[R1,#4]	;S4	is	y1
					VLDR.F32	S5,=-1.8595529717765
					VMUL.F32	S2,S2,S5
					VADD.F32	S0,S0,S2	;-1.8595529717765*x1
					VADD.F32	S0,S0,S1	;+x2
					VLDR.F32	S5,=1.84095744205874
					VMUL.F32	S4,S4,S5
					VADD.F32	S0,S0,S4;+1.84095744205874*y1
					VLDR.F32	S5,=-0.9801
					VMUL.F32	S3,S3,S5

					VADD.F32	S0,S0,S3	;	-0.9801*y2
					VSTR.F32	S0,[R1,#0]	;set	y
					BX		LR

Program	1.4.	Floating-point	function	to	a	60	Hz	IIR	digital	filter	(assembly
program	executes	in	43	cycles).

	
Observation:	If	you	are	implementing	digital	signal	processing	using	floating
point	math,	we	strongly	recommend	implement	the	functions	in	assembly	so	you
can	specify	exactly	how	the	floating	point	hardware	is	to	be	used.

1.5.10.	Keil	assembler	directives
We	 use	 assembler	 directives	 to	 assist	 and	 control	 the	 assembly	 process.	 The
following	directives	change	the	way	the	code	is	assembled.

AREA	CODE ;places	code	in	code	space	(flash	ROM)
AREA	DATA ;places	objects	in	data	space	(RAM)
THUMB ;uses	Thumb	instructions			
ALIGN ;skips	0	to	3	bytes	to	make	next	word	aligned
END ;end	of	file	 	

The	following	directives	can	add	variables	and	constants.

DCB	expr{,expr} ;places	8-bit	byte(s)	into	memory		
DCW	expr{,expr} ;places	16-bit	halfword(s)	into	memory		
DCD	expr{,expr} ;places	32-bit	word(s)	into	memory			
SPACE	size ;reserves	size	bytes,	uninitialized

	

The EQU directive	gives	a	symbolic	name	to	a	numeric	constant,	a	register-relative
value	or	a	program-relative	value.	*	is	a	synonym	for EQU .	We	will	use	it	to	define
I/O	port	addresses.	For	example,	these	four	definitions	will	be	used	to	initialize	and
operate	Port	D.

GPIO_PORTD_DATA_R	equ	0x400073FC
GPIO_PORTD_DIR_R	equ	0x40007400
GPIO_PORTD_DEN_R	equ	0x4000751C
SYSCTL_RCGCGPIO_R	equ	0x400FE608

	
In	order	for	another	file	to	access	a	variable	or	function	in	this	assembly	file	we	use
the EXPORT directive.	 	 In	 order	 for	 this	 assembly	 file	 to	 access	 a	 variable	 or
function	 in	 another	 file	we	use	 the IMPORT 	 directive.All	C	 public	 functions	 and
global	variables	(no	static)	are	available	to	be	imported	into	assembly.	To	import	a
function	 into	a	C	 file,	we	define	a	prototype.	To	 import	a	global	variable	 into	a	C
file,	we	define	it	with	an extern .

uint32_t	v2;	//	global
extern	uint32_t	v1;

						AREA			
DATA,	ALIGN=2
						EXPORT		v1
						EXPORT		f1
						IMPORT		v2

v1			SPACE		
4		;	global
						AREA	|.text|,CODE,READONLY,ALIGN=2

						THUMB
f1				LDR		R1,=v2
						LDR		R2,[R1]	;	contents
						ADD		R0,R0,R2
						BX			LR

	
uint32_t	f1(uint32_t	in);
	
void	f2(void){
		v1	=	f1(v1);
}
	

	

1.6.	Pointers	in	C

1.6.1.	Pointers
At	the	assembly	level,	we	implement	pointers	using	 indexed	addressing	mode.	For
example,	a	register	contains	an	address,	and	the	instruction	reads	or	writes	memory
specified	by	 that	 address.	Basically,	we	place	 the	 address	 into	 a	 register,	 then	use
indexed	 addressing	 mode	 to	 access	 the	 data.	 In	 this	 case,	 the	 register	 holds	 the
pointer.	Figure	1.37illustrates	 three	examples	that	utilize	pointers.	In	this	figure, Pt
SP 	GetPt 	PutPt 	are	pointers,	where	the	arrows	show	to	where	they	point,	and	the
shaded	 boxes	 represent	 data.	 An	 array	 or	 string	 is	 a	 simple	 structure	 containing
multiple	 equal-sized	elements.	We	 set	 a	pointer	 to	 the	 address	of	 the	 first	 element,
then	use	indexed	addressing	mode	to	access	the	elements	inside.	We	have	introduced
the	 stack	previously,	 and	 it	 is	 an	 important	 component	of	 an	operating	 system.	The
stack	pointer	(SP)	points	to	the	top	element	on	the	stack.	A	linked	list	contains	some
elements	 that	 are	 pointers	 themselves.	 The	 pointers	 are	 used	 to	 traverse	 the	 data
structure.	Linked	lists	will	be	used	through	this	bookto	maintain	the	states	of	threads
in	our	RTOS.	The	first	in	first	out	(FIFO)	queue	is	an	important	data	structure	for	I/O
programming	 because	 it	 allows	 us	 to	 pass	 data	 from	 one	 module	 to	 another.	 One
module	puts	data	into	the	FIFO	and	another	module	gets	data	out	of	the	FIFO.	There
is	a GetPt that	points	to	the	oldest	data	(to	be	removed	next)	and	a PutPt 	that	points
to	 an	 empty	 space	 (location	 to	 be	 stored	 into	 next).	 The	FIFO	queue	will	 be	 used
excessively	in	this	book.

Figure	1.37.	Examples	of	data	structures	that	utilize	pointers.

We	will	illustrate	the	use	of	pointers	with	some	simple	examples.	Consider	that	we
have	 a	 global	 variable	 called Count .	 This	 creates	 a	 32-bit	 space	 in	 memory	 to
contain	 the	 value	 of	 this	 variable.	 The int 	 declaration	 means	 “is	 a	 signed	 32-bit
integer”.

int	Count;

There	are	 three	phases	 to	using	pointers:	creation,	 initialization,	usage.	To	create	a
pointer,	we	define	a	variable	placing	the * before	its	name.	As	a	convention,	we	will
use	“p”,	“pt”,	or	“ptr”	in	the	variable	name	to	signify	it	is	a	pointer	variable.	The	*

means	 “is	 a	 pointer	 to”.	 Therefore, int	 * 	 means	 “is	 a	 pointer	 to	 a	 signed	 32-bit
integer”.

int	*cPt;

To	initialize	a	pointer,	we	must	set	 it	 to	point	 to	something.	Whenever	we	make	an
assignment	 in	 C,	 the	 type	 of	 the	 value	 must	 match	 the	 type	 of	 the	 variable.	 The
following	 executable	 code	makes cPt point	 to Count .	We	 see	 the	 type	 of Count is
signed	32-bit	integer,	so	the	type	of&Count 	is	a	pointer	to	a	signed	32-bit	integer.

		cPt 	=	&Count;

Assume	we	 have	 another	 variable	 called x ,	 and	 assume	 the	 value	 of Count is	 42.
Using	 the	pointer	 is	 called	dereferencing.	 If	we	place	 a *cPt inside	 an	 expression,
then *cPt is	 replaced	 with	 the	 value	 at	 that	 address.	 So	 this	 operation	 will	 set x
equal	to	42.

		x	=	(*cPt);

If	we	place	a *cPt as	the	assignment,	then	the	value	of	the	expression	is	stored	into
the	memory	at	the	address	of	the	pointer.	So,	this	operation	will	set Count 	equal	to
5;

		(*cPt)	=	5;

We	can	use	the	dereferencing	operator	in	both	the	expression	and	as	the	assignment.
These	operations	will	increment Count .

		(*cPt)	=	(*cPt)	+	1;
		(*cPt)	+=	1;
		(*cPt)++;
	

Functions	that	require	data	to	be	passed	by	the	value	they	hold	are	said	to	use	call-
by-value	 parameter	 passing.	With	 an	 input	 parameter	 using	 call	 by	 value,	 the	 data
itself	 is	passed	into	the	function.	For	an	output	parameter	using	return	by	value,	 the
result	 of	 the	 function	 is	 a	 value,	 and	 the	 value	 itself	 is	 returned.	 According	 to
AAPCS,	 the	 first	 four	 input	 parameters	 are	 passed	 in	 R0	 to	 R3	 and	 the	 output
parameter	 is	 returned	 in	R0.	Alternatively,	 if	 you	pass	 a	pointer	 to	 the	data,	 rather
than	the	data	itself,	we	will	be	able	to	pass	large	amounts	of	data.	Passing	a	pointer
to	 data	 is	 classified	 as	 call-by-reference.	 For	 large	 amounts	 of	 data,	 call	 by
reference	is	faster,	because	the	data	need	not	be	copied	from	calling	program	to	the
called	subroutine.	In	call	by	reference,	the	one	copy	of	the	data	exists	in	the	calling
program,	and	a	pointer	 to	 it	 is	passed	 to	 the	subroutine.	 In	 this	way,	 the	subroutine
actually	performs	read/write	access	to	the	original	data.	Call	by	reference	is	also	a
convenient	mechanism	to	return	data	as	well.	Passing	a	pointer	 to	an	object	allows
this	 object	 (a	 primitive	 data	 type	 like	 char,	 int,	 or	 a	 collection	 like	 an	 array,	 or	 a
composite	struct	data	type)	to	be	an	input	parameter	and	an	output	parameter.

Our	real-time	operating	system	will	make	heavy	use	of	pointers.	In	this	example,	the
function	is	allowed	to	read	and	write	the	original	data:

void	Increment(int	*cpt){
		(*cpt)	=	(*cpt)+1;
}

We	will	also	use	pointers	for	arrays,	linked-lists,	stacks,	and	first-in-first-out	queues.
If	your	facility	with	pointers	is	weak,	we	suggest	you	review	pointers.

Checkpoint	1.20:	What	are	pointers	and	why	are	they	important?			

1.6.2.	Arrays
Figure	1.38	shows	an	array	of	the	first	ten	prime	numbers	stored	as	32-bit	integers,
we	could	allocate	the	structure	in	ROM	using

int	const	Primes[10]={1,2,3,5,7,11,13,17,19,23};

Figure	1.38.	Array	of	ten	32-bit	values.

By	 convention,	 we	 define Primes[0] as	 the	 first	 element, Primes[1] as	 the	 second
element,	 etc.	 The	 address	 of	 the	 first	 element	 can	 be	 written	 as &Primes[0] or
just Prime .	 In	 C,	 if	 we	 want	 the	 5thelement,	 we	 use	 the	 expression Primes[4] 	 to
fetch	 the	7	out	of	 the	 structure.	 In	C	 the	 following	 two	expressions	 are	 equivalent,
both	of	which	will	fetch	the	contents	from	the	5th	element.

Primes[4]
*(Primes+4)

In	C,	we	define	a	pointer	to	a	signed	32-bit	constant	as

int	const	*Cpt;
In	this	case,	the const 	does	not	indicate	the	pointer	is	fixed.	Rather,	the	pointer	refers
to	constant	16-bit	data	in	ROM.	We	initialize	the	pointer	at	run	time	using

	 	Cpt	=		Primes;						//	Cpt	points	to	Primes
or
	 	Cpt	=		&Primes[0];			//	Cpt	points	to	Primes

Figure	1.39.	Cpt	is	a	pointer	to	an	array	of	ten	32-bit	values.

When	traversing	an	array,	we	often	wish	to	increment	the	pointer	to	the	next	element.
To	move	the	pointer	to	the	next	element,	we	use	the	expressionCpt++ .	In	C, Cpt++ ,
which	is	the	same	thing	as Cpt	=	Cpt+1; 	actually	adds	four	to	the	pointer	because	it
points	 to	 32-bit	words.	 	 If	 the	 array	 contained	 8-bit	 data,	 incrementing	 the	 pointer
would	add	1.	If	the	array	contained	16-bit	data,	incrementing	the	pointer	adds	2.	The
pointers	themselves	are	always	32-bits	on	the	ARM,	but	the	data	could	be	1,	2,	4,	8
…	bytes.

As	an	example,	consider	the	situation	where	we	wish	to	pass	a	large	amount	of	data
into	the	functionBubbleSort .	In	this	case,	we	have	one	or	more	buffers,	defined	in
RAM,	which	 initially	contains	data	 in	an	unsorted	 fashion.	The	buffers	shown	here
are	 uninitialized,	 but	 assume	 previously	 executed	 software	 has	 filled	 these	 buffers
with	corresponding	voltage	and	pressure	data.	In	C,	we	could	have	

uint8_t	VBuffer[100];			//	voltage	data
uint8_t	PBuffer[200];			//	pressure	data
	

Since	the	size	of	these	buffers	is	more	than	will	fit	in	the	registers,	we	will	use	call
by	reference.	In	C,	to	declare	a	parameter	call	by	reference	we	use	the	*.

void	BubbleSort(uint8_t	*pt,	uint32_t	size){
uint32_t	i,j;	uint8_t	data,*p1,*p2;
		for(i=1;	i<size;	i++){
				p1	=	pt;		//	pointer	to	beginning
				for(j=0;	j<size-i;	j++){
						p2	=	p1+1;			//	p2	points	to	the	element	after	p1
						if((*p1)	>	(*p2)){
								data	=	(*p1);	//	swap
								(*p1)	=	(*p2);
								(*p2)	=	data;
					}
						p1++;
				}
		}
}

To	invoke	a	function	using	call	by	reference	we	pass	a	pointer	to	the	object.	These
two	calling	sequences	are	identical,	because	in	C	the	array	name	is	equivalent	 to	a
pointerto	 its	 first	 element	 (VBuffer 	 is	 equivalent	 to	 &VBuffer[0]).	 Recall	 that
the & 	operator	is	used	to	get	the	address	of	a	variable.

void	main(void){ void	main(void){
		BubbleSort(Vbuffer,100);	 		BubbleSort(&VBuffer[0],100);				
		BubbleSort(Pbuffer,200);			 		BubbleSort(&PBuffer[0],200);		
} }

One	advantage	of	call	by	 reference	 in	 this	 example	 is	 the	 same	buffer	 can	be	used

also	as	the	return	parameter.	In	particular,	this	sort	routine	re-arranges	the	data	in	the
same	original	buffer.	Since	RAM	is	a	 scarce	commodity	on	most	microcontrollers,
not	having	to	allocate	two	buffers	will	reduce	RAM	requirements	for	the	system.

From	a	security	perspective,	call	by	reference	is	more	vulnerable	than	call	by	value.
If	we	have	important	information,	then	a	level	of	trust	is	required	to	pass	a	pointer	to
the	original	data	to	a	subroutine.	Since	call	by	value	creates	a	copy	of	the	data	at	the
time	of	the	call,	it	is	slower	but	more	secure.	With	call	by	value,	the	original	data	is
protected	from	subroutines	that	are	called.

Checkpoint	1.21:	If	an	array	has	10	elements,	what	is	the	range	of	index	values
used	to	access	the	data?			

1.6.3.	Linked	lists
The	linked	list	is	an	important	data	structure	used	in	operating	systems.	Each	element
(node)	contains	data	and	a	pointer	to	another	element	as	shown	in	Figure	1.40.	Given
that	a	node	in	the	list	is	a	composite	of	data	and	a	pointer,	we	use struct 	to	declare	a
composite	data	type.	A	composite	data	type	can	be	made	up	of	primitive	data	type,
pointers	and	also	other	composite	data-types.

struct	Node{
		struct	Node	*Next;
		int	Data;
};
typedef	struct	Node	NodeType;
	

In	 this	 simple	 example,	 the	Data	 field	 is	 just	 a	32-bit	number,	we	will	 expand	our
node	 to	 contain	 multiple	 data	 fields	 each	 storing	 a	 specific	 attribute	 of	 the	 node.
There	is	a	pointer	to	the	first	element,	called	the	head	pointer.	The	last	element	in	the
list	has	a	null	pointer	in	its	next	field	to	indicate	the	end	of	the	list.

Figure	1.40.	A	linked	list	with	5	nodes.

We	can	 create	 lists	 statically	 or	 dynamically.	A	 statically	 created	 list	 is	 created	 at
compile	time	and	does	not	change	during	the	execution	of	the	program.

NodeType	theList[8]	={
		{&theList[1],	1},
		{&theList[2],	10},
		{&theList[3],	100},
		{&theList[4],	1000},
		{&theList[5],	10000},
		{&theList[6],	100000},

		{&theList[7],	1000000},
		{0,											10000000}};
NodeType	*HeadPt	=	theList;			//	points	to	first	element

	

The	following	function	searches	the	list	to	see	if	a	data	value	exists	in	the	list.

int	Search(int	x){	NodeType	*pt;
		pt	=	HeadPt;	//	start	at	beginning
		while(pt){
				if(pt->Data	==	x)	return	1;	//	found
				pt	=	pt->Next;
		}
		return	0;	//	not	found
}
	

This	example	created	the	linked-list	statically.	The	compiler	will	generate	code	prior
to	 running	 main	 (called	 premain)	 that	 will	 initialize	 the	 eight	 nodes.	 To	 do	 this
initialization,	there	will	be	two	copies	of	the	structure:	the	initial	copy	in	ROM	used
during	 premain,	 and	 the	 RAM	 copy	 used	 by	 the	 program	 during	 execution.	 If	 the
program	needs	 to	 change	 this	 structure	 during	 execution	 then	 having	 two	 copies	 is
fine.	However,	 if	 the	 program	 does	 not	 change	 the	 structure,	 then	 you	 could	 put	 a
single	copy	in	ROM	by	adding const to	the	definition.	In	this	case, HeadPt 	will	be
in	RAM	but	the	linked	list	will	be	in	ROM.

const	struct	Node{
		const	struct	Node	*Next;
		int	Data;
};
typedef	const	struct	Node	NodeType;
NodeType	theList[8]	={
		{&theList[1],	1},
		{&theList[2],	10},
		{&theList[3],	100},
		{&theList[4],	1000},
		{&theList[5],	10000},
		{&theList[6],	100000},
		{&theList[7],	1000000},
		{0,											10000000}};
NodeType	*HeadPt	=	theList;			//	points	to	first	element
	

It	is	possible	to	create	a	linked	list	dynamically	and	grow/shrink	the	list	as	a	program
executes.	 However,	 in	 keeping	 with	 our	 goal	 to	 design	 a	 simple	 RTOS,	 we	 will
refrain	from	doing	any	dynamic	allocation,	which	would	require	the	management	of	a
heap.	 	 	 Most	 real-time	 systems	 do	 not	 allow	 the	 heap	 (malloc	 and	 free)	 to	 be
accessed	by	 the	application	programmer,	because	 the	use	of	 the	heap	could	 lead	 to

nondeterministic	 behavior	 (the	 activity	 of	 one	 program	 affects	 the	 behavior	 of
another	completely	unrelated	program).

Checkpoint	1.22:	What	is	a	linked	list	and	in	what	ways	is	it	better	than	an	array?
In	what	ways	is	are	arrays	better?			

1.7.	Memory	Management

1.7.1.	Use	of	the	heap
In	 the	 previous	 two	 volumes,	 we	 have	 seen	 two	 types	 of	 allocation:	 permanent
allocation	in	global	variables	and	temporary	allocation	in	local	variables.	When	we
allocate	local	variables	in	registers	or	on	the	stack	these	variables	must	be	private	to
the	 function	 and	 cannot	 be	 shared	with	 other	 functions.	 Furthermore,	 each	 time	 the
function	 is	 invoked	 new	 local	 variables	 are	 created,	 and	 data	 from	 previous
instantiations	 are	 not	 available.	 This	 behavior	 is	 usually	 exactly	what	we	want	 to
happen	with	local	variables.	However,	we	can	use	the	heap	(or	memory	manager)
to	have	 temporary	allocation	 in	a	way	that	 is	much	more	flexible.	 In	particular,	we
will	 be	 able	 to	 explicitly	 define	 when	 data	 are	 allocated	 and	 when	 they	 are
deallocated	with	the	only	restriction	being	we	first	allocate,	next	we	use,	and	then	we
deallocate.	Furthermore,	we	can	control	the	scope	of	the	data	in	a	flexible	manner.

The	use	of	the	heap	involves	two	system	functions: malloc and free .	When	we	wish
to	allocate	space,we	call malloc and	specify	how	many	bytes	we	need. malloc will
return	a	pointer	to	the	new	object,	which	we	must	store	in	a	pointer	variable.	If	the
heap	has	no	more	space, malloc will	return	a	0,	which	means	null	pointer.	The	heap
implements	temporary	allocation,	so	when	we	are	done	with	the	data,	we	return	it	to
the	 heap	 by	 calling free .	 Consider	 the	 following	 simple	 example	 with	 three
functions.

int32_t	*Pt;
void	Begin(void){
		Pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words
}
void	Use(void){	int32_t	i;
		for(i	=	0;	i	<	20;	i++)
				Pt[i]	=	i;	//	put	data	into	array
}
void	End(void){
		free(Pt);
}
	

The	 pointer Pt 	 is	 permanently	 allocated.	 The	 left	 side	 of	 Figure	 1.41	 shows	 that
initially,	 even	 though	 the	 pointer	 exists,	 it	 does	 not	 point	 to	 anything.	 More
specifically,	 the	 compiler	will	 initialize	 it	 to	 0;	 this	 0	 is	 defined	 as	 a	nullpointer,
meaning	it	is	not	valid.	Whenmalloc is	called	the	pointer	is	now	valid	and	points	to
a	 20-word	 array.	 The	 array	 is	 inside	 the	 heap	 and Pt points	 to	 it.	 Any	 time
after malloc is	called	and	before free 	is	called,the	array	exists	and	can	be	accessed

via	 the	pointer Pt .	 After	 you	 call free ,	 the	 pointer	 has	 the	 same	 value	 as	 before.
However,	 the	 array	 itself	 does	not	 exist.	 I.e.,	 these	80	bytes	do	not	belong	 to	your
program	anymore.	In	particular,	after	you	call free ,	 the	heap	is	allowed	to	allocate
these	bytes	to	some	other	program.	Weird	and	crazy	errors	will	occur	if	you	attempt
to	dereference	the	pointer	before	the	array	is	allocated,	or	after	it	is	released.

Figure	1.41.	The	heap	is	used	to	dynamically	allocate	memory.

This	array	exists	and	the	pointer	is	valid	from	when	you	call malloc up	until	the	time
you	call free .	 In	C,	the	heap	does	not	manage	the	pointers	to	allocated	block;	your
program	must.	 If	you	call malloc ten	 times	 in	a	 row,	you	must	keep	 track	of	 the	 ten
pointers	 you	 received.	 The	 scope	 of	 this	 array	 is	 determined	 by	 the	 scope	 of	 the
pointer, Pt .	If Pt is	public,	then	the	array	is	public.	If	static	were	to	be	added	to	the
definition	of Pt ,	then	the	scope	of	the	array	is	restricted	to	software	within	this	file.
In	 the	 following	 example,	 the	 scope	 of	 the	 array	 is	 restricted	 to	 the	 one	 function.
Within	 one	 execution	 of	 the	 function,	 the	 array	 is	 allocated,	 used,	 and	 then
deallocated,	just	like	a	local	variable.

void	Function(void){	int32_t	i;
int32_t	*pt;
		pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words
		for(i	=	0;	i	<	20;	i++)
				pt[i]	=	i;	//	put	data	into	array
		free(pt);
}

A	memory	 leakoccurs	 if	 software	 uses	 the	 heap	 to	 allocate	 space	 but	 forgets	 to
deallocate	 the	space	when	it	 is	finished.	The	following	is	an	example	of	a	memory
leak.	Each	time	the	function	is	called,	a	block	of	memory	is	allocated.	The	pointer	to
the	block	is	stored	in	a	local	variable.	When	the	function	returns,	the	pointer pt 	no
longer	exists.	This	means	the	allocated	block	in	the	heap	exists,	but	the	program	has
no	pointer	to	it.	In	other	words,	each	time	this	function	returns	80	bytes	from	the	heap
are	permanently	lost.

void	LeakyFunction(void){	int32_t	i;
int32_t	*pt;
		pt	=	(*int32_t)malloc(4*20);	//	allocate	20	words
		for(i	=	0;	i	<	20;	i++)
				pt[i]	=	i;	//	put	data	into	array
}
	

Internal	 fragmentation	 is	 storage	 that	 is	 allocated	 for	 the	 convenient	 of	 the
operating	system	but	contains	no	information.	This	space	is	wasted.	Often	this	space
is	wasted	 in	order	 to	 improve	speed	or	provide	 for	a	simpler	 implementation.	The
fragmentation	is	called	"internal"	because	the	wasted	storage	is	inside	the	allocated
region.	External	 fragmentation	 exists	when	 the	 largest	memory	 block	 that	 can	 be
allocated	 is	 less	 than	 the	 total	 amount	 of	 free	 space	 in	 the	 heap.	 External
fragmentation	 occurs	 in	 simple	memory	managers	 because	memory	 is	 allocated	 in
contiguous	blocks.	External	fragmentation	occurs	over	time	as	free	storage	becomes
divided	 into	 many	 small	 pieces.	 It	 is	 a	 particular	 problem	 when	 an	 application
allocates	 and	 deallocates	 blocks	 of	 storage	 of	 varying	 sizes.	 The	 result	 is	 that
although	free	storage	is	available,	it	is	effectively	unusable	because	it	is	divided	into
pieces	 that	 are	 too	 small	 to	 satisfy	 the	 demands	 of	 the	 application.	 The	 term
"external"	refers	to	the	fact	that	the	unusable	storage	is	outside	the	allocated	regions.

Checkpoint	1.23:	Depending	on	the	microcontroller	architecture,	it	may	be	faster
to	access	variables	allocated	on	either	a	16-bit	word	or	32-bit	boundary.	If	the
compiler	skips	memory	cells	in	order	to	align	variables,	is	this	internal	or
external	fragmentation?	

1.7.2.	Simple	fixed-size	heap
In	general,	the	heap	manager	allows	the	program	to	allocate	a	variable	block	size,	but
in	 this	 section	 we	 will	 develop	 a	 simplified	 heap	 manager	 handles	 just	 fixed
sizeblocks.	 In	 this	 example,	 the	 block	 size	 is	 specified	 by	 the	 constant SIZE .	 The
initialization	will	create	a	linked	list	of	all	the	free	blocks	(Figure	1.42).

Figure	1.42.	The	initial	state	of	the	heap	has	all	of	the	free	blocks	linked	in	a
list.

Program	1.5ashows	 the	global	 structures	 for	 the	heap.	These	entries	are	defined	 in
RAM.	 SIZE is	 the	 number	 of	 8-bit	 bytes	 in	 each	 block.	All	 blocks	 allocated	 and
released	with	this	memory	manager	will	be	of	this	fixed	size. NUM is	the	number	of
blocks	to	be	managed. FreePt 	points	to	the	first	free	block.

	
#define	SIZE	80					
#define	NUM	5					
#define	NULL	0		//	empty	pointer
int8_t	*FreePt;
int8_t	Heap[SIZE*NUM];

Program	1.5a.	Private	global	structures	for	the	fixed-block	memory
manager.

Initialization	must	be	performed	before	the	heap	can	be	used.	Program	1.5bshows	the
software	that	partitions	the	heap	into	blocks	and	links	them	together. FreePt 	points
to	a	linear	linked	list	of	free	blocks.

void	Heap_Init(void){
int8_t	*pt;
		FreePt	=	&Heap[0];
		for(pt=&Heap[0];	pt!=&Heap[SIZE*(NUM-1)];	pt=pt+SIZE){
				*(int32_t	*)pt	=(int32_t)(pt+SIZE);
		}
		(int32_t)pt	=	NULL;
}

Program	1.5b.	Functions	to	initialize	the	heap.

Initially	these	free	blocks	are	contiguous	and	in	order,	but	as	the	manager	is	used	the
positions	and	order	of	the	free	blocks	can	vary.	It	will	be	the	pointers	that	will	thread
the	free	blocks	together.	To	allocate	a	block	to	manager	just	removes	one	block	from
the	 free	 list.	 Program	 1.5c	 shows	 the	 allocate	 and	 release	 functions.
The Heap_Allocate function	 will	 fail	 and	 return	 a	 null	 pointer	 when	 the	 heap
becomes	empty.	The Heap_Release 	returns	a	block	to	the	free	list.	This	system	does
not	check	to	verify	a	released	block	actually	was	previously	allocated.

void	*Heap_Allocate(void){int8_t	*pt;
		pt	=	FreePt;
		if	(pt	!=	NULL){
				FreePt	=	(int8_t*)	*(int8_t**)pt;
		}
		return(pt);
}
void	Heap_Release(void	*pt){int8_t	*oldFreePt;
		oldFreePt	=	FreePt;
		FreePt	=	(int8_t*)pt;
		*(int32_t	*)pt	=	(int32_t)oldFreePt;
}

Program	1.5c.	Functions	to	allocate	and	release	memory	blocks.

Checkpoint	1.24:	There	are	5	blocks	in	this	simple	heap.	How	could	the	memory
manager	determine	if	block	I	(where	0	≤	I	≤	4)	is	allocated	or	free?	

Checkpoint	1.25:	Using	this	memory	manager,	write	a	malloc	and	free	functions
such	that	the	size	is	restricted	to	a	maximum	of	100	bytes.	I.e.,	you	may	assume	the
user	never	asks	for	more	than	100	bytes	at	a	time.

1.7.3.	Memory	manager:	malloc	and	free

The	heapis	 a	 large	 piece	 of	 memory,	 managed	 by	 the	 operating	 system,	 used	 for
temporary	 allocation.	 The	 memory	 manager	 has	 at	 least	 three	 functions:	 one	 for
initialization	 (Heap_Init),	 one	 function	 for	 allocation	 and	 a	 third	 function	 for
deallocation.	 Most	 compilers	 support	 memory	 management,
implementingmalloc and free .	However,	in	this	example	we	develop	an	equivalent
solution,	with	names Heap_Malloc and Heap_Free .	You	can	download	a	version	of
the	 memory	 manager	 described	 in	 this	 section	 at	 the	 book	 web	 site.	 It	 is	 called
Heap_xxx	 and	 was	 developed	 by	 Jacob	 Egner	 as	 an	 example	 to	 illustrate
programming	style.	 It	 runs	on	 the	TM4C	compiled	with	 the	ARM	Keil	uVision,	but
should	 operate	without	 change	 on	 other	microcontrollers	 and	 other	 compilers.	 The
heap	 itself	 is	 statically	 allocated	 storage	 assigned	 by	 the	 compiler.	 For	 a	 32-bit
microcontroller	we	could	define	the	2000-byte	heap	using

static	int32_t	Heap[500];
	

Typically,	 the	 operating	 system	 calls Heap_Init 	 during	 the	 initialization	 process.
The	initial	heap	is	one	large	free	block,	as	shown	in	Figure	1.43.	The	initial	heap	has
498	words	of	allocatable	space	and	2	words	of	overhead.

Figure	1.43.	An	initial	heap	of	2000	bytes	is	one	block	of	498	words	(each
box	is	32	bits).

The	proper	usage	of	the	dynamic	memory	manager	follows	three	phases:	allocation,
use,	 and	 deallocation.	 The	 user	 or	 OS	 itself	 calls Heap_Malloc 	 when	 it	 needs	 a
contiguous	 block	 of	memory.	 It	 is	 good	 design	 practice	 to	 store	 the	 pointer	 to	 the
allocated	 space	 in	 permanent	memory.	For	 example,	 if	 a	 20-byte	 buffer	 is	 needed,
initially,	we	could	call

int8_t	*Pt;
void	UserStart(void){		//	called	at	the	beginning
		Pt	=	Heap_Malloc(20);
}
	

The	second	phase	is	for	the	system	to	use	the	20-byte	array

void	UserBody(void){	//	called	in	the	middle
		for(int	i=0;	i<20;	i++){
			(*Pt)	=		0;		//	access	the	data	via	Pt

		}
		//	rest	of	user	programs
}
	

When	the	program	is	finished	with	the	block,	it	is	released	by	callingHeap_Free .

void	UserFinish(void){	//	called	at	the	end
		Heap_Free(Pt);
}
	

Checkpoint	1.26:	What	happens	if	a	function	allocates	a	block,	stores	a	pointer	to
the	block	in	a	local	variable,	and	then	returns	from	the	function	without
deallocating	the	block?		

Saving	the	pointer	to	an	allocated	block	in	a	local	variable	does	not	make	sense.	If
the	memory	is	needed	for	the	duration	of	just	one	function	call,	the	block	should	be
allocated	on	the	stack.	For	example,	if	a	20-byte	buffer	is	needed,	we	could	call

void	User(void){	int8_t	buffer[20];
//	use	20-byte	buffer
}
	

The	heap	is	divided	into	blocks	of	variable	size.	As	shown	in	Figure	1.44,	there	are
two	copies	of	the	block	size,	one	counter	stored	at	the	beginning	(Header)	and	other
copy	of	the	counter	stored	at	the	end	of	the	block	(Trailer).	These	two	counters	will
be	classified	as	internal	fragmentation	because	they	exist	for	the	convenience	of	the
operating	 system.	 If	 the	 counter	 is	 positive	 the	 block	 is	 being	 used	 (previously
allocated).	 If	 the	 counter	 is	 negative	 the	 block	 is	 free.	 The	 value	 of	 the	 counter
determines	 the	 size	 of	 the	 block	 in	 32-bit	 words,	 not	 including	 the	 two	 counters
themselves.	If	the	counter	is	implemented	as	a	32-bit	signed	number	(int32_t),	then
a	heap	of	up	to	231*4	bytes	(2	gibibytes)	can	be	managed.	The	number	of	bytes	in	a
block	will	be	divisible	by	four.		I.e.,	blocks	are	aligned	to	32-bit	word	boundaries.
For	example,	if	the	user	asks	for	a	block	with	17	bytes,	20	bytes	will	be	allocated.
These	3	wasted	bytes	are	a	form	of	internal	fragmentation.	Furthermore,	the	block
with	5	words	of	data	actually	requires	7	words	of	memory.

Figure	1.44.	Each	block	has	a	header	and	a	trailer.

When	allocating	blocks	we	can	use	a	number	of	algorithms	to	choose	which	block	to
allocate.	Let	nbe	the	number	of	bytes	requested	byHeap_Malloc .

First	fit	uses	the	first	free	block	with	a	size	greater	than	or	equal	to	n.
Best	fit	uses	the	smallest	free	block	with	a	size	greater	than	or	equal	to	n.
Worst	fit	uses	the	largest	free	block	with	a	size	greater	than	or	equal	to	n.

Depending	 on	 the	 allocation	 pattern	 of	 the	 user	 program,	 these	 three	 allocation
methods	will	have	differing	levels	of	external	fragmentation.	The	implementation	on
the	book	web	site	as	Heap_xxx	uses	first	fit.

Checkpoint	1.27:	How	would	you	change	the	way	free	blocks	are	organized	to
implement	best	fit?		

When	a	block	is	allocated,	a	free	block	is	divided	to	two	parts.	Figure	1.45illustrates
the	 process	 of	 allocating	 a	 20-word	 block	 using	 a	 100-word	 free	 block.	 In	 this
example,	80	bytes	is	20	words.	The	100-word	free	block	is	divided	into	a	20-word
block	 and	 a	 78-word	 block.	 A	 pointer	 to	 the	 20-word	 block	 is	 returned
byHeap_Malloc .

When	allocating	a	block,	the	free	block	may	not	be	large	enough	to	split	in	two.	For
example,	if	the	user	were	to	have	asked	for	392	bytes	(98	words)	in	Figure	1.45,	it
would	be	better	 to	give	 the	user	 the	entire	100-word	block,	because	 the	8	bytes	 (2
words)	are	 too	small	 to	create	a	useful	block.	These	extra	8	bytes	allocated	 to	 the
user	constitute	internal	fragmentation.

Figure	1.45.	Example,	the	user	calls	Pt=Heap_Malloc(80).

Checkpoint	1.28:	In	Figure	1.45,	why	does	the	sum	of	the	parts	not	equal	the
whole?	In	particular,	20+78	does	not	equal	100.		

When	 deallocating	 a	 block,	 there	 are	 four	 cases:	 no	 merge,	 merge	 above,	 merge
below	 and	 merge	 both	 above	 and	 below.	 If	 the	 blocks	 immediately	 above	 and
immediately	 below	 the	 deallocated	 block	 are	 used,	 no	merging	 is	 needed	 and	 the
manager	 simply	 changes	 the	 counters	 from	 positive	 to	 negative,	 as	 shown	 Figure
1.46.

Figure	1.46.	Example,	the	user	calls	Heap_Free(Pt).

If	the	block	immediately	above	is	free	and	immediately	below	is	used,	a	merge	above
is	 needed	 and	 the	 manager	 will	 combine	 two	 blocks	 into	 one	 big	 free	 block,	 as
shown	 Figure	 1.47.	 There	 are	 two	 special	 cases	 when	 deallocating	 blocks.	 If	 the
block	is	the	first	block	in	the	heap,	you	cannot	merge	it	above,	and	if	the	block	is	the
last	block	in	the	heap,	you	cannot	merge	it	below.

Figure	1.47.	Two	blocks	are	merged	during	a	call	to	Heap_Free.

Checkpoint	1.29:	What	happens	if	you	continue	to	access	a	memory	block	after
the	block	is	deallocated?		

The	Knuth	buddy	allocation	maintains	the	heap	as	a	collection	of	blocks	each	with	a
size	of	2m.	When	the	user	requests	a	block	of	size	n,	 it	will	 find	the	smallest	block
with	2m	greater	 than	or	equal	 to	n.	For	example,	 if	 the	smallest	block	 is	size	1024,
and	the	user	requests	a	block	of	100	bytes,	the	1024-byte	block	will	be	divided	into
two	128-byte	blocks,	one	256-byte	block	and	one	512-byte	blocks.	The	user	will	be
given	 the	 128-byte	 block.	 The	 28	 extra	 bytes	 allocated	 to	 the	 user	 is	 internal
fragmentation.

1.8.	Introduction	to	debugging
Microcontroller-related	problems	often	 require	 the	use	of	 specialized	equipment	 to
debug	 the	 system	 hardware	 and	 software.	 Useful	 hardware	 tools	 include	 a	 logic
probe,	an	oscilloscope,	a	 logic	analyzer,	and	a	JTAG	debugger.	A	 logic	probe	 is	a
handheld	device	with	an	LED	or	buzzer.	You	place	the	probe	on	your	digital	circuit
and	LED/buzzer	will	indicate	whether	the	signal	is	high	or	low.	An	oscilloscope,	or
scope,	graphically	displays	information	about	an	electronic	circuit,	where	the	voltage
amplitude	 versus	 time	 is	 displayed.	 A	 scope	 has	 one	 or	 two	 channels,	 with	many
ways	 to	 trigger	 or	 capture	 data.	 A	 scope	 is	 particularly	 useful	 when	 interfacing
analog	 signals	 using	 an	 ADC	 or	 DAC.	 The	 PicoScope	 2104	 (from
http://www.picotech.com/)	 is	 a	 low-cost	 but	 effective	 tool	 for	 debugging
microcontroller	 circuits.	A	 logic	analyzer	 is	 essentially	 a	multiple	 channel	 digital
storage	scope	with	many	ways	to	trigger.	As	shown	in	Figure	1.48,	we	can	connect
the	logic	analyzer	to	digital	signals	that	are	part	of	the	system,	or	we	can	connect	the
logic	 analyzer	 channels	 to	 unused	microcontroller	 pins	 and	 add	 software	 to	 toggle
those	 pins	 at	 strategic	 times/places.	 As	 a	 troubleshooting	 aid,	 it	 allows	 the
experimenter	 to	observe	numerous	digital	signals	at	various	points	 in	 time	and	thus
make	decisions	based	upon	such	observations.	One	problem	with	logic	analyzers	is
the	massive	 amount	 of	 information	 that	 it	 generates.	To	 use	 an	 analyzer	 effectively
one	must	 learn	 proper	 triggering	mechanisms	 to	 capture	 data	 at	 appropriate	 times
eliminating	the	need	to	sift	 through	volumes	of	output.	The	logic	analyzer	figures	in
this	 book	 were	 collected	 with	 a	 logic	 analyzer	 Digilent	 (from
http://www.digilentinc.com/).	The	Analog	Discovery	combines	a	logic	analyzer	with
an	oscilloscope,	creating	an	extremely	effective	debugging	tool.

Figure	1.48.	A	logic	analyzer	and	example	output.	P4.1	and	P4.0	are	extra
pins	just	used	for	debugging.

Figure	1.49	shows	a	logic	analyzer	output,	where	signals	SSI	are	outputs	to	the	LCD,
and	UART	 is	 transmission	between	 two	microcontrollers.	However	P3.3	 and	P3.1
are	debugging	outputs	to	measuring	timing	relationships	between	software	execution
and	digital	I/O.	The	rising	edge	of	P3.1	is	used	to	trigger	the	data	collection.

Figure	1.49.	Analog	Discovery	logic	analyzer	output	(www.digilentinc.com).

An	emulator	 is	a	hardware	debugging	 tool	 that	 recreates	 the	 input/output	 signals	of
the	processor	chip.	To	use	an	emulator,	we	remove	the	processor	chip	and	insert	the
emulator	 cable	 into	 the	 chip	 socket.	 In	 most	 cases,	 the	 emulator/computer	 system
operates	at	full	speed.	The	emulator	allows	the	programmer	to	observe	and	modify
internal	 registers	 of	 the	 processor.	 Emulators	 are	 often	 integrated	 into	 a	 personal
computer,	 so	 that	 its	editor,	hard	drive,	and	printer	are	available	 for	 the	debugging
process.

The	only	disadvantage	of	the	in-circuit	emulator	is	its	cost.	To	provide	some	of	the
benefits	of	this	high-priced	debugging	equipment,	many	microcontrollers	use	a	JTAG
debugger.	The	JTAG	hardware	exists	both	on	the	microcontroller	chip	itself	and	as	an
external	interface	to	a	personal	computer.	Although	not	as	flexible	as	an	ICE,	JTAG
can	provide	the	ability	to	observe	software	execution	in	real-time,	the	ability	to	set
breakpoints,	 the	 ability	 to	 stop	 the	 computer,	 and	 the	 ability	 to	 read	 and	 write
registers,	I/O	ports	and	memory.

Debugging	 is	 an	 essential	 component	 of	 embedded	 system	 design.	 We	 need	 to
consider	debugging	during	all	phases	of	the	design	cycle.	It	is	important	to	develop	a
structure	or	method	when	verifying	system	performance.	This	section	will	present	a
number	 of	 tools	 we	 can	 use	 when	 debugging.	 Terms	 such	 as	 program	 testing,
diagnostics,	 performance	 debugging,	 functional	 debugging,	 tracing,	 profiling,
instrumentation,	visualization,	 optimization,	verification,	 performance	measurement,
and	 execution	 measurement	 have	 specialized	 meanings,	 but	 they	 are	 also	 used
interchangeably,	 and	 they	 often	 describe	 overlapping	 functions.	 For	 example,	 the
terms	profiling,	tracing,	performance	measurement,	or	execution	measurement	may	be
used	 to	describe	 the	process	of	 examining	a	program	 from	a	 time	viewpoint.	 	But,
tracing	 is	 also	 a	 term	 that	 may	 be	 used	 to	 describe	 the	 process	 of	 monitoring	 a
program	state	or	history	for	functional	errors,	or	to	describe	the	process	of	stepping
through	 a	 program	with	 a	 debugger.	 	 Usage	 of	 these	 terms	 among	 researchers	 and
users	vary.

Black-box	testing	is	simply	observing	the	inputs	and	outputs	without	looking	inside.
Black-box	testing	has	an	important	place	in	debugging	a	module	for	its	functionality.

On	the	other	hand,	white-box	testing	allows	you	to	control	and	observe	the	internal
workings	of	a	system.	A	common	mistake	made	by	new	engineers	is	to	just	perform
black	box	testing.	Effective	debugging	uses	both.	One	must	always	start	with	black-
box	 testing	by	subjecting	a	hardware	or	software	module	 to	appropriate	 test-cases.
Once	we	 document	 the	 failed	 test-cases,	 we	 can	 use	 them	 to	 aid	 us	 in	 effectively
performing	 the	 task	 of	 white-box	 testing.	 Unit	 testing	 involves	 evaluating	 each
module	 separately	 before	 combining	 the	 components	 into	 the	 larger	 system.
Integration	testing	occurs	when	multiple	components	are	integrated	together.

We	define	a	debugging	instrument	as	software	code	that	is	added	to	the	program	for
the	purpose	of	debugging.	A	print	statement	 is	a	common	example	of	an	instrument.
Using	 the	 editor,	 we	 add	 print	 statements	 to	 our	 code	 that	 either	 verify	 proper
operation	or	display	run-time	errors.

Nonintrusiveness	 is	 the	 characteristic	 or	 quality	 of	 a	 debugger	 that	 allows	 the
software/hardware	 system	 to	 operate	 normally	 as	 if	 the	 debugger	 did	 not	 exist.
Intrusiveness	is	used	as	a	measure	of	the	degree	of	perturbation	caused	in	program
performance	by	the	debugging	instrument	itself.	Let	t	be	the	time	required	to	execute
the	instrument,	and	let	Δt	be	the	average	time	in	between	executions	of	the	instrument.
One	quantitative	measure	of	intrusiveness	is	 t/Δt,	which	is	 the	fraction	of	available
processor	 time	used	by	 the	debugger.	For	example,	a	print	 statement	added	 to	your
source	code	may	be	very	intrusive	because	it	might	significantly	affect	the	real-time
interaction	of	the	hardware	and	software.	Observing	signals	that	already	exist	as	part
of	 the	 system	with	 an	 oscilloscope	 or	 logic	 analyzer	 is	nonintrusive,	meaning	 the
presence	 of	 the	 scope/analyzer	 has	 no	 effect	 on	 the	 system	 being	 measured.	 A
debugging	instrument	is	classified	as	minimally	intrusive	if	it	has	a	negligible	effect
on	 the	 system	 being	 debugged.	 In	 a	 real	 microcontroller	 system,	 breakpoints	 and
single-stepping	 are	 also	 intrusive,	 because	 the	 real	 hardware	 continues	 to	 change
while	the	software	has	stopped.	When	a	program	interacts	with	real-time	events,	the
performance	can	be	significantly	altered	when	using	intrusive	debugging	tools.	To	be
effective	we	must	employ	nonintrusive	or	minimally	intrusive	methods.

Checkpoint	1.30:	What	does	it	mean	for	a	debugging	instrument	to	be	minimally
intrusive?	Give	both	a	general	answer	and	a	specific	criterion.			

Although,	 a	wide	variety	of	program	monitoring	and	debugging	 tools	 are	 available
today,	in	practice	it	is	found	that	an	overwhelming	majority	of	users	either	still	prefer
or	 rely	mainly	upon	“rough	and	 ready”	manual	methods	 for	 locating	and	correcting
program	errors.		These	methods	include	desk-checking,	dumps,	and	print	statements,
with	 print	 statements	 being	 one	 of	 the	 most	 popular	 manual	 methods.	 	 Manual
methods	are	useful	because	they	are	readily	available,	and	they	are	relatively	simple
to	 use.	 	 But,	 the	 usefulness	 of	 manual	 methods	 is	 limited:	 they	 tend	 to	 be	 highly
intrusive,	 and	 they	 do	 not	 provide	 adequate	 control	 over	 repeatability,	 event
selection,	or	event	isolation.	A	real-time	system,	where	software	execution	timing	is
critical,	usually	cannot	be	debugged	with	simple	print	statements,	because	 the	print
statement	itself	will	require	too	much	time	to	execute.

The	 first	 step	of	debugging	 is	 to	stabilize	 the	 system.	 In	 the	debugging	context,	we
stabilize	the	problem	by	creating	a	test	routine	that	fixes	(or	stabilizes)	all	the	inputs.
In	this	way,	we	can	reproduce	the	exact	inputs	over	and	over	again.	Once	stabilized,
if	we	modify	the	program,	we	are	sure	that	the	change	in	our	outputs	is	a	function	of
the	 modification	 we	 made	 in	 our	 software	 and	 not	 due	 to	 a	 change	 in	 the	 input
parameters.

Acceleration	means	we	will	speed	up	the	testing	process.	When	we	are	testing	one
module	we	 can	 increase	 how	 fast	 the	 functions	 are	 called	 in	 an	 attempt	 to	 expose
possible	faults.	Furthermore,	since	we	can	control	the	test	environment,	we	will	vary
the	 test	conditions	over	a	wide	 range	of	possible	conditions.	Stress	 testing	means
we	run	the	system	beyond	the	requirements	to	see	at	what	point	it	breaks	down.

When	a	 system	has	a	 small	number	of	possible	 inputs	 (e.g.,	 less	 than	a	million),	 it
makes	sense	to	test	them	all.	When	the	number	of	possible	inputs	is	large	we	need	to
choose	a	set	of	 inputs.	Coverage	defines	 the	subset	of	possible	 inputs	selected	for
testing.	A	corner	case	is	defined	as	a	situation	at	the	boundary	where	multiple	inputs
are	at	their	maximum,	like	the	corner	of	a	3-D	cube.	At	the	corner	small	changes	in
input	may	cause	 lots	of	 internal	and	external	changes.	 In	particular,	we	need	 to	 test
the	 cases	we	 think	might	 be	 difficult	 (e.g.,	 the	 clock	 output	 increments	 one	 second
from	 11:59:59	 PM	 December	 31,	 1999.)	 There	 are	 many	 ways	 to	 decide	 on	 the
coverage.	We	can	select	values:

•	Near	the	extremes	and	in	the	middle
•	Most	typical	of	how	our	clients	will	properly	use	the	system
•	Most	typical	of	how	our	clients	will	improperly	use	the	system
•	That	differ	by	one
•	You	know	your	system	will	find	difficult
•	Using	a	random	number	generator
Maintenance	Tip:	First,	find	the	things	that	will	break	you.	Second,	break	them.

To	stabilize	the	system	we	define	a	fixed	set	of	inputs	to	test,	run	the	system	on	these
inputs,	 and	 record	 the	 outputs.	 Debugging	 is	 a	 process	 of	 finding	 patterns	 in	 the
differences	 between	 recorded	 behavior	 and	 expected	 results.	 The	 advantage	 of
modular	programming	is	that	we	can	perform	modular	debugging.	We	make	a	list	of
modules	 that	 might	 be	 causing	 the	 bug.	 We	 can	 then	 create	 new	 test	 routines	 to
stabilize	 these	modules	and	debug	 them	one	at	a	 time.	Unfortunately,	 sometimes	all
the	modules	seem	to	work,	but	the	combination	of	modules	does	not.	In	this	case	we
study	the	interfaces	between	the	modules,	looking	for	intended	and	unintended	(e.g.,
unfriendly	code)	interactions.

Common	error:	Sometimes	the	original	system	operates	properly,	and	the
debugging	code	has	bugs.

1.9.	Exercises
1.1	 	There	are	 two	R13s.	What	 is	 special	about	R13?	Why	are	 there	 two	of	 them?
What	is	the	initial	value	in	R13	after	a	reset?

1.2	 	 What	 is	 in	 R14	 when	 a	 function	 is	 called?	 How	 do	 you	 write	 code	 so	 that
function	calls	can	be	nested?	What	is	the	initial	value	in	R14	after	a	reset?

1.3	 	What	 is	 in	Register	15?	Why	 is	bit	0	of	Register	15	always	0?	What	happens
when	you	 load	a	value	 into	Register	15	with	bit	0	set?	What	 is	 the	 initial	value	 in
R15	after	a	reset?

1.4		Why	are	there	so	many	buses	on	the	ARM	Cortex-M	processor?

1.5		Write	C	code	that	sets	bit	30	of	memory	location	0x2000.4000	using	bit-banding.

1.6	 	 Write	 C	 code	 that	 clears	 bit	 15	 of	 memory	 location	 0x2000.1000	 using	 bit-
banding.

1.7		Write	C	code	that	sets	bit	5	of	memory	location	0x4000.4400	using	bit-banding.
What	effect	does	this	operation	have?

1.8	 	 Write	 C	 code	 that	 clears	 bit	 3	 of	 memory	 location	 0x4000.7400	 using	 bit-
banding.	What	effect	does	this	operation	have?

1.9	 	Where	 is	 the	 interrupt	 enable	 bit	 on	ARM	Cortex-M	 processor?	Which	 value
enables	interrupts:	0	or	1?

1.10Does	 the	 associative	 principle	 hold	 for	 signed	 integer	 multiply	 and	 divide?
Assume Out1	Out2	A	B	C are	all	the	same	precision	(e.g.,	32	bits).	In	particular	do
these	two	C	calculations	always	achieve	identical	outputs?	If	not,	give	an	example.
Out1	=	(A*B)/C; Out2	=	A*(B/C);

	
1.11Does	the	associative	principle	hold	for	signed	integer	addition	and	subtraction?
Assume Out3	Out4	A	B	C 	are	all	the	same	precision	(e.g.,	32	bits).	In	particular	do
these	two	C	calculations	always	achieve	identical	outputs?	If	not,	give	an	example.
Out3	=	(A+B)-C; Out4	=	A+(B-C);

	

1.12	 	According	to	AAPCS,	which	registers	must	be	preserved	and	which	registers
are	free	to	modify	by	a	function?

1.13		A	C	function	has	this	prototype, void	MyProg(int	a,	int	b,	int	c) .	If	one	placed
a	breakpoint	at	the	beginning	of	this	function,	where	would	you	find	the	parameters	a,
b,	and	c?

1.14	 	Write	 two	assembly	functions	 that	 return	R0	equal	 to	31	 times	 the	 input.	One
function	uses	the	multiply	function	and	one	uses	the	shift	and	reverse	subtract.	Make

the	functions	comply	with	AAPC,	so	R0	is	the	input	and	R0	is	the	output.

1.15		Let	R0	and	R1	be	two	unsigned	integers.	Write	assembly	code	that	makes	R0
the	larger	of	the	two	using	the	conditional	assembly	instruction IT .

1.16		Consider	a	software	system	that	allocates	memory	block	i	of	Sizei	in	the	order
of	i	=	0,	1,	2,	 ...	 	 In	 this	system,	blocks	will	always	be	deallocated	in	 the	opposite
order.	 Prove	 that	 the	memory	manage	will	 never	 result	 in	 fragmentation	 (two	 free
blocks	 that	 are	 not	 adjacent.)	 Write	 three	 functions	 (init,	 malloc,	 and	 free)	 that
implement	a	heap	used	in	this	manner.

#define	SIZE	1000
uint8_t	Heap[SIZE];

	

	

2.	Microcontroller	Input/Output
Chapter	2	objectives	are	to:
•	Overview	digital	I/O	on	the	MSP432	and	TM4C

•	Review	interrupt	synchronization

•	Introduce	timer	and	edge-triggered	interrupts

•	Define	simple	serial	communication	using	the	UART	and	SPI

•	Present	timer	I/O	with	input	capture	and	PWM

•	Overview	analog	I/O	using	a	DAC	and	an	ADC

	
The	overall	objective	of	this	book	is	to	teach	the	design	of	real-time	operating
systems	 for	 embedded	 systems.	 This	 chapter	 will	 review	 interfacing	 to	 the
Texas	 Instruments	MSP432/TM4C	 family	 of	microcontrollers.	Hardware	 and
software	aspects	of	interfacing	to	the	microcontroller	were	presented	in	detail
in	 Volume	 2.	 In	 particular,	 this	 chapter	 is	 an	 abridged	 version	 of	 Volume	 2
summarizing	I/O	interfacing	concepts,	presenting	some	reference	material.	The
reader	can	refer	to	Volume	2	for	more	details	including	more	design	examples.

2.1.	Parallel	I/O
On	most	embedded	microcontrollers,	the	I/O	ports	are	memory	mapped.	This	means
the	software	can	access	an	input/output	port	simply	by	reading	from	or	writing	to	the
appropriate	address.	It	is	important	to	realize	that	even	though	I/O	operations	“look”
like	 reads	 and	 writes	 to	 memory	 variables,	 the	 I/O	 ports	 often	 DO	NOT	 act	 like
memory.	For	example,	some	bits	are	read-only,	some	are	write-only,	some	can	only
be	cleared,	others	can	only	be	set,	and	some	bits	cannot	be	modified.	To	make	our
software	more	readable	we	include	symbolic	definitions	for	the	I/O	ports.	We	set	the
direction	 register	 to	 specify	which	 pins	 are	 input	 and	which	 are	 output.	 Individual
port	pins	can	be	general	purpose	I/O	(GPIO)	or	have	an	alternate	function.

With	 a	 parallel	 input	 software	 reads	 a	 binary	 one	 if	 the	 input	 pin	 is	 high.	 The
software	reads	a	binary	zero	if	the	input	pin	is	low.	With	a	parallel	output,	when	the
software	 writes	 a	 1,	 the	 output	 pin	 goes	 high.	When	 the	 software	 writes	 a	 0,	 the
output	pin	goes	 low.	Microcontrollers	allow	parallel	 I/O	to	8	or	16	pins	at	a	 time,
hence	the	classification	as	parallel	I/O.

2.1.1.	TM4C	I/O	programming
Pins	 have	 a	 regular	 (GPIO)	 or	 can	 have	 one	 of	 multiple	 alternate	 functions.	 By
default,	 the	 alternate	 function	 register	 (e.g., GPIO_PORTD_AFSEL_R)	 is	 zero,
specifying	 the	 corresponding	 bits	 are	 regular	 GPIO	 pins.	 We	 will	 set	 bits	 in	 the
alternative	function	register	when	we	wish	to	activate	the	functions	listed	in	Tables
1.4,	and	1.5.	Typically,	we	write	to	the	direction	and	alternate	function	registers	once
during	 the	 initialization	 phase.	 We	 use	 the	 data
register(e.g., GPIO_PORTD_DATA_R)	 to	 perform	 input/output	 on	 the	 port.
Conversely,	we	read	and	write	the	data	register	multiple	times	to	perform	input	and
output	respectively	during	the	running	phase.	The	only	differences	among	the	TM4C
family	 are	 the	 number	 of	 ports	 and	 available	 pins	 in	 each	 port.	 For	 example,	 the
TM4C1294	has	fifteen	digital	I/O	ports	A	(8	bits),	B	(6	bits),	C	(8	bits),	D	(8	bits),	E
(6	bits),	F	(5	bits),	G	(2	bits),	H	(4	bits),	J	(2	bits),	K	(8	bits),	L	(8	bits),	M	(8	bits),
N(6	 bits),	 P	 (6	 bits),	 and	 Q	 (5	 bits).	 Furthermore,	 the	 TM4C1294	 has	 different
addresses	for	ports.	Refer	to	the	file	tm4c1294ncpdt.h	or	to	the	data	sheet	for	more
the	specific	addresses	of	its	I/O	ports.

To	initialize	an	I/O	port	for	general	use	we	perform	seven	steps,	see	Program	2.1.	We
will	skip	steps	three	four	and	six	in	this	chapter	because	the	default	state	after	a	reset
is	 to	 disable	 analog	 function	 and	 disable	 alternate	 function.	 First,	 we	 activate	 the
clock	for	the	port	by	setting	the	corresponding	bit	in	RCGCGPIO	register.	Because
it	 takes	 time	 for	 the	 clock	 to	 stabilize,	 we	 next	 will	 wait	 for	 its	 status	 bit	 in	 the
PRGPIO	 to	be	true.	Second,	we	unlock	the	port;	unlocking	is	needed	only	for	pins

PD7,	and	PF0	on	the	TM4C123.	The	only	pin	needing	unlocking	on	the	TM4C1294	is
PD7.	Third,	we	disable	the	analog	function	of	the	pin,	because	we	will	be	using	the
pin	 for	 digital	 I/O.	 Fourth,	 we	 clear	 bits	 in	 the	PCTL	 (Tables	 1.4,	 1.5)	 to	 select
regular	 digital	 function.	 Fifth,	 we	 set	 its	 direction	 register.	 The	 direction	 register
specifies	bit	for	bit	whether	the	corresponding	pins	are	input	or	output.	A	bit	in	DIR
set	to	0	means	input	and	1	means	output.	Sixth,	we	clear	bits	in	the	alternate	function
register,	and	lastly,	we	enable	the	digital	port.	Turning	on	the	clock	must	be	first.	If
the	pin	needs	unlocking	that	must	be	second.	However,	the	other	five	steps	can	occur
in	any	order.

	 void	PortF_Init(void){	//	TM4C123	has	PortF	bits	4-0
		SYSCTL_RCGCGPIO_R	|=	0x00000020;		//	1)	activate	clock	for	Port	F
		while((SYSCTL_PRGPIO_R&0x00000020)	==	0){};//	wait	for	stabilization
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;			//	2)	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;											//	allow	changes	to	PF4-0
		GPIO_PORTF_AMSEL_R	=	0x00;								//	3)	disable	analog	on	PF
		GPIO_PORTF_PCTL_R	=	0x00000000;			//	4)	PCTL	GPIO	on	PF4-0
		GPIO_PORTF_DIR_R	=	0x0E;										//	5)	PF4,PF0	in,	PF3-1	out
		GPIO_PORTF_AFSEL_R	=	0x00;								//	6)	disable	alt	funct	on	PF4-0
		GPIO_PORTF_PUR_R	=	0x11;										//	enable	pull-up	on	PF0	and	PF4
		GPIO_PORTF_DEN_R	=	0x1F;										//	7)	enable	digital	I/O	on	PF4-0
}
uint32_t	PortF_Input(void){
		return	(GPIO_PORTF_DATA_R&0x11);		//	read	PF4,PF0	inputs
}
void	PortF_Output(uint32_t	data){
		GPIO_PORTF_DATA_R	=	data;						//	write	PF3-PF1	outputs
}
Program	2.1.	A	set	of	functions	using	PF4,	PF0	as	inputs	and	PF3 –PF1	as
outputs.

Address 7 6 5 4 3 2 1 0 Name
$400F.E608 - - GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA SYSCTL_RCGCGPIO_R
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 1 1 1 1 1 1 1 1 GPIO_PORTA_CR_R
$4000.4528 0 0 0 0 0 0 0 0 GPIO_PORTA_AMSEL_R
$4000.53FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTB_DATA_R
$4000.5400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTB_DIR_R
$4000.5420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTB_AFSEL_R
$4000.5510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTB_PUR_R
$4000.551C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTB_DEN_R
$4000.5524 1 1 1 1 1 1 1 1 GPIO_PORTB_CR_R

$4000.5528 0 0 AMSEL AMSEL 0 0 0 0 GPIO_PORTB_AMSEL_R
$4000.63FC DATA DATA DATA DATA JTAG JTAG JTAG JTAG GPIO_PORTC_DATA_R
$4000.6400 DIR DIR DIR DIR JTAG JTAG JTAG JTAG GPIO_PORTC_DIR_R
$4000.6420 SEL SEL SEL SEL JTAG JTAG JTAG JTAG GPIO_PORTC_AFSEL_R
$4000.6510 PUE PUE PUE PUE JTAG JTAG JTAG JTAG GPIO_PORTC_PUR_R
$4000.651C DEN DEN DEN DEN JTAG JTAG JTAG JTAG GPIO_PORTC_DEN_R
$4000.6524 1 1 1 1 JTAG JTAG JTAG JTAG GPIO_PORTC_CR_R
$4000.6528 AMSEL AMSEL AMSEL AMSEL JTAG JTAG JTAG JTAG GPIO_PORTC_AMSEL_R
$4000.73FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTD_DATA_R
$4000.7400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTD_DIR_R
$4000.7420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTD_AFSEL_R
$4000.7510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTD_PUR_R
$4000.751C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTD_DEN_R
$4000.7524 CR 1 1 1 1 1 1 1 GPIO_PORTD_CR_R
$4000.7528 0 0 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTD_AMSEL_R
$4002.43FC 	 	 DATA DATA DATA DATA DATA DATA GPIO_PORTE_DATA_R
$4002.4400 	 	 DIR DIR DIR DIR DIR DIR GPIO_PORTE_DIR_R
$4002.4420 	 	 SEL SEL SEL SEL SEL SEL GPIO_PORTE_AFSEL_R
$4002.4510 	 	 PUE PUE PUE PUE PUE PUE GPIO_PORTE_PUR_R
$4002.451C 	 	 DEN DEN DEN DEN DEN DEN GPIO_PORTE_DEN_R
$4002.4524 	 	 1 1 1 1 1 1 GPIO_PORTE_CR_R
$4002.4528 	 	 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTE_AMSEL_R
$4002.53FC 	 	 	 DATA DATA DATA DATA DATA GPIO_PORTF_DATA_R
$4002.5400 	 	 	 DIR DIR DIR DIR DIR GPIO_PORTF_DIR_R
$4002.5420 	 	 	 SEL SEL SEL SEL SEL GPIO_PORTF_AFSEL_R
$4002.5510 	 	 	 PUE PUE PUE PUE PUE GPIO_PORTF_PUR_R
$4002.551C 	 	 	 DEN DEN DEN DEN DEN GPIO_PORTF_DEN_R
$4002.5524 	 	 	 1 1 1 1 CR GPIO_PORTF_CR_R
$4002.5528 	 	 	 0 0 0 0 0 GPIO_PORTF_AMSEL_R
	 	 	 	 	 	 	 	 	 	
	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	
$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R
$4000.552C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTB_PCTL_R
$4000.652C PMC7 PMC6 PMC5 PMC4 0x1 0x1 0x1 0x1 GPIO_PORTC_PCTL_R
$4000.752C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTD_PCTL_R
$4002.452C 	 	 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTE_PCTL_R
$4002.552C 	 	 	 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTF_PCTL_R
$4000.6520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTC_LOCK_R
$4000.7520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTD_LOCK_R
$4002.5520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTF_LOCK_R

Table	2.1.	Some	TM4C123	parallel	ports.	Each	register	is	32	bits	wide.	For	PMCx	bits,	see
Tables	1.4	and	1.5.	JTAG	means	do	not	use	these	pins	and	do	not	change	any	of	these	bits.

To	 use	 a	 port	 we	 first	 must	 activate	 its	 clock	 in
the SYSCTL_RCGCGPIO_R register.	To	make	Port	F	pins	4,0	input	and	pins	3–1
output,	we	 set	 the	 direction	 register	 to	 0x0E,	 as	 shown	 in	 Program	 2.1.	When	 the
software	 reads	 from	 location	 0x400253FC	 the	 bottom	 5	 bits	 are	 returned	with	 the
current	values	on	Port	F.	The	top	27	bits	are	returned	zero.	The	input	pins	show	the
current	digital	state,	and	the	output	pins	show	the	value	last	written	to	the	port.	The
function PortF_Input 	 will	 read	 from	 the	 two	 input	 pins	 and	 return	 a	 value,	 0x00

0x01,	 0x10	 or	 0x11,	 depending	 on	 the	 current	 status	 of	 the	 inputs.	 The
function PortF_Output 	will	write	new	values	to	the	three	output	pins.

In	Program	2.1	the	assumption	was	the	software	module	had	access	to	all	of	Port	F.	In
other	words,	 this	software	owned	all	 five	pins	of	Port	F.	In	most	cases,	a	software
module	needs	access	to	only	some	of	the	port	pins.	If	two	or	more	software	modules
access	 the	same	port,	a	conflict	will	occur	 if	one	module	changes	modes	or	output
values	 owned	 by	 another	 module.	 It	 is	 good	 software	 design	 to	 write	 friendly
software,	which	only	affects	 the	 individual	pins	as	needed.	Friendly	software	does
not	 change	 the	 other	 bits	 in	 a	 shared	 register.	 Conversely,	 unfriendly	 software
modifies	more	bits	of	a	register	than	it	needs	to.	The	difficulty	of	unfriendly	code	is
each	module	will	run	properly	when	tested	by	itself,	but	weird	bugs	result	when	two
or	more	modules	are	combined.

Consider	the	problem	that	a	software	module	need	to	output	to	just	Port	F	bit	1.	After
enabling	the	clock	for	Port	F,	we	use	read-modify-write	software	to	initialize	just	pin
1

		SYSCTL_RCGCGPIO_R	|=	0x00000020;	//	activate	clock	for	Port	F
		while((SYSCTL_PRGPIO_R&0x00000020)	==	0){};//	clock	stabilization
		GPIO_PORTF_AMSEL_R	&=	~0x02;						//	disable	analog	on	PF1
		GPIO_PORTF_PCTL_R	&=	~0x000000F0;	//	PCTL	GPIO	on	PF1
		GPIO_PORTF_DIR_R	|=	0x02;									//	PF1	is	an	output
		GPIO_PORTF_AFSEL_R	&=	~0x02;						//	regular	port	function
		GPIO_PORTF_DEN_R	|=	0x02;									//	PF1	is	enabled	as	a	digital	port
	

There	 is	no	conflict	 if	 two	or	more	modules	enable	 the	clock	for	Port	F.	There	are
two	ways	on	 the	Cortex-M	microcontroller	 to	access	 individual	port	bits.	The	first
method	is	 to	use	read-modify-write	software	to	change	just	pin	1.	 	A	read-or-write
sequence	can	be	used	to	set	one	or	more	bits.

		GPIO_PORTF_DATA_R	|=	0x02;							//	make	PF1	high
	

A	read-and-write	sequence	can	be	used	to	clear	one	or	more	bits.

		GPIO_PORTF_DATA_R	&=	~0x02;						//	make	PF1	low
	

The	second	method	uses	the	bit-specific	addressing.	The	TM4C	family	implements	a
more	 flexible	 way	 to	 access	 port	 pins	 than	 the	 bit-banding.	 This	 bit-specific
addressing	doesn’t	work	for	all	the	I/O	registers,	just	the	parallel	port	data	registers.
This	mechanism	allows	collective	access	to	1	to	8	bits	in	a	data	port.	We	define	eight
address	 offset	 constants	 in	 Table	 2.2.	 Basically,	 if	 we	 are	 interested	 in	 bit	 b,	 the
constant	 is	 4*2b.	 There	 256	 possible	 bit	 combinations	 we	 might	 be	 interested	 in
accessing,	 from	 all	 of	 them	 to	 none	 of	 them.	 Each	 possible	 bit	 combination	 has	 a
separate	address	 for	accessing	 that	 combination.	For	each	bit	we	are	 interested	 in,
we	add	up	the	corresponding	constants	from	Table	2.2	and	then	add	that	sum	to	the
base	address	for	the	port.	The	base	addresses	for	the	data	ports	can	be	found	in	GPIO

chapter	of	the	microcontroller	data	sheet.	For	example,	assume	we	are	interested	in
Port	 A	 bits	 1,	 2,	 and	 3.	 The	 base	 address	 for	 Port	 A	 is	 0x4000.4000,	 and	 the
constants	 are	 0x0020,	 0x0010	 and	 0x008.	 The	 sum	 of
0x4000.4000+0x0020+0x0010+0x008	is	 the	address	0x4000.4038.	If	we	read	from
0x4000.4038	only	bits	1,	2,	and	3	will	be	returned.	If	we	write	to	this	address	only
bits	1,	2,	and	3	will	be	modified.

If	we	wish	to	access
bit

Constant

7 0x0200
6 0x0100
5 0x0080
4 0x0040
3 0x0020
2 0x0010
1 0x0008
0 0x0004

Table	2.2.	Address	offsets	used	to	specify	individual	data	port	bits.
The	base	address	for	Port	F	is	0x4002.5000.	If	we	want	to	read	and	write	all	8	bits
of	 this	 port,	 the	 constants	will	 add	 up	 to	 0x03FC.	Notice	 that	 the	 sum	of	 the	 base
address	and	the	constants	yields	the	0x4002.53FC	address	used	in	tm4c123gh6pm.h.
In	 other	words,	 read	 and	write	 operations	 to	 0x4002.53FC	will	 access	 all	 bits	 of
Port	F.	If	we	are	interested	in	just	bit	1	of	Port	F,	we	add	0x0008	to	0x4002.5000,	to
get	 	 0x4002.5008.	 Now,	 a	 simple	 write	 operation	 can	 be	 used	 to	 set PF1 .	 The
following	macros	are	friendly	because	it	does	not	modify	the	other	bits	of	Port	F.	A
read	fromPF1 	will	return	0x02	or	0x00	depending	on	whether	the	pin	is	high	or	low,
respectively.	The	PF1	and	PF2	macros	are	not	critical	with	respect	each	other.

#define	PF1			(*((volatile	uint32_t	*)0x40025008))
#define	SetPF1()				(PF1	=	0x02)						
#define	ClearPF1()		(PF1	=	0x00)						

#define	TogglePF1()(PF1	=	PF1^0x02)
#define	PF2			(*((volatile	uint32_t	*)0x40025010))
#define	SetPF2()				(PF2	=	0x04)						
#define	ClearPF2()		(PF2	=	0x00)						

#define	TogglePF2()	(PF2	=	PF2^0x04)		

2.1.2.	MSP432	I/O	programming
We	will	set/clear	bits	in	the	select	registers	(e.g., P1SEL1	P1SEL0)	when	we	wish
to	activate	the	alternate	functions	listed	in	Table	2.3.	To	use	a	pin	as	GPIO,	we	must
clear	 the	 corresponding	 bits	 in	 the	 two	 select	 registers.	Typically,	we	write	 to	 the
direction	 and	 select	 registers	 once	 during	 the	 initialization	 phase.	We	 use	 the	 data

registers(e.g., P1IN	P1OUT)	 to	 perform	 the	 actual	 input/output	 on	 the	 port.	 Table
2.4	shows	the	parallel	port	registers	for	Ports	1	and	2,	but	there	are	similar	registers
for	other	ports	3	–	10.	Each	register	in	Table	2.4	is	8	bits	wide.

To	make	a	pin	an	output,	we	set	the	corresponding	bit	in	the	PxDIRregister	to	1.	In
addition,	 we	 can	 also	 set	 the	 corresponding	 bit	 in	 the	 drive	 strength	 register
(e.g., P2DS)	 to	 increase	 the	 maximum	 IOL	 and	 IOH	 of	 the	 pin	 to	 20	 mA.	 Normal
strength	is	DS=0,	and	increased	strength,	called	high	drive,	is	DS=1.	High-drive	with
DS=1	is	available	only	on	P2.0	–	P2.3.

Pin PxSEL1=0,
PxSEL0=0

PxSEL1=0,	PxSEL0=1 PxSEL1=1,
PxSEL0=0

PxSEL1=1,
PxSEL0=1

P1.0 Port UCA0STE 	 	
P1.1 Port UCA0CLK 	 	
P1.2 Port UCA0RXD/UCA0SOMI 	 	
P1.3 Port UCA0TXD/UCA0SIMO 	 	
P1.4 Port UCB0STE 	 	
P1.5 Port UCB0CLK 	 	
P1.6 Port UCB0SIMO/UCB0SDA 	 	
P1.7 Port UCB0SOMI/UCB0SCL 	 	
P2.0 Port UCA1STE 	 	
P2.1 Port UCA1CLK 	 	
P2.2 Port UCA1RXD/UCA1SOMI 	 	
P2.3 Port UCA1TXD/UCA1SIMO 	 	
P2.4 Port TA0.CCI1Aa	/	TA0.1b 	 	

P2.5 Port TA0.CCI2Aa	/	TA0.2b 	 	

P2.6 Port TA0.CCI3Aa	/	TA0.3b 	 	

P2.7 Port TA0.CCI4Aa	/	TA0.4b 	 	

P3.0 Port UCA2STE 	 	
P3.1 Port UCA2CLK 	 	
P3.2 Port UCA2RXD/UCA2SOMI 	 	
P3.3 Port UCA2TXD/UCA2SIMO 	 	
P3.4 Port UCB2STE 	 	
P3.5 Port UCB2CLK 	 	
P3.6 Port UCB2SIMO/UCB2SDA 	 	
P3.7 Port UCB2SOMI/UCB2SCL 	 	
P4.0 Port 	 	 A13
P4.1 Port 	 	 A12
P4.2 Port ACLKb TA2CLKa A11

P4.3 Port MCLKb RTCCLKb A10

P4.4 Port HSMCLKb SVMHOUTb A9

P4.5 Port 	 	 A8
P4.6 Port 	 	 A7
P4.7 Port 	 	 A6
P5.0 Port 	 	 A5
P5.1 Port 	 	 A4
P5.2 Port 	 	 A3
P5.3 Port 	 	 A2
P5.4 Port 	 	 A1

P5.5 Port 	 	 A0
P5.6 Port TA2.CCI1Aa	/	TA2.1b 	 VREF+,	VeREF+,

C1.7
P5.7 Port TA2.CCI2Aa	/	TA2.2b 	 VREF-,	VeREF-,

C1.6
P6.0 Port 	 	 A15
P6.1 Port 	 	 A14
P6.2 Port UCB1STE 	 C1.5
P6.3 Port UCB1CLK 	 C1.4
P6.4 Port UCB1SIMO/UCB1SDA 	 C1.3
P6.5 Port UCB1SOMI/UCB1SCL 	 C1.2
P6.6 Port TA2.CCI3Aa	/	TA2.3b UCB3SIMO/UCB3SDA C1.1

P6.7 Port TA2.CCI4Aa	/	TA2.4b UCB3SOMI/UCB3SCL C1.0

P7.0 Port DMAE0a	/	SMCLKb 	 	

P7.1 Port TA0CLKa	/	C0OUTb 	 	

P7.2 Port TA1CLKa	/	C1OUTb 	 	

P7.3 Port TA0.CCI0Aa	/	TA0.0b 	 	

P7.4 Port TA1.CCI4Aa	/	TA1.4b 	 C0.5

P7.5 Port TA1.CCI3Aa	/	TA1.3b 	 C0.4

P7.6 Port TA1.CCI2Aa	/	TA1.2b 	 C0.3

P7.7 Port TA1.CCI1Aa	/	TA1.1b 	 C0.2

P8.0 Port UCB3STE TA1.CCI0Aa	/	TA1.0b C0.1

P8.1 Port UCB3CLK TA2.CCI0Aa	/	TA2.0b C0.0

Pin PxSEL1=0,
PxSEL0=0

PxSEL1=0,	PxSEL0=1 PxSEL1=1,
PxSEL0=0

PxSEL1=1,
PxSEL0=1

P8.2 Port TA3.CCI2Aa	/	TA3.2b 	 A23

P8.3 Port TA3CLKa 	 A22

P8.4 Port 	 	 A21
P8.5 Port 	 	 A20
P8.6 Port 	 	 A19
P8.7 Port 	 	 A18
P9.0 Port 	 	 A17
P9.1 Port 	 	 A16
P9.2 Port TA3.CCI3Aa	/	TA3.3b 	 	

P9.3 Port TA3.CCI4Aa	/	TA3.4b 	 	

P9.4 Port UCA3STE 	 	
P9.5 Port UCA3CLK 	 	
P9.6 Port UCA3RXD/UCA3SOMI 	 	
P9.7 Port UCA3TXD/UCA3SIMO 	 	
P10.0 Port UCB3STE 	 	
P10.1 Port UCB3CLK 	 	
P10.2 Port UCB3SIMO/UCB3SDA 	 	
P10.3 Port UCB3SOMI/UCB3SCL 	 	
P10.4 Port TA3.CCI0Aa	/	TA3.0b 	 C0.7

P10.5 Port TA3.CCI1Aa	/	TA3.1b 	 C0.6

Table	2.3.	SEL1	and	SEL0	bits	on	the	MSP432	specify	alternate	functions.	P1.2	and	P1.3

are	hardwired	to	the	serial	port.	a	means	DIR	register	is	zero,	b	means	DIR	register	is	one.
	

To	make	a	pin	an	input,	we	clear	the	corresponding	bit	in	the	PxDIR	register	to	0.	In
addition,	we	can	activate	a	pull	up	or	pull	down	resistor	on	an	input	pin.	To	activate
a	pull	up	resistor,	we	set	PxREN=1	and	PxOUT=1.	To	activate	a	pull	down	resistor,
we	set	PxREN=1	and	clear	PxOUT=0.	The	equalivalent	resistance	of	the	pull	up	or
pull	down	resistor	is	about	20	–	50	kΩ.

Address 7 6 5 4 3 2 1 0 Name
0x4000.4C00 DATA DATA DATA DATA DATA DATA DATA DATA P1IN
0x4000.4C02 DATA DATA DATA DATA DATA DATA DATA DATA P1OUT
0x4000.4C04 DIR DIR DIR DIR DIR DIR DIR DIR P1DIR
0x4000.4C06 REN REN REN REN REN REN REN REN P1REN
0x4000.4C08 DS DS DS DS DS DS DS DS P1DS
0x4000.4C0A SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 P1SEL0
0x4000.4C0C SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 P1SEL1
0x4000.4C01 DATA DATA DATA DATA DATA DATA DATA DATA P2IN
0x4000.4C03 DATA DATA DATA DATA DATA DATA DATA DATA P2OUT
0x4000.4C05 DIR DIR DIR DIR DIR DIR DIR DIR P2DIR
0x4000.4C07 REN REN REN REN REN REN REN REN P2REN
0x4000.4C09 DS DS DS DS DS DS DS DS P2DS
0x4000.4C0B SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 P2SEL0
0x4000.4C0D SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 P2SEL1

Table	2.4.	MSP432	parallel	ports	1	and	2.	Each	register	is	8	bits	wide.	For	SEL	bits,	see
Table	2.3.

	

Table	2.5	lists	the	possible	ways	to	configure	a	GPIO	pin.	To	initialize	an	I/O	port
for	general	use	we	perform	three	steps.	First,	we	specify	GPIO	writing	zeros	to	the
PxSEL0	and		PxSEL1	registers.	Second,	we	set	its	direction	register.	The	direction
register	 specifies	 bit	 for	 bit	whether	 the	 corresponding	 pins	 are	 input	 or	 output,	 0
means	input	and	1	means	output.	Third,	for	inputs	we	can	add	a	pull	up	or	pull	down
resistor.	For	outputs	we	can	specify	drive	strength	using	P2DS	on	P2.0	–	P2.3.

	

PxDIR PxOut PxDS PxREN Functionality
0 X X 0 Regular	GPIO	input
0 0 X 1 GPIO	 input	 with	 pull

down
0 1 X 1 GPIO	 input	 with	 pull

up
1 0 0 X Regular	 GPIO	 output

low
1 1 0 X Regular	 GPIO	 output

high
1 0 0 1 High	 drive	 GPIO

output	low
1 1 0 1 High	 drive	 GPIO

output	high
Table	2.5.	MSP432	GPIO	functions,	assuming	PxSEL0	and	PxSEL1	are	zero.	The	little	x
specifies	port	1	–	10.	The	big	X	means	don’t	care.
	

A	 16-bit	 read	 access	 from	 address
0x40004C00	(defined	as	PAIN)	will	return	the	input	values	from	both	Ports	1	and	2
as	one	16-bit	result.	Since	the	ARM	is	little	endian,	Port	1	will	be	in	least	significant
bits	and	Port	2	will	be	in	the	most	significant	bits.	Similarly,	a	16-bit	write	access	to
address	0x40004C02	(defined	as	PAOUT)	will	set	the	output	values	to	both	Ports	1
and	2	in	one	16-bit	operation.	In	fact,	we	have	16-bit	names	for	each	set	of	adjacent
8-bit	ports.	16-bit	port	definitions	are	available	for	Ports	A	–	E.	Definitions	for	Port
A	are	shown	below.

#define	PAIN			(HWREG16(0x40004C00))	//	Input
#define	PAOUT		(HWREG16(0x40004C02))	//	Output
#define	PADIR		(HWREG16(0x40004C04))	//	Direction
#define	PAREN		(HWREG16(0x40004C06))	//	Resistor
#define	PADS			(HWREG16(0x40004C08))	//	Strength
#define	PASEL0	(HWREG16(0x40004C0A))	//	Select	0
#define	PASEL1	(HWREG16(0x40004C0C))	//	Select	1

	

Port	A
is

Port
2

:			Port
1

Port	B
is

Port
4

:			Port
3

Port	C
is

Port
6

:			Port
5

Port	D
is

Port
8

:			Port
7

Port	E
is

Port
10

:			Port
9

	
In	this	first	example,	we	will	initialize	the	LaunchPad	so	we	can	read	from	the	two
switches	and	output	 to	 the	3-color	LED.	In	particular,	we	will	make	P1.4	and	P1.1
GPIO	inputs,	and	we	will	make	P2.2-P2.0	GPIO	outputs,	as	shown	in	Program	2.2.
To	run	this	example	on	the	LaunchPad,	we	also	set	bits	in	the	P1REN	register	for	the
two	switch	inputs	to	have	an	internal	pull-up	resistor,	equivalent	to	20	–	50	kΩ.	To
make	the	resistor	a	pull	up	to	3.3V,	the	initialization	software	sets	the	corresponding
bits	in	the	P1OUT	register.

When	the	software	performs	an	8-bit	read	from	location	0x40004C00,	the	8	bits	are

returned	with	the	values	currently	on	Port	1.	When	reading	an	I/O	port,	the	input	pins
report	 the	high/low	state	currently	on	 the	 input,	 and	 the	output	pins	 show	 the	value
last	written	 to	 the	 port.	 The	 function Port1_Input 	 will	 read	 from	 all	 eight	 Port	 1
pins,	and	return	a	value	depending	on	the	status	of	the	pins	at	the	time	of	the	read.

When	writing	to	an	I/O	port,	 the	input	pins	are	not	affected,	and	the	output	pins	are
changed	to	the	value	written	to	the	port.	That	value	remains	until	written	again.	The
function Port2_Output will	write	new	values	 to	 the	output	pins.	The #include will
define	 symbolic	 names	 for	 all	 the	 I/O	 ports	 for	 that	 microcontroller.
The msp432p401r.h 	 file	 comes	with	 the	 compiler	 installation.	Use	 the	 proper	 one
for	your	microcontroller.	Program	2.2	writes	all	bits	of	the	port	registers,	and	this	is
an	inappropriate	method	of	I/O	programming.	In	general,	it	is	better	to	set/clear	bits
on	an	individual	basis.

Observation:	High	drive	strength	(DS=1)	is	only	available	on	P2.0	P2.1	P2.2
and	P2.3.	Setting	DS=1	does	not	make	the	current	20	mA,	rather	makes	it	possible
for	the	pin	to	drive	up	to	20	mA	if	needed.

void	Port1_Init(void){
		P1SEL0	&=	~0x12;
		P1SEL1	&=	~0x12;				//	1)	configure	P1.4	and	P1.1	as	GPIO
		P1DIR	&=	~0x12;					//	2)	make	P1.4	and	P1.1	in
		P1REN	|=	0x12;						//	3)	enable	pull	resistors	on	P1.4	and	P1.1
		P1OUT	|=	0x12;						//				P1.4	and	P1.1	are	pull-up
}
uint8_t	Port1_Input(void){
		return	(P1IN&0x12);			//	read	P1.4,P1.1	inputs
}
void	Port2_Init(void){
		P2SEL0	&=	~0x07;
		P2SEL1	&=	~0x07;				//	1)	configure	P2.2-P2.0	as	GPIO
		P2DIR	|=	0x07;						//	2)	make	P2.2-P2.0	out
		P2DS	|=	0x07;							//	3)	activate	increased	drive	strength
		P2OUT	&=	~0x07;				//				all	LEDs	off
}
void	Port2_Output(uint8_t	data){	//	write	three	outputs	bits	of	P2
		P2OUT	=	(P2OUT&0xF8)|data;
}
Program	2.2.	A	set	of	functions	using	P1.4,P1.1	as	inputs	and	P2.2-0	as
outputs	(InputOutput_MSP432).

Checkpoint	2.1:	Does	the	entire	port	need	to	be	defined	as	input	or	output,	or	can
some	pins	be	input	while	others	are	output?

In	Program	2.2	the	assumption	was	the	software	module	did	not	have	access	to	all	of
Port	2.	 In	other	words,	 this	software	owned	only	P1.4,	P1.1,	P2.2,	P2.1,	and	P2.0.

Good	 design	 practice	 clearly	 specifies	 which	 pins	 belong	 to	 which	 software
modules.	If	two	or	more	software	modules	access	the	same	port,	a	conflict	will	occur
if	one	module	changes	modes	or	output	values	owned	by	another	module.	It	is	good
software	design	to	write	friendly	software,	which	only	affects	the	individual	pins	as
needed.	 Friendly	 software	 does	 not	 change	 the	 other	 bits	 in	 a	 shared	 register.
Conversely,	unfriendly	software	modifies	more	bits	of	a	register	than	it	needs	to.	The
difficulty	of	unfriendly	code	is	each	module	will	run	properly	when	tested	by	itself,
but	 weird	 bugs	 result	 when	 two	 or	more	modules	 are	 combined.	 A	 read-or-write
sequence	can	be	used	to	set	one	or	more	bits.	A	read-and-write	sequence	can	be	used
to	clear	one	or	more	bits.

The	second	method	uses	 the	bit-banding.	 In	 this	example,	assume	P1.0	 is	an	output
connected	to	the	LED.	The	regular	8-bit	access	for	P1OUT		is	0x40004C02.	For	bit-
banding	of	bit	0	of	this	address,	n=0x4C01	and	b	=0.	The	address	for	this	bit	will	be

0x42000000	+	32*n	+	4*b	=	0x42000000	+	32*0x4C02	+	4*0	=	0x42098040

In	C	we	can	create	an	I/O	port	label	for	just	bit	0	of	Port	1	output.

#define	LEDOUT	(*((volatile	uint8_t	*)(0x42098040)))	

With	this	bit-banded	definition,	accessing	P1.0	is	much	simpler.	Writing	a	1	to	a	bit-
banded	 address	 sets	 that	 bit,	 and	writing	 a	 0	 clears	 that	 bit	 (without	 affecting	 the
other	7	bits).

#define	LED_On()	(LEDOUT	=	0x01)
#define	LED_Off()	(LEDOUT	=	0x00)

We	 can	 also	 create	 bit-banded	 addresses	 for	 the	 two	 switches	 on	 the	 LaunchPad.
Reading	a	bit-banded	address	returns	0	or	1	depending	on	if	 the	bit	 is	clear	or	set.
SW2	is	Port	1	bit	4	and	SW1	is	Port	1	bit	1.	The	address	of	P1IN	is	0x40004C00.
For	bit-banding	of	 this	address,	n=0x4C00.	The	aliased	addresses	 for	bits	4	and	1
will	be

0x42000000	+	32*0x4C00	+	4*4	=	0x42098010
0x42000000	+	32*0x4C00	+	4*1	=	0x42098004

In	C	we	can	create	I/O	port	label	for	SW1	and	SW2	input.

#define	SW2IN	(*((volatile	uint8_t	*)(0x42098010)))	
#define	SW1IN	(*((volatile	uint8_t	*)(0x42098004)))	

	
The	 switches	 are	 negative	 logic.	 Using SW2IN will	 return	 a	 1	 if	 P1.4	 is	 1	 (SW2
switch	 not	 pressed),	 and	 will	 return	 a	 0	 if	 P1.4	 is	 0	 (SW2	 switch	 pressed).
Using SW1IN 	will	return	a	1	if	P1.1	is	1	(SW1	switch	not	pressed),	and	will	return
a	0	if	P1.1	is	0	(SW1	switch	pressed).

Bit-banding	only	works	for	individual	bits.	It	cannot	be	used	to	access	more	than	one
bit	at	a	time.	Recall	the	3-color	LED	is	interfaced	on	P2.2	P2.1	and	P2.0.	There	is	no
bit-banded	address	 to	allow	us	 to	set	all	 three	bits	 in	one	operation.	We	could	use
bit-banding	to	access	the	colors	on	P2.2	P2.1	and	P2.0	individually.

#define	BLUELED		(*((volatile	uint8_t	*)(0x42098068)))	
#define	GREENLED	(*((volatile	uint8_t	*)(0x42098064)))	
#define	REDLED			(*((volatile	uint8_t	*)(0x42098060)))
	
To	make	the	LED	yellow,	we	turn	on	red,	turn	on	green,	and	turn	off	blue:

REDLED			=	1;	
GREENLED	=	1;	
BLUELED		=	0;	

2.2.	Interrupts
Another	 concept	 we	 need	 the	 reader	 to	 have	 a	 thorough	 understanding	 of	 is	 an
Interrupt.	An	interrupt	is	a	hardware/software	triggered	software	action,	see	Figure
2.1.	 In	 this	 class	 we	 will	 see	 three	 types	 of	 interrupts.	 A	 software	 interrupt	 is
triggered	by	software.	Executing	the SVC 	(supervisor	call)	instruction	will	generate
an	 interrupt.	 There	 is	 another	 software	 interrupt	 on	 the	 Cortex	M	 called	PendSV,
which	 is	 also	 triggered	 by	 software.	We	will	 see	 a	 third	mechanism	 for	 software
interrupt	 in	 this	 chapter	 where	 the	 software	 executes	 explicit	 code	 to	 trigger	 a
SysTick	timer	interrupt.

The	second	type	of	interrupt	is	a	periodic	interrupt,	which	is	 triggered	periodically
by	a	hardware	timer.	The	MSP432/TM4C	microcontrollers	have	SysTick	and	Timer
interrupts.	The	 ISR	will	perform	an	action	we	wish	 to	perform	on	a	 regular	basis.
For	example,	a	data	acquisition	system	needs	to	read	the	ADC	at	a	regular	rate.

The	third	type	of	interrupt	is	triggered	by	input/output	events.	With	an	input	device,
the	hardware	will	request	an	interrupt	when	input	device	has	new	data.	The	software
interrupt	service	routine	(ISR)	will	read	from	the	input	device	and	save	(put)	the	data
into	 a	 data	 structure	 located	 in	 shared	 memory,	 see	 Figure	 2.1.	 When	 the	 system
wishes	to	process	the	data,	it	will	check	the	status	of	the	data	structure,	and	if	there	is
some	data	it	will	get	it	from	the	data	structure	located	in	shared	memory.

With	an	output	device,	the	hardware	will	request	an	interrupt	when	the	output	device
is	 idle.	The	 ISR	will	get	data	 from	a	data	 structure	 located	 in	 shared	memory,	and
then	write	 to	 the	 device.	When	 the	 system	wishes	 to	 output	 data,	 it	will	 check	 the
status	of	 the	data	structure,	and	 if	 there	 is	 room	in	 the	data	structure,	software	will
write	(put)	its	data.

Interrupts	 are	 an	 important	 synchronization	 mechanism	 in	 a	 real-time	 operating
system	 because	 there	 will	 be	 multiple	 tasks	 to	 perform.	 To	 achieve	 real-time
response	interrupt-based	synchronization	serves	as	an	important	tool.

Figure	2.1.	Flowcharts	illustrating	the	use	of	interrupts	for	input	and	for
output.

2.2.1.	NVIC
On	the	ARM	Cortex-M	processor,	exceptions	include	resets,	software	interrupts	and
hardware	interrupts.	Each	exception	has	an	associated	32-bit	vector	that	points	to	the
memory	 location	where	 the	 ISR	 that	 handles	 the	 exception	 is	 located.	 Vectors	 are
stored	in	ROM	at	the	beginning	of	memory.	Program	2.3	shows	the	first	few	vectors
as	 defined	 in	 the	 startup_TM4C123.s	 file	 for	 the	 TM4C123	 and	 the
startup_msp432.sfile	for	the	MSP432. DCD 	is	an	assembler	pseudo-op	that	defines
a	 32-bit	 constant.	 ROM	 location	 0x0000.0000	 has	 the	 initial	 stack	 pointer,	 and
location	0x0000.0004	contains	the	initial	program	counter,	which	is	called	the	reset
vector.		It	holds	the	address	of	a	function	called	the	reset	handler,	which	is	the	first
thing	executed	following	reset.	There	are	hundreds	of	possible	interrupt	sources	and
their	32-bit	vectors	 are	 listed	 in	order	 starting	with	 location	0x0000.0008.	From	a
programming	 perspective,	we	 can	 attach	 ISRs	 to	 interrupts	 by	writing	 the	 ISRs	 as
regular	assembly	subroutines	or	C	functions	with	no	input	or	output	parameters	and
editing	the	startup_TM4C123.s	or	startup_msp432.s	file	to	specify	those	functions
for	 the	 appropriate	 interrupt.	 In	 this	 class,	 we	will	 write	 our	 ISRs	 using	 standard
function	 names	 so	 that	 the	 startup	 files	 need	 not	 be	 edited.	 For	 example,	 we	will
simply	 name	 the	 ISRfor	 SysTick	 periodic	 interrupt	 as SysTick_Handler .	 The	 ISR
for	this	interrupt	is	a	32-bit	pointer	located	at	ROM	address	0x0000.003C.	Because
the	vectors	are	in	ROM,	this	linkage	is	defined	at	compile	time	and	not	at	run	time.
After	the	first	16	vectors,	each	processor	will	be	different	so	check	the	data	sheet.

							EXPORT		__Vectors
__Vectors																													;	address				ISR
								DCD					StackMem	+	Stack						;	0x00000000	Top	of	Stack
								DCD					Reset_Handler									;	0x00000004	Reset	Handler
								DCD					NMI_Handler											;	0x00000008	NMI	Handler
								DCD					HardFault_Handler					;	0x0000000C	Hard	Fault	Handler
								DCD					MemManage_Handler					;	0x00000010	MPU	Fault	Handler
								DCD					BusFault_Handler						;	0x00000014	Bus	Fault	Handler
								DCD					UsageFault_Handler				;	0x00000018	Usage	Fault	Handler
								DCD					0																					;	0x0000001C	Reserved
								DCD					0																					;	0x00000020	Reserved
								DCD					0																					;	0x00000024	Reserved
								DCD					0																					;	0x00000028	Reserved
								DCD					SVC_Handler											;	0x0000002C	SVCall	Handler
								DCD					DebugMon_Handler						;	0x00000030	Debug	Monitor	Handler
								DCD					0																					;	0x00000034	Reserved
								DCD					PendSV_Handler								;	0x00000038	PendSV	Handler
								DCD					SysTick_Handler							;	0x0000003C	SysTick	Handler
Program	2.3.	Software	syntax	to	set	the	interrupt	vectors	for	the	first	16
vectors	on	the	Cortex	M	processor.

Table	 2.6	 lists	 the	 interrupt	 sources	 we	 will	 use	 on	 the	 TM4C123	 and	 Table	 2.7
shows	similar	interrupts	on	the	MSP432.	Interrupt	numbers	0	to	15	contain	the	faults,
software	 interrupts	 and	 SysTick;	 these	 interrupts	 will	 be	 handled	 differently	 from
interrupts	16	to	154.

Vector
address

Number IRQ ISR	name	in	Startup.s NVIC	priority Priority
bits

0x00000038 14 -2 PendSV_Handler SYS_PRI3 23	–	21
0x0000003C 15 -1 SysTick_Handler SYS_PRI3 31	–	29
0x000001E0 120 104 WideTimer5A_Handler NVIC_PRI26_R 7	–	5

Table	2.6.	Some	of	the	interrupt	vectors	for	the	TM4C	(goes	to	number	154	on	the	M4).
	
Vector
address

Number IRQ ISR	name	in	Startup.s NVIC	priority Priority
bits

0x00000038 14 -2 PendSV_Handler SYS_PRI3 23	–	21
0x0000003C 15 -1 SysTick_Handler SYS_PRI3 31	–	29
0x000000A4 41 25 T32_INT1_IRQHandler NVIC_IPR6 15	–	13

Table	2.7.	Some	of	the	interrupt	vectors	for	the	MSP432	(goes	to	number	154	on	the	M4).
Interrupts	on	the	Cortex-M	are	controlled	by	the	Nested	Vectored	Interrupt	Controller
(NVIC).	To	activate	 an	 interrupt	 source	we	need	 to	 set	 its	 priority	 and	 enable	 that
source	 in	 the	NVIC.	SysTick	 interrupt	only	requires	arming	the	SysTick	module	for
interrupts	 and	 enabling	 interrupts	 on	 the	 processor	 (I=0	 in	 the	PRIMASK).	 Other
interrupts	 require	 additional	 initialization.	 In	 addition	 to	 arming	 and	 enabling,	 we
will	 set	 bit	 8	 in	 the	 NVIC_EN3_R	 to	 activate	WideTimer5A	 interrupts	 on	 the
TM4C123.	Similarly,	we	will	set	bit	25	in	the	NVIC_ISER0	to	activate	T32_INT1
interrupts	on	the	MSP432.	This	activation	is	in	addition	to	the	arm	and	enable	steps.

Each	 interrupt	 source	 has	 an	 8-bit	 priority	 field.	 However,	 on	 the	 TM4C123	 and
MSP432	microcontrollers,	 only	 the	 top	 three	 bits	 of	 the	 8-bit	 field	 are	 used.	 This
allows	us	to	specify	the	interrupt	priority	level	for	each	device	from	0	to	7,	with	0
being	the	highest	priority.	The	priority	of	the	SysTick	interrupt	is	found	in	bits	31	–
29	of	the SYS_PRI3 	register.	Other	interrupts	have	corresponding	priority	registers.
The	interrupt	number	(number	column	in	Tables	2.6	and	2.7)	is	loaded	into	the	IPSR
register	when	an	interrupt	is	being	serviced.	The	servicing	of	interrupts	does	not	set
the	I	bit	in	the	PRIMASK,	so	a	higher	priority	interrupt	can	suspend	the	execution	of
a	 lower	priority	 ISR.	 If	 a	 request	of	 equal	or	 lower	priority	 is	generated	while	an
ISR	 is	 being	 executed,	 that	 request	 is	 postponed	 until	 the	 ISR	 is	 completed.	 In
particular,	those	devices	that	need	prompt	service	should	be	given	high	priority.

Figure	 2.2	 shows	 the	 context	 switch	 from	 executing	 in	 the	 foreground	 to	 running	 a
SysTick	periodic	interrupt.	The	I	bit	in	the	PRIMASK	 is	0	signifying	interrupts	are
enabled.	Initially,	the	interrupt	number	(ISRNUM)	in	the	IPSR	register	is	0,	meaning
we	are	running	in	Thread	mode	 (i.e.,	 the	main	program,	and	not	an	ISR).	Handler
mode	is	signified	by	a	nonzero	value	in	IPSR.	When	BASEPRI	register	is	zero,	all
interrupts	are	allowed	and	the	BASEPRI	register	is	not	active.

When	 a	 SysTick	 interrupt	 is	 triggered,	 the	 current	 instruction	 is	 finished.	 (a)	 Eight
registers	are	pushed	on	the	stack	with	R0	on	top.	These	registers	are	pushed	onto	the
stack	using	whichever	stack	pointer	is	active:	either	the	MSP	or	PSP.	(b)	The	vector
address	is	loaded	into	the	PC	(“Vector	address”	column	in	Tables	2.6	and	2.7).	(c)
The	IPSR	register	is	set	to	15	(“Number”	column	in	Tables	2.6	and	2.7)	(d)	The	top
24	bits	of	LR	are	set	to	0xFFFFFF,	signifying	the	processor	is	executing	an	ISR.	The
bottom	eight	bits	specify	how	to	return	from	interrupt.

		0xE1	Return	to	Handler	mode	MSP	(using	floating	point	state)
		0xE9	Return	to	Thread	mode	MSP	(using	floating	point	state)
		0xED	Return	to	Thread	mode	PSP	(using	floating	point	state)
		0xF1	Return	to	Handler	mode	MSP
		0xF9	Return	to	Thread	mode	MSP		←	we	will	mostly	be	using	this
one
		0xFD	Return	to	Thread	mode	PSP
	

After	pushing	the	registers,	the	processor	always	uses	the	main	stack	pointer	(MSP)
during	the	execution	of	the	ISR.	Events	b,	c,	and	d	can	occur	simultaneously.

Figure	2.2.	Stack	before	and	after	an	interrupt,	in	this	case	a	SysTick
periodic	interrupt.

To	 return	 from	 an	 interrupt,	 the	 ISR	 executes	 the	 typical	 function	 return
statement: BX	LR .	However,	since	the	top	24	bits	of	LR	are	0xFFFFFF,	it	knows	to
return	 from	 interrupt	 by	 popping	 the	 eight	 registers	 off	 the	 stack.	 Since	 the	 bottom
eight	bits	of	LR	in	this	case	are	0b11111001,	it	returns	to	thread	mode	using	the	MSP
as	 its	 stack	 pointer.	 Since	 the	 IPSR	 is	 part	 of	 the	 PSR	 that	 is	 popped,	 it	 is
automatically	reset	to	its	previous	state.

A	nested	 interrupt	 occurs	 when	 a	 higher	 priority	 interrupt	 suspends	 an	 ISR.	 The
lower	priority	interrupt	will	finish	after	the	higher	priority	ISR	completes.	When	one
interrupt	 preempts	 another,	 the	LR	 is	 set	 to	 0xFFFFFFF1,	 so	 it	 knows	 to	 return	 to
handler	 mode.	 Tail	 chaining	 occurs	 when	 one	 ISR	 executes	 immediately	 after
another.	Optimization	occurs	because	the	eight	registers	need	not	be	popped	only	to
be	pushed	once	 again.	 If	 an	 interrupt	 is	 triggered	 and	 is	 in	 the	 process	 of	 stacking
registers	when	a	higher	priority	interrupt	is	requested,	this	late	arrival	interrupt	will
be	executed	first.

On	 the	 Cortex-M4,	 if	 an	 interrupt	 occurs	 while	 in	 the	 floating	 point	 state,	 an
additional	18	words	are	pushed	on	the	stack.	These	18	words	will	save	the	state	of
the	 floating	point	processor.	Bits	7-4	of	 the	LR	will	be	0b1110	(0xE),	 signifying	 it
was	interrupted	during	a	floating	point	state.	When	the	ISR	returns,	it	knows	to	pull
these	18	words	off	the	stack	and	restore	the	state	of	the	floating	point	processor.	We
will	not	use	floating	point	in	this	class.

Priority	 determines	 the	 order	 of	 service	 when	 two	 or	 more	 requests	 are	 made
simultaneously.	 Priority	 also	 allows	 a	 higher	 priority	 request	 to	 suspend	 a	 lower
priority	 request	 currently	 being	 processed.	Usually,	 if	 two	 requests	 have	 the	 same
priority,	we	do	not	allow	them	to	interrupt	each	other.	NVIC	assigns	a	priority	level
to	each	interrupt	trigger.	This	mechanism	allows	a	higher	priority	trigger	to	interrupt
the	 ISR	of	 a	 lower	priority	 request.	Conversely,	 if	 a	 lower	priority	 request	occurs
while	running	an	ISR	of	a	higher	priority	trigger,	it	will	be	postponed	until	the	higher
priority	service	is	complete.

Program	2.4	shows	two	functions	that	can	be	used	to	enable	and	disable	interrupts.

DisableInterrupts
								CPSID		I
								BX					LR
EnableInterrupts
								CPSIE		I
								BX					LR

Program	2.4.	Assembly	functions	needed	for	interrupt	enabling	and
disabling.

2.2.2.	SysTick	periodic	interrupts
The	 SysTick	 Timer	 is	 a	 core	 device	 on	 the	 Cortex	M	 architecture,	 which	 is	most
commonly	used	as	a	periodic	timer.	When	used	as	a	periodic	timer	one	can	setup	the
countdown	to	zero	event	 to	cause	an	 interrupt.	By	setting	up	an	 initial	 reload	value
the	 timer	 is	made	 to	 periodically	 interrupt	 at	 a	 predetermined	 rate	 decided	 by	 the
reload	 value.	 Periodic	 timers	 as	 an	 interfacing	 technique	 are	 required	 for	 data
acquisition	 and	 control	 systems,	 because	 software	 servicing	must	 be	 performed	 at
accurate	time	intervals.	For	a	data	acquisition	system,	it	is	important	to	establish	an
accurate	 sampling	 rate.	 The	 time	 in	 between	 ADC	 samples	 must	 be	 equal	 (and
known)	in	order	for	the	digital	signal	processing	to	function	properly.	Similarly,	for
microcontroller-based	control	systems,	it	is	important	to	maintain	both	the	input	rate
of	 the	sensors	and	the	output	rate	of	 the	actuators.	Periodic	events	are	so	important
that	most	microcontrollers	have	multiple	ways	to	generate	periodic	interrupts.	In	this
book	our	operating	system	will	use	periodic	interrupts	to	schedule	threads.

Assume	we	have	a	1-ms	periodic	interrupt.	This	means	the	interrupt	service	routine
(ISR)	is	triggered	to	run	1000	times	per	second.	Let	Count	be	a	global	variable	that

is	incremented	inside	the	ISR.	Figure	2.3	shows	how	to	use	the	interrupt	to	run	Task	1
every	N	ms	and	run	Task	2	every	M	ms.

Figure	2.3.	Using	a	1-ms	periodic	interrupt	to	run	Task	1	every	N	ms	and
run	Task	2	every	M	ms.

The	SysTick	timer	exists	on	all	Cortex-M	microcontrollers,	so	using	SysTick	means
the	 system	 will	 be	 easy	 to	 port	 to	 other	 microcontrollers.	 Table	 2.8	 shows	 the
register	definitions	for	SysTick.	The	basis	of	SysTick	is	a	24-bit	down	counter	that
runs	at	the	bus	clock	frequency.	To	configure	SysTick	for	periodic	interrupts	we	first
clear	 the	ENABLE	 bit	 to	 turn	 off	 SysTick	 during	 initialization,	 see	 Program	 2.5.
Second,	 we	 set	 the	 STRELOAD	 register.	 Third,	 we	 write	 any	 value	 to	 the
STCURRENT,	 which	 will	 clear	 the	 counter	 and	 the	 flag.	 Lastly,	 we	 write	 the
desired	clock	mode	to	the	control	register	STCTRL,	also	setting	 the	INTEN	bit	 to
enable	interrupts	and	enabling	the	timer	(ENABLE).	We	establish	the	priority	of	the
SysTick	 interrupts	 using	 the	 TICK	 field	 in	 the	 SYSPRI3	 register.	 When	 the
STCURRENT	value	counts	down	from	1	to	0,	the	COUNT	flag	is	set.	On	the	next
clock,	 the	STCURRENT	 is	 loaded	with	 the	STRELOAD	 value.	 In	 this	 way,	 the
SysTick	counter	(STCURRENT)	is	continuously	decrementing.		If	the	STRELOAD
value	is	n,	then	the	SysTick	counter	operates	at	modulo	n+1:

…n,	n-1,	n-2	…	1,	0,	n,	n-1,	…

In	 other	 words,	 it	 rolls	 over	 every	 n+1	 counts.	 Thus,	 the	COUNT	 flag	 will	 be
configured	 to	 trigger	 an	 interrupt	 every	n+1	counts.	The	main	program	will	 enable
interrupts	in	the	processor	after	all	variables	and	devices	are	initialized.

Address 31-
24

23-
17

16 15-
3

2 1 0 Name

0xE000E010 0 0 COUNT 0 CLK_SRC INTEN ENABLE STCTRL
0xE000E014 0 24-bit	RELOAD	value STRELOAD
0xE000E018 0 24-bit	CURRENT	value	of	SysTick	counter STCURRENT

	

Address 31-29 28-24 23-21 20-
8

7-5 4-0 Name

0xE000ED20 TICK 0 PENDSV 0 DEBUG 0 SYSPRI3

Table	2.8.	SysTick	registers.
The	SysTick	counter	decrements	every	bus	cycle.	So	it	is	important	to	know	the	bus
frequency	when	using	SysTick.	TM4C123	projects	 run	 at	 16	MHz	until	 the	 system
calls	a	PLL	function	to	change	the	frequency.	MSP432	projects	run	at	3	MHz	until	the
system	calls	a	clock	function	to	change	the	frequency.	We	will	assume	the	MSP432
has	been	configured	to	run	at	its	fastest	speed	of	48	MHz.	In	general,	if	the	period	of
the	core	bus	clock	is	t	time	units,	then	the	COUNT	flag	will	be	set	every	(n+1)t	time
units.	Reading	the 	STCTRL	control	register	will	return	the	COUNT	flag	in	bit	16,
and	 then	clear	 the	 flag.	Also,	writing	any	value	 to	 the	STCURRENT	 register	will
reset	 the	 counter	 to	 zero	 and	 clear	 the	COUNT	 flag.	 The	 COUNT	 flag	 is	 also
cleared	automatically	as	the	interrupt	service	routine	is	executed.

Let	fBUS	be	the	frequency	of	the	bus	clock,	and	let	n	be	the	value	of	the	STRELOAD
register.	The	frequency	of	the	periodic	interrupt	will	be

fBUS/(n+1)

#define	Profile_Toggle	PC5^=0x20
void	SysTick_Init(uint32_t	period){
		Profile_Init();					//	make	PC5	is	an	output
		Counts	=	0;
		STCTRL	=	0;									//	disable	SysTick	during	setup
		STRELOAD	=	period-1;//	reload	value
		STCURRENT	=	0;						//	any	write	to	current	clears	it
		SYSPRI3	=	(SYSPRI3&0x00FFFFFF)|0x40000000;	//	priority	2								
		STCTRL	=	0x07;						//	enable,	core	clock,	interrupts
}
void	SysTick_Handler(void){	//	Executed	every	(bus	cycle)*(period)
		Profile_Toggle();									//	toggle	bit
		Profile_Toggle();									//	toggle	bit
		Counts	=	Counts	+	1;
		Profile_Toggle();									//	toggle	bit
}
int	main(void){													//	TM4C123	bus	clock	at	16	MHz
		SysTick_Init(1600000);			//	SysTick	timer	interrupts	every	100	ms
		EnableInterrupts();
		while(1){
		}		//	do	nothing	foreground
}
Program	2.5.	Implementation	of	a	periodic	interrupt	using	SysTick
(SysTickInts_xxx).

Checkpoint	2.2:	If	the	MSP432	bus	clock	is	48	MHz,	what	reload	value	yields	a
100	Hz	(10ms)	periodic	interrupt?

2.2.3.	Periodic	timer	interrupts
Because	 time	 is	a	precious	commodity	 for	embedded	systems	 there	 is	a	 rich	set	of
features	 available	 to	 manage	 time.	 If	 you	 connect	 a	 digital	 input	 to	 the
microcontroller	you	could	measure	its

Period,	time	from	one	edge	to	the	next
Frequency,	number	of	edges	in	a	fixed	amount	of	time
Pulse	width,	time	the	signal	is	high,	or	time	the	signal	is	low
	

If	 there	 are	 multiple	 digital	 inputs,	 then	 you	 can	 measure	 more	 complicated
parameters	such	as	frequency	difference,	period	difference	or	phase.

Alternately,	you	can	create	a	digital	output	and	have	the	software	set	its

Period
Frequency
Duty	cycle	(pulse-width	modulation)
	

If	 there	are	multiple	digital	outputs,	 then	you	can	create	more	complicated	patterns
that	are	used	in	stepper	motor	and	brushless	DC	motor	controllers.	For	examples	of
projects	that	manage	time	on	the	TM4C123	see	examples	at

http://users.ece.utexas.edu/~valvano/arm/#Timer

http://edx-org-
utaustinx.s3.amazonaws.com/UT601x/ValvanoWareTM4C123.zip

For	 all	 the	 example	 projects	 on	 the	TM4C123/MSP432	download	 and	 unzip	 these
projects:

http://edx-org-utaustinx.s3.amazonaws.com/UT601x/ValvanoWare.zip

However,	in	this	section,	we	present	the	basic	principles	needed	to	create	periodic
interrupts	using	the	timer.	We	begin	by	presenting	five	hardware	components	needed
as	shown	in	Figure	2.4.

Figure	2.4.	Fundamental	hardware	components	used	to	create	periodic

interrupts.

The	central	component	for	creating	periodic	interrupts	 is	a	hardware	counter.	The
counter	may	be	16,	24,	32,	48,	or	64	bits	wide.	Let	N	be	 the	number	of	bits	 in	 the
counter.	When	 creating	 periodic	 interrupts,	 it	 doesn’t	 actually	matter	 if	 the	module
counts	 up	 or	 counts	 down.	 However,	most	 of	 the	 software	 used	 in	 this	 class	 will
configure	the	counter	to	decrement.

Just	like	SysTick,	as	the	counter	counts	down	to	0,	it	sets	a	trigger	flag	and	reloads
the	counter	with	a	new	value.	The	second	component	will	be	the	reload	value,	which
is	 the	N-bit	 value	 loaded	 into	 the	 counter	when	 it	 rolls	 over.	Typically,	 the	 reload
value	 is	 a	 constant	 set	 once	 by	 the	 software	 during	 initialization.	 Let	 R	 be	 this
constant	value.

The	 third	 component	 is	 the	 trigger	flag,	which	 is	 set	when	 the	 counter	 reaches	 0.
This	flag	will	be	armed	to	request	an	interrupt.	Software	in	the	ISR	will	execute	code
to	acknowledge	or	clear	this	flag.

The	 fourth	 component	 will	 be	 the	 base	 clock	 with	 which	 we	 control	 the	 entire
hardware	system.	On	the	TM4C123,	we	will	select	the	80-MHz	system	clock.	On	the
MSP432,	 we	 will	 select	 the	 12-MHz	 SMCLK.	 In	 both	 cases,	 these	 clocks	 are
derived	from	the	crystal;	hence	 timing	will	be	both	accurate	and	stable.	Let	 fbase	be
the	frequency	of	the	base	clock	(80	MHz	or	12	MHz)	and	tbase	be	the	period	of	 this
clock	(12.5	ns	or	about	83.33	ns).

The	fifth	component	will	be	a	prescaler,	which	sits	between	the	base	clock	and	the
clock	 used	 to	 decrement	 the	 counter.	 Most	 systems	 create	 the	 prescaler	 using	 a
modulo-M	 counter,	where	M	 is	greater	 than	or	equal	 to	1.	This	way,	 the	 frequency
and	period	of	the	clock	used	to	decrement	the	counter	will	be

fclk	=	fbase	/M tclk	=	tbase	*M

Software	 can	 configure	 the	 prescaler	 to	 slow	 down	 the	 counting.	 However,	 the
interrupt	 period	will	 be	 an	 integer	multiple	 of	 tclk.	 In	 addition,	 the	 interrupt	 period
must	be	 less	 than	2N	 *	 tclk.	Thus,	 the	smaller	 the	prescale	M	 is,	 the	 finer	control	 the
software	has	in	selecting	the	interrupt	period.	On	the	other	hand,	the	larger	prescale
M	 is,	 the	 longer	 the	 interrupt	 could	 be.	Thus,	 the	 prescaler	 allows	 the	 software	 to
control	the	tradeoff	between	maximum	interrupt	period	and	the	fine-tuning	selection
of	the	interrupt	period.

Because	 the	 counter	 goes	 from	 the	 reload	 value	 down	 to	 0,	 and	 then	 back	 to	 the
reload	 value,	 an	 interrupt	 will	 be	 triggered	 every	 R+1	 counts.	 Thus	 the	 interrupt
period,	P,	will	be

P	=	tbase	*M	*	(R	+	1)

Solving	this	equation	for	R,	if	we	wish	to	create	an	interrupt	with	period	P,	we	make

R	=	(P	/(tbase	*M))	–	1

Remember	R	must	be	an	integer	less	than	2N.	Most	timers	have	a	limited	choice	for
the	prescale	M.	Luckily,	most	microcontrollers	have	a	larger	number	of	timers.	The
TM4C123	has	six	32-bit	 timers	and	six	64-bit	 timers.	The	MSP432	has	four	16-bit
timers	 and	 two	 32-bit	 timers.	 The	 board	 support	 package,	 presented	 in	 the	 next
section,	 provides	 support	 for	 two	 independent	 periodic	 interrupts.	 Initialization
software	follows	these	steps.

0)	Activate	the	base	clock	for	the	timer
1)	Disable	timer	during	initialization
2)	Set	the	timer	mode	to	continuous	down	counting	with	automatic
reload
3)	Set	the	reload	value,	R
4)	Set	the	prescale,	M
5)	Arm	the	trigger	flag	in	the	timer
6)	Arm	the	timer	in	the	NVIC
7)	Set	the	priority	in	the	NVIC
8)	Clear	trigger	flag
9)	Enable	timer	after	timer	is	completely	configured
10)	Enable	interrupts	(I=0),	typically	done	after	all	initializations	are
complete
	

For	more	details	on	the	timers	for	the	TM4C123	or	MSP432,	see	the	corresponding
Volume	2.	However,	we	 present	 one	 simple	 solution	 that	 executes	 a	 user	 task	 at	 a
periodic	rate	with	units	of	µs.		We	will	generate	a	periodic	interrupt	and	call	the	user
task	from	the	ISR.	Assuming	an	80	MHz	bus	clock,	we	disable	the	prescale,	meaning
the	timer	counts	every	12.5ns.	To	define	the	user	task,	we	will	create	a	private	global
variable	containing	a	pointer	 to	 the	user’s	function.	We	will	set	 the	variable	during
initialization	and	call	 that	 function	at	 run	 time.	Another	name	for	a	dynamically	set
function	pointer	 is	 a	hook.	The	maximum	possible	value	 for period 	 is	 12.5ns*232,
which	is	about	53	seconds.	Simple	solutions	for	the	TM4C	and	MSP432	are	shown
in	Program	2.6.	You	will	find	many	more	on	the	book	web	site.

void	(*PeriodicTask)(void);		//	user	function
void	Timer0B_Init(void(*task)(void),	uint32_t	period){
		SYSCTL_RCGCTIMER_R	|=	0x0001;				//	0)	activate	timer0
		PeriodicTask	=	task;													//	user	function
		TIMER0_CTL_R	&=	~0x00000100;					//	1)	disable	timer0B	during	setup
		TIMER0_CFG_R	=	0x00000000;							//	2)	configure	for	32-bit	timer	mode
		TIMER0_TBMR_R	=	0x00000002;						//			configure	for	periodic	mode
		TIMER0_TBILR_R	=	period-1;							//	3)	reload	value
		TIMER0_TBPR_R	=	0;														//	4)	no	prescale,	12.5ns	clock
		TIMER0_IMR_R	|=	0x00000100;						//	5)	arm	timeout	interrupt
		NVIC_EN0_R	=	(1<<20);										//	6)	enable	interrupt	20	in	NVIC

		NVIC_PRI5_R	=	(NVIC_PRI5_R&0xFFFFFF00)|0x00000040;	//	7)	priority	2
		TIMER0_ICR_R	=	0x00000100;							//	8)	clear	timer0B	timeout	flag
		TIMER0_CTL_R	|=	0x00000100;						//	9)	enable	timer0B
}
void	Timer0B_Handler(void){
		TIMER0_ICR_R	=	0x00000100;							//	acknowledge	timer0B	timeout
		(*PeriodicTask)();															//	execute	user	task
}
Program	2.6a.	Implementation	of	a	periodic	interrupt	using	Timer0B	(see
PeriodicTimer0AInts_xxx).

	

void	TimerA0_Init(void(*task)(void),	uint16_t	period){
		PeriodicTask	=	task;												//	user	function
		TA0CTL	&=	~0x0030;														//	1)	halt	Timer	A0
		TA0CTL	=	0x0202;																//	2)	compare	mode
		TA0CCTL0	=	0x0010;
		TA0CCR0	=	(period	-	1);									//	3)	compare	match	value
		TA0EX0	&=	~0x0007;														//	4)	input	clock	divider	/1
		NVIC_ISER0	=	0x00000100;								//	6)	enable	interrupt	8	in	NVIC
		NVIC_IPR2	=	(NVIC_IPR2&0xFFFFFF00)|0x00000040;	//	7)	priority	2
		TA0CCTL0	&=	~0x0001;						//	8)	clear	interrupt	flag	0
		TA0CTL	|=	0x0014;									//	5,9)	reset	and	start	Timer	A0	in	up	mode
}
void	TA0_0_IRQHandler(void){
		TA0CCTL0	&=	~0x0001;									//	acknowledge	capture/compare	interrupt	0
		(*PeriodicTask)();											//	execute	user	task
}
Program	2.6b.	Implementation	of	a	periodic	interrupt	using	Timer0B	(see
PeriodicTimerA0Ints_xxx).

2.2.4.	Critical	sections
An	 important	 consequence	 of	 multi-threading	 is	 the	 potential	 for	 the	 threads	 to
manipulate	(read/write)	a	shared	object.	With	this	potential	comes	the	possibility	of
inconsistent	updates	to	the	shared	object.	A	race	condition	occurs	in	a	multi-threaded
environment	 when	 there	 is	 a	 causal	 or	 timing	 dependency	 between	 two	 or	 more
threads.	 In	 other	 words,	 different	 behavior	 occurs	 depending	 on	 the	 order	 of
execution	of	 two	threads.	Consider	a	simple	example	of	a	race	condition	occurring
where	 two	 thread	 initialize	 the	 same	 port	 in	 an	 unfriendly	 manner.	 	 Thread-1
initializes	Port	4	bits	3	–	0	 to	be	output	using	P4DIR	=	0x0F;	Thread-2	 initializes
Port	4	bits	6	–	4	to	be	output	using	P4DIR	=	0x70;	In	particular,	if	Thread-1	runs	first
and	Thread-2	runs	second,	then	Port	4	bits	3	–	0	will	be	set	to	inputs.	Conversely,	if

Thread-2	runs	first	and	Thread-1	runs	second,	 then	Port	4	bits	6	–	4	will	be	set	 to
inputs.	 This	 is	 a	 race	 condition	 caused	 by	 unfriendly	 code.	 The	 solution	 to	 this
problem	 is	 to	 write	 the	 two	 initializations	 in	 a	 friendly	 manner,	 and	 make	 both
initializations	atomic.

In	a	second	example	of	a	 race	condition,	assume	 two	 threads	are	 trying	 to	get	data
from	the	same	input	device.	Both	call	the	input	function	to	receive	data	from	the	input
device.	When	data	arrives	at	the	input,	the	thread	that	executes	first	will	capture	the
data.

In	general,	if	two	threads	access	the	same	global	memory	and	one	of	the	accesses	is	a
write,	then	there	is	a	causal	dependency	between	the	execution	of	the	threads.	Such
dependencies	 when	 not	 properly	 handled	 cause	 unpredictable	 behavior	 where	 the
execution	 order	 may	 affect	 the	 outcome.	 Such	 scenarios	 are	 referred	 to	 as	 race
conditions.	While	 shared	 global	 variables	 are	 important	 in	 multithreaded	 systems
because	 they	 are	 required	 to	 pass	 data	 between	 threads,	 they	 result	 in	 complex
behavior	(and	hard	to	find	bugs).	Therefore,	a	programmer	must	pay	careful	attention
to	avoid	race	conditions.

A	program	segment	is	reentrant	if	it	can	be	concurrently	executed	by	two	(or	more)
threads.	Note	 that,	 to	 run	 concurrently	means	 both	 threads	 are	 ready	 to	 run	 though
only	 one	 thread	 is	 currently	 running.	 To	 implement	 reentrant	 software,	 we	 place
variables	 in	 registers	 or	 on	 the	 stack,	 and	 avoid	 storing	 into	 global	 memory
variables.	When	writing	 in	 assembly,	we	 use	 registers,	 or	 the	 stack	 for	 parameter
passing	to	create	reentrant	subroutines.	Typically,	each	thread	will	have	its	own	set
of	registers	and	stack.	A	non-reentrant	subroutine	will	have	a	section	of	code	called	a
vulnerable	 window	 or	 critical	 section.	 A	 critical	 section	 may	 exist	 when	 two
different	functions	access	and	modify	the	same	memory-resident	data	structure.	E.g.,

1)	One	thread	calls	a	non-reentrant	function
2)	It	is	executing	in	the	critical	section	when	interrupted	by	a

second	thread
3)	The	second	thread	calls	the	same	non-reentrant	function.

There	are	a	number	of	scenarios	that	can	happen	next.	In	the	most	common	scenario,
the	second	thread	is	allowed	to	complete	the	execution	of	the	function,	control	is	then
returned	 to	 the	 first	 thread,	 and	 the	 first	 thread	 finishes	 the	 function.	 This	 first
scenario	 is	 the	 usual	 case	with	 interrupt	 programming.	 In	 the	 second	 scenario,	 the
second	thread	executes	part	of	the	critical	section,	is	interrupted	and	then	re-entered
by	a	third	thread,	the	third	thread	finishes,	the	control	is	returned	to	the	second	thread
and	 it	 finishes,	 lastly	 the	control	 is	 returned	 to	 the	 first	 thread	and	 it	 finishes.	This
second	 scenario	 can	 happen	 in	 interrupt	 programming	 if	 the	 second	 interrupt	 has
higher	priority	than	the	first.

Program	 2.7shows	 two	 C	 functions	 and	 the	 corresponding	 assembly	 codes.	 These
functions	have	critical	sections	because	of	their	read-modify-write	nonatomic	access
to	 the	global	variable, count .	 If	an	 interrupt	were	 to	occur	 just	before	or	 just	after
the ADD or SUB 	instruction,	and	the	ISR	called	the	other	function,	then	count	would

be	in	error.

count				SPACE		4			

Producer	 LDR	 	 r1,[pc,#116]	 ;
R0=	&count

	 	 	 	 	 	 	 	 	 LDR	 	 r0,[r1]	 	 	 	 	 	 ;
R0=count
									ADD		r0,r0,#1
									STR		r0,[r1]						;	update
									BX			lr

Consumer	 LDR	 	 r1,
[pc,#96]		;	R0=	&count
									LDR		r0,[r1]						;	R0=count
									SUB		r0,r0,#1
									STR		r0,[r1]						;	update
									BX			lr
									DCD		num				

int32_t	volatile	count;			
void	Producer(void){	
		//	other	stuff	
		count	=	count	+	1;
		//	other	stuff
}
void	Consumer(void){
		//	other	stuff
		count	=	count	–	1;
		//	other	stuff
}

Program	2.7.	These	functions	are	nonreentrant	because	of	the	read-modify-
write	access	to	a	global.	The	critical	section,	pointed	to	by	arrows,	is	just
before	and	just	after	the	ADD	and	SUB	instructions.

Assume	 there	 are	 two	 concurrentthreads,	 where	 the	 main	 program
calls Producer and	a	background	ISR	calls Consumer .	Concurrent	means	 that	both
threads	are	ready	to	run.	Because	there	is	only	one	computer,	exactly	one	thread	will
be	running	at	a	time.	Typically,	the	operating	system	switches	execution	control	back
and	forth	using	interrupts.	There	are	two	places	in	the	assembly	code	of Producer at
which	 if	 an	 interrupt	were	 to	 occur	 and	 the	 ISR	 called	 the Consumer function,	 the
end	value	of	count	will	be	inconsistent.	Assume	for	this	example count 	is	initially	4.
An	error	occurs	if:

1.The	main	program	calls Producer
2.The	main	executes LDR 	 r0,[r1]making	R0	=	4
3.	The	OS	suspends	the	main	(using	an	interrupt)	and	starts	the

ISR
4.	The	ISR	calls Consumer
				Executes count=count-1; making count 	equal	to	3
5.	The	OS	returns	control	back	to	the	main	program
				R0	is	back	to	its	original	value	of	4
6.	The	producer	finishes	(adding	1	to	R0)
				Making count 	equal	to	5

	

The	expected	behavior	with	the	producer	and	consumer	executing	once	is	that	count
would	 remain	 at	 4.	 However,	 the	 race	 condition	 resulted	 in	 an	 inconsistency
manifesting	as	a	lost	consumption.	As	the	reader	may	have	observed,	the	cause	of	the
problem	is	the	non-atomicity	of	the	read-modify-write	operation	involved	in	reading
and	writing	 to	 the	 count	 (count=count+1 or count=count-1)	 variable.	An	atomic
operation	is	one	that	once	started	is	guaranteed	to	finish.	In	most	computers,	once	an
assembly	instruction	has	begun,	the	instruction	must	be	finished	before	the	computer
can	 process	 an	 interrupt.	 The	 same	 is	 not	 the	 case	 with	 C	 instructions	 which
themselves	translate	to	multiple	assembly	instructions.	In	general,	nonreentrant	code
can	be	grouped	into	three	categories	all	involving	1)	nonatomic	sequences,	2)	writes
and	 3)	 global	 variables.	 We	 will	 classify	 I/O	 ports	 as	 global	 variables	 for	 the
consideration	of	critical	sections.	We	will	group	registers	into	the	same	category	as
local	variables	because	each	thread	will	have	its	own	registers	and	stack.

The	first	group	is	the	read-modify-write	sequence:

1.	The	software	reads	the	global	variable	producing	a	copy	of	the
data
2.	The	software	modifies	the	copy	(original	variable	is	still
unmodified)
3.	The	software	writes	the	modification	back	into	the	global	variable.

	

In	the	second	group,	we	have	a	write	followed	by	read,	where	the	global	variable	is
used	for	temporary	storage:

1.	The	software	writes	to	the	global	variable	(only	copy	of	the
information)
2.	The	software	reads	from	the	global	variable	expecting	the	original
data	to	be	there.						

	

In	the	third	group,	we	have	a	non-atomic	multi-step	write	to	a	global	variable:

1.	The	software	writes	part	of	the	new	value	to	a	global	variable
2.	The	software	writes	the	rest	of	the	new	value	to	a	global	variable.

	

Observation:	When	considering	reentrant	software	and	vulnerable	windows	we
classify	accesses	to	I/O	ports	the	same	as	accesses	to	global	variables.

Observation:	Sometimes	we	store	temporary	information	in	global	variables	out
of	laziness.	This	practice	is	to	be	discouraged	because	it	wastes	memory	and	may
cause	the	module	to	not	be	reentrant.

Sometimes	we	can	have	a	critical	section	between	two	different	software	functions
(one	function	called	by	one	thread,	and	another	function	called	by	a	different	thread).

In	addition	to	above	three	cases,	a	non-atomic	multi-step	read	will	be	critical	when
paired	with	a	multi-step	write.	 	For	example,	assume	a	data	structure	has	multiple
components	 (e.g.,	 hours,	minutes,	 and	 seconds).	 In	 this	 case,	 the	write	 to	 the	 data
structure	will	be	atomic	because	it	occurs	in	a	high	priority	ISR.	The	critical	section
exists	in	the	foreground	between	steps	1	and	3.	In	this	case,	a	critical	section	exists
even	though	no	software	has	actually	been	reentered.

Foreground	thread 				
1.	The	main	 reads	 some	of	 the
data
	
3.	 The	 main	 reads	 the	 rest	 of
the	data

Background	thread 				
	
2.	 ISR	 writes	 to	 the	 data
structure

In	a	similar	case,	a	non-atomic	multi-step	write	will	be	critical	when	paired	with	a
multi-step	 read.	 Again,	 assume	 a	 data	 structure	 has	 multiple	 components.	 In	 this
case,	 the	 read	 from	 the	 data	 structure	 will	 be	 atomic	 because	 it	 occurs	 in	 a	 high
priority	ISR.	The	critical	section	exists	in	the	foreground	between	steps	1	and	3.

Foreground	thread 				
1.	The	main	writes	some	of	the
data
	
3.	The	main	writes	 the	 rest	 of
the	data

Background	thread 				
	
2.	 ISR	 reads	 from	 the	 data
structure

	
When	multiple	 threads	are	active,	 it	 is	possible	for	 two	threads	 to	be	executing	the
same	program.	For	example,	the	system	may	be	running	in	the	foreground	and	calls	a
function.	Part	way	 through	execution	of	 the	 function,	an	 interrupt	occurs.	 If	 the	 ISR
also	calls	the	same	function,	two	threads	are	simultaneously	executing	the	function.

If	critical	sections	do	exist,	we	can	either	eliminate	them	by	removing	the	access	to
the	 global	 variable	 or	 implement	mutual	exclusion,	 which	 simply	means	 only	 one
thread	at	 a	 time	 is	 allowed	 to	 execute	 in	 the	 critical	 section.	 In	general,	 if	we	can
eliminate	the	global	variables,	then	the	subroutine	becomes	reentrant.	Without	global
variables	 there	 are	 no	 “vulnerable”	 windows	 because	 each	 thread	 has	 its	 own
registers	 and	 stack.	 Sometimes	 one	 must	 access	 global	 memory	 to	 implement	 the
desired	 function.	Remember	 that	 all	 I/O	 ports	 are	 considered	 global.	 Furthermore,
global	variables	are	necessary	to	pass	data	between	threads.	Program	2.8	shows	two
functions	that	can	be	used	to	implement	mutual	exclusion.

;***********	StartCritical	************************
;	make	a	copy	of	previous	I	bit,	disable	interrupts															
;	inputs:		none voutputs:	previous	I	bit															
StartCritical
								MRS				R0,	PRIMASK		;	save	old	status
								CPSID		I												;	mask	all	(except	faults)

								BX					LR
;***********	EndCritical	************************
;	using	the	copy	of	previous	I	bit,	restore	I	bit	to	previous	value															
;	inputs:		previous	I	bit		outputs:	none														
EndCritical																								
								MSR				PRIMASK,	R0
								BX					LR
Program	2.8.	Assembly	functions	needed	to	implement	mutual	exclusion.

A	simple	way	to	implement	mutual	exclusion	is	to	disable	interrupts	while	executing
the	 critical	 section.	 It	 is	 important	 to	 disable	 interrupts	 for	 as	 short	 a	 time	 as
possible,	 so	 as	 to	 minimize	 the	 effect	 on	 the	 dynamic	 performance	 of	 the	 other
threads.	 While	 we	 are	 running	 with	 interrupts	 disabled,	 time-critical	 events	 like
power	 failure	 and	 danger	 warnings	 cannot	 be	 processed.	 The	 assembly	 code	 of
Program	 2.8	 is	 in	 the	 startup	 file	 in	 our	 projects	 that	 use	 interrupts.	 Program	 2.9
illustrates	how	to	implement	mutual	exclusion	and	eliminate	the	critical	section.

	
When	making	code	atomic	with	this	simple	method,	make	sure	one	critical	section	is
not	nested	inside	another	critical	section.

	
uint32_t	volatile	count;	//	number	of	elements	
//	simple	option	

void	Producer(void){
		DisableInterrupts();	
		count	=	count	+	1;
		EnableInterrupts();	
}

void	Consumer(void){
		DisableInterrupts();	
		count	=	count	-	1;
		EnableInterrupts();	
}	

//	safer	option
void	Producer(void){
long	sr;
		sr	=	StartCritical();	
		count	=	count	+	1;
		EndCritical(sr);	
}

void	Consumer(void){
long	sr;
		sr	=	StartCritical();	
		count	=	count	-	1;
		EndCritical(sr);
}

Program	2.9.	These	functions	are	reentrant	because	of	the	read-modify-write
access	to	the	global	is	atomic.	Use	the	simple	option	only	if	one	critical
section	is	not	nested	inside	another	critical	section.

Checkpoint	2.3:	Although	disabling	interrupts	does	remove	critical	sections,	it
will	add	latency	and	jitter	to	real-time	systems.	Explain	how	latency	and	jitter	are
affected	by	the	DisableInterrupts()	and	EnableInterrupts()	functions.	

Checkpoint	2.4:	Consider	the	situation	of	nested	critical	sections.	For	example,	a

function	with	a	critical	section	calls	another	function	that	also	has	a	critical
section.	What	would	happen	if	you	simply	added	disable	interrupts	at	the
beginning	and	a	re-enable	interrupts	at	the	end	of	each	critical	section?	

2.2.5.	Executing	periodic	tasks
The	 timers	provide	a	 simple	way	 to	execute	periodic	 tasks.	A	periodic	 task	 is	one
that	is	performed	on	a	fixed	time	basis.	This	interfacing	technique	is	required	for	data
acquisition	 and	 control	 systems,	 because	 software	 servicing	must	 be	 performed	 at
accurate	time	intervals.	For	a	data	acquisition	system,	it	is	important	to	establish	an
accurate	 sampling	 rate.	 The	 time	 in	 between	 ADC	 samples	 must	 be	 equal	 (and
known)	in	order	for	the	digital	signal	processing	to	function	properly.	Similarly,	for
microcontroller-based	control	systems,	it	is	important	to	maintain	both	the	ADC	and
DAC	 timing.	 The	 general	 purpose	 timers	 can	 also	 create	 periodic	 interrupts.	 The
operating	system	will	use	periodic	interrupts	to	schedule	threads.

Another	 application	 of	 periodic	 interrupts	 is	 called	 “intermittent	 polling”	 or
“periodic	polling”.	Figure	2.5	shows	busy	wait	side	by	side	with	periodic	polling.	In
busy-wait	synchronization,	the	main	program	polls	the	I/O	devices	continuously.	With
periodic	polling,	 the	 I/O	devices	 are	polled	on	 a	 regular	 basis	 (established	by	 the
periodic	interrupt.)	If	no	device	needs	service,	then	the	interrupt	simply	returns.	If	the
polling	period	is	Δt,	then	on	average	the	interface	latency	will	be	½Δt,	and	the	worst
case	latency	will	be	Δt.	Periodic	polling	is	appropriate	for	low	bandwidth	devices
where	real-time	response	is	not	necessary.	This	method	frees	the	main	program	from
the	I/O	tasks.

We	use	periodic	polling	if	the	following	two	conditions	apply:

1.	The	I/O	hardware	cannot	generate	interrupts	directly
2.	We	wish	to	perform	the	I/O	functions	in	the	background

	

	
Figure	2.5.	An	ISR	flowchart	that	implements	periodic	polling.

2.2.6.	Software	interrupts
When	the	user	code	is	not	compiled	and	linked	together	with	the	operating	system,	the
user	code	can	invoke	the	OS	using	the	supervisor	call	instruction,	SVC .	A	software
interrupt,	 or	 trap,	 is	 a	 software-triggered	 interrupt.	 In	 the	 user	 code,	 various	 OS
functions	can	be	invoked	with	specifying	a	trap	number	to	the SVC 	instruction

OS_Sleep
		SVC		#2
		BX			LR
	
OS_Time
		SVC	#3
		BX		LR
	

On	 the	 Cortex	M,	 the SVC 	 instruction	 will	 invoke	 a	 software	 interrupt,	 which	 is
similar	to	hardware	interrupts	in	that	8	registers	are	pushed	on	the	stack	and	the	PC	is
loaded	with	the	corresponding	ISR	vector	address.	Within	the	OS,	the	SVC	handler
will	 look	 into	 the	 object	 code	 of	 the SVC 	 instruction	 to	 extract	 the	 trap	 number,
which	will	be	the	least	significant	8	bits	of	the	16-bit	instruction.	If	the	OS	function
has	input	or	output	parameters	they	will	be	passed	and	returned	on	the	stack,	rather
than	in	registers.

SVC_Handler
				LDR		R12,[SP,#24]		;	Return	address
				LDRH	R12,[R12,#-2]	;	SVC	instruction	is	2	bytes

				BIC		R12,#0xFF00			;	Extract	trap	number	in	R12
				LDM		SP,{R0-R3}				;	Get	any	parameters
				…
				BL	OS_xxx										;	Call	OS	routine	by	number
				…
				STR		R0,[SP]							;	Store	return	value
				BX			LR												;	Return	from	exception
	

PendSV	 is	 similar	 to	 SVC	 in	 that	 the	 interrupt	 is	 invoked	 by	 software	 and	 not
hardware.	 To	 trigger	 a	 PendSV	 interrupt	 we	 write	 a	 1	 to	 bit	 28	 of	 the	 interrupt
control	register.	PendSV	does	not	have	a	trap	number,	so	we	typically	use	it	for	just
one	dedicated	purpose.

		INTCTRL	=	0x10000000;	//	trigger	PendSV
	

Similarly,	software	can	trigger	a	SysTick	interrupt	by	writing	a	1	to	bit	26.

		INTCTRL	=	0x04000000;	//	trigger	SysTick

2.3.	First	in	First	Out	(FIFO)	Queues
The	first	in	first	out	(FIFO)	queue	is	an	important	data	structure	for	I/O	programming
because	it	allows	us	to	pass	data	from	one	module	to	another.	One	module	puts	data
into	the	FIFO	and	another	module	gets	data	out	of	the	FIFO.	Programs	2.10	and	2.11
define	 macros	 allowing	 us	 to	 create	 as	 many	 FIFOs	 as	 we	 need.	 These	 FIFO
implementations	are	meant	for	embedded	systems	without	an	operating	system,	hence
they	do	not	include	semaphore	synchronization.

//	macro	to	create	a	pointer	FIFO
#define	AddPointerFifo(NAME,SIZE,TYPE,SUCCESS,FAIL)	\
TYPE	volatile	*NAME	##	PutPt;				\
TYPE	volatile	*NAME	##	GetPt;				\
TYPE	static	NAME	##	Fifo	[SIZE];								\
void	NAME	##	Fifo_Init(void){											\
		NAME	##	PutPt	=	NAME	##	GetPt	=	&NAME	##	Fifo[0];	\
}																																							\
int	NAME	##	Fifo_Put	(TYPE	data){							\
		TYPE	volatile	*nextPutPt;													\
		nextPutPt	=	NAME	##	PutPt	+	1;								\
		if(nextPutPt	==	&NAME	##	Fifo[SIZE]){	\
				nextPutPt	=	&NAME	##	Fifo[0];							\
		}																																					\
		if(nextPutPt	==	NAME	##	GetPt){						\
				return(FAIL);																							\
		}																																					\
		else{																																	\
				*(NAME	##	PutPt)	=	data;										\
				NAME	##	PutPt	=	nextPutPt;										\
				return(SUCCESS);																				\
		}																																					\
}																																							\
int	NAME	##	Fifo_Get	(TYPE	*datapt){				\
		if(NAME	##	PutPt	==	NAME	##	GetPt){	\
				return(FAIL);																							\
		}																																					\
		*datapt	=	*(NAME	##	GetPt	##	++);				\
		if(NAME	##	GetPt	==	&NAME	##	Fifo[SIZE]){	\
				NAME	##	GetPt	=	&NAME	##	Fifo[0];			\
		}																																					\
		return(SUCCESS);																						\
}

Program	2.10.	Two-pointer	macro	implementation	of	a	FIFO.

To	 create	 a	 20-element	 FIFO	 storing	 unsigned	 16-bit	 numbers	 that	 returns	 1	 on
success	and	0	on	failure	we	invoke

AddPointerFifo(Rx,	20,	uint16_t,	1,	0)
	

creating	the	three	functions	RxFifo_Init() , RxFifo_Get() ,and RxFifo_Put() .

Program	2.11	is	a	macro	we	can	use	to	create	two-index	FIFOs.

	
//	macro	to	create	an	index	FIFO
#define	AddIndexFifo(NAME,SIZE,TYPE,SUCCESS,FAIL)	\
uint32_t	volatile	NAME	##	PutI;				\
uint32_t	volatile	NAME	##	GetI;				\
TYPE	static	NAME	##	Fifo	[SIZE];								\
void	NAME	##	Fifo_Init(void){											\
		NAME	##	PutI	=	NAME	##	GetI	=	0;						\
}																																							\
int	NAME	##	Fifo_Put	(TYPE	data){							\
		if((NAME	##	PutI	-	NAME	##	GetI)	&	~(SIZE-1)){		\
				return(FAIL);						\
		}																				\
		NAME	##	Fifo[NAME	##	PutI	&(SIZE-1)]	=	data;	\
		NAME	##	PutI	##	++;		\
		return(SUCCESS);					\
}																						\
int	NAME	##	Fifo_Get	(TYPE	*datapt){		\
		if(NAME	##	PutI	==	NAME	##	GetI){	\
				return(FAIL);						\
		}																				\
		*datapt	=	NAME	##	Fifo[NAME	##	GetI	&(SIZE-1)];		\
		NAME	##	GetI	##	++;		\
		return(SUCCESS);					\
}																						\
uint16_t	NAME	##	Fifo_Size	(void){		\
return	((uint16_t)(NAME	##	PutI	-	NAME	##	GetI));		\
}
Program	2.11.	Macro	implementation	of	a	two-index	FIFO.	The	size	must	be
a	power	of	two.

To	create	a	32-element	FIFO	storing	signed	32-bit	numbers	that	returns	0	on	success
and	1	on	failure	we	invoke

AddIndexFifo(Tx,	32,	int32_t,	0,	1)

	
creating	 the	 four	 functions	 TxFifo_Init() ,	 TxFifo_Get() ,
TxFifo_Put() ,and TxFifo_Size() .	 We	 can	 use	 the	 following	 macro	 to	 collect
histogram	data.	Basically,	we	can	add Collect() 	 to	places	where	data	are	added	to
the	FIFO.

	
#define	Collect()	(Histogram[TxFifo_Size()]++;)

2.4.	Edge-triggered	Interrupts

2.4.1.	Edge-triggered	interrupts	on	the	TM4C123
Synchronizing	software	to	hardware	events	requires	the	software	to	recognize	when
the	hardware	 changes	 states	 from	busy	 to	 done.	Many	 times	 the	busy	 to	 done	 state
transition	is	signified	by	a	rising	(or	falling)	edge	on	a	status	signal	in	the	hardware.
For	these	situations,	we	connect	this	status	signal	to	an	input	of	the	microcontroller,
and	we	use	edge-triggered	 interfacing	 to	configure	 the	 interface	 to	set	a	 flag	on	 the
rising	 (or	 falling)	 edge	 of	 the	 input.	 Using	 edge-triggered	 interfacing	 allows	 the
software	to	respond	quickly	to	changes	in	the	external	world.	If	we	are	using	busy-
wait	 synchronization,	 the	 software	 waits	 for	 the	 flag.	 If	 we	 are	 using	 interrupt
synchronization,	we	configure	 the	flag	 to	 request	an	 interrupt	when	set.	Each	of	 the
digital	I/O	pins	on	the	TM4C	family	can	be	configured	for	edge	triggering.	Table	2.9
lists	some	the	registers	available	for	Port	A.	For	more	details,	refer	to	the	datasheet
for	your	specific	microcontroller.	Any	or	all	of	digital	I/O	pins	can	be	configured	as
an	 edge-triggered	 input.	 	 When	 writing	 C	 code	 using	 these	 registers,	 include	 the
header	file	for	your	particular	microcontroller	(e.g.,	tm4c123gh6pm.h).

To	 use	 any	 of	 the	 features	 for	 a	 digital	 I/O	 port,	 we	 first	 enable	 its	 clock	 in	 the
SYSCTL_RCGCGPIO_R.	 For	 each	 bit	 we	 wish	 to	 use	 we	 must	 set	 the
corresponding	DEN	 (Digital	 Enable)	 bit.	 To	 use	 a	 pin	 as	 regular	 digital	 input	 or
output,	we	clear	its	AFSEL	(Alternate	Function	Select)	bit.	Setting	the	AFSEL	will
activate	 the	 pin’s	 special	 function	 (e.g.,	UART,	 I2C,	CAN	 etc.)	 For	 regular	 digital
input/output,	we	clear	DIR	(Direction)	bits	to	make	them	input,	and	we	set	DIR	bits
to	make	them	output.

Address 7 6 5 4 3 2 1 0 Name
$4000.43FC DATA DATA DATA DATA DATA DATA DATA DATA GPIO_PORTA_DATA_R
$4000.4400 DIR DIR DIR DIR DIR DIR DIR DIR GPIO_PORTA_DIR_R
$4000.4404 IS IS IS IS IS IS IS IS GPIO_PORTA_IS_R
$4000.4408 IBE IBE IBE IBE IBE IBE IBE IBE GPIO_PORTA_IBE_R
$4000.440C IEV IEV IEV IEV IEV IEV IEV IEV GPIO_PORTA_IEV_R
$4000.4410 IME IME IME IME IME IME IME IME GPIO_PORTA_IM_R
$4000.4414 RIS RIS RIS RIS RIS RIS RIS RIS GPIO_PORTA_RIS_R
$4000.4418 MIS MIS MIS MIS MIS MIS MIS MIS GPIO_PORTA_MIS_R
$4000.441C ICR ICR ICR ICR ICR ICR ICR ICR GPIO_PORTA_ICR_R
$4000.4420 SEL SEL SEL SEL SEL SEL SEL SEL GPIO_PORTA_AFSEL_R
$4000.4500 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 DRV2 GPIO_PORTA_DR2R_R
$4000.4504 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 DRV4 GPIO_PORTA_DR4R_R
$4000.4508 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 DRV8 GPIO_PORTA_DR8R_R
$4000.450C ODE ODE ODE ODE ODE ODE ODE ODE GPIO_PORTA_ODR_R
$4000.4510 PUE PUE PUE PUE PUE PUE PUE PUE GPIO_PORTA_PUR_R
$4000.4514 PDE PDE PDE PDE PDE PDE PDE PDE GPIO_PORTA_PDR_R

$4000.4518 SLR SLR SLR SLR SLR SLR SLR SLR GPIO_PORTA_SLR_R
$4000.451C DEN DEN DEN DEN DEN DEN DEN DEN GPIO_PORTA_DEN_R
$4000.4524 CR CR CR CR CR CR CR CR GPIO_PORTA_CR_R
$4000.4528 AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL AMSEL GPIO_PORTA_AMSEL_R
	 	 	 	 	 	 	 	 	 	
	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	
$4000.452C PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMC0 GPIO_PORTA_PCTL_R
$4000.4520 LOCK	(write	0x4C4F434B	to	unlock,	other	locks)	(reads	1	if	locked,	0	if	unlocked) GPIO_PORTA_LOCK_R

Table	2.9.	Port	A	registers	for	the	TM4C.
We	clear	bits	in	the	AMSEL	register	to	use	the	port	for	digital	I/O.	AMSEL	bits	exist
for	those	pins	which	have	analog	functionality.	We	set	the	alternative	function	using
both	AFSEL	 and	PCTL	 registers.	On	 the	 TM4C123,	we	 need	 to	 unlock	 PD7	 and
PF0	if	we	wish	to	use	them.	On	the	TM4C1294,	only	PD7	needs	unlocking.	Because
PC3-0	implements	the	JTAG	debugger,	we	will	never	unlock	these	pins.	To	unlock	a
pin,	we	first	write	0x4C4F434B	to	the	LOCK	register,	and	then	we	write	zeros	to	the
CR	register.

To	 configure	 an	 edge-triggered	 pin,	 we	 first	 enable	 the	 clock	 on	 the	 port	 and
configure	 the	pin	as	a	 regular	digital	 input.	We	can	 trigger	on	 the	 rising,	 falling,	or
both	edges,	as	 listed	 in	Table	2.10.	Clearing	the	IS	 (Interrupt	Sense)	bit	configures
the	bit	for	edge	triggering.	If	the	IS	bit	were	to	be	set,	the	trigger	occurs	on	the	level
of	the	pin.

DIR AFSEL IS IBE IEV IME Port	mode
0 0 0 0 0 0 Input,	 falling	 edge	 trigger,

busy	wait
0 0 0 0 1 0 Input,	 rising	 edge	 trigger,

busy	wait
0 0 0 1 - 0 Input,	 both	 edges	 trigger,

busy	wait
0 0 0 0 0 1 Input,	 falling	 edge	 trigger,

interrupt
0 0 0 0 1 1 Input,	 rising	 edge	 trigger,

interrupt
0 0 0 1 - 1 Input,	 both	 edges	 trigger,

interrupt
Table	2.10.	Edge-triggered	modes.

Since	most	busy	 to	done	conditions	are	 signified	by	edges,	we	 typically	 trigger	on
edges	rather	than	levels.	Next	we	write	 to	the	IBE	 (Interrupt	Both	Edges)	and	IEV
(Interrupt	Event)	 bits	 to	 define	 the	 active	 edge.	We	 clear	 the	 IME	 (Interrupt	Mask
Enable)	bits	 if	we	are	using	busy-wait	synchronization,	and	we	set	 the	IME	bits	 to
use	interrupt	synchronization.

The	 hardware	 sets	 an	RIS	 (Raw	 Interrupt	 Status)	 bit	 (called	 the	 trigger)	 and	 the
software	clears	it	(called	the	acknowledgement).	The	triggering	event	listed	in	Table

2.10	 will	 set	 the	 corresponding	 RISbit	 in	 the GPIO_PORTA_RIS_R 	 register
regardless	of	whether	or	not	 that	bit	 is	allowed	 to	 request	a	controller	 interrupt.	 In
other	words,	 clearing	 an	 IME	 bit	 disables	 the	 corresponding	pin’s	 interrupt,	 but	 it
will	still	set	the	corresponding	RIS	bit	when	the	interrupt	would	have	occurred.	The
software	 can	 acknowledge	 the	 event	 by	 writing	 ones	 to	 the	 corresponding
IC(Interrupt	Clear)	bit	 in	the GPIO_PORTA_IC_R 	register.	The	RISbits	are	 read
only,	meaning	if	the	software	were	to	write	to	this	registers,	it	would	have	no	effect.
For	 example,	 to	 clear	 bits	 2,	 1,	 and	 0	 in	 the GPIO_PORTA_RIS_R register,	 we
write	a	0x07	to	the GPIO_PORTA_IC_R 	 register.	Writing	zeros	into	IC	bits	will
not	affect	the	RIS	bits.

For	 input	 signals	we	have	 the	 option	 of	 adding	 either	 a	 pull-up	 resistor	 or	 a	 pull-
down	resistor.	If	we	set	the	corresponding	PUE	(Pull-Up	Enable)	bit	on	an	input	pin,
the	equivalent	of	a	50	to	110	kΩ	resistor	to	+3.3	V	power	is	internally	connected	to
the	pin.	Similarly,	 if	we	 set	 the	 corresponding	PDE	 (Pull-Down	Enable)	bit	 on	 an
input	pin,	the	equivalent	of	a	55	to	180	kΩ	resistor	to	ground	is	internally	connected
to	the	pin.	We	cannot	have	both	pull-up	and	a	pull-down	resistor,	so	setting	a	bit	in
one	register	automatically	clears	the	corresponding	bit	in	the	other	register.

A	 typical	 application	 of	 pull-up	 and	 pull-down	 mode	 is	 the	 interface	 of	 simple
switches.	 Using	 these	 modes	 eliminates	 the	 need	 for	 an	 external	 resistor	 when
interfacing	a	switch.	The	switch	interfaces	for	the	two	switches	on	the	LaunchPad	are
illustrated	 in	Figure	2.6.	The	Port	F	 interfaces	employ	software-configured	 internal
resistors,	implementing	negative	logic	inputs.

Checkpoint	2.5:	What	do	negative	logic	and	positive	logic	mean	in	the	context	of
interfacing	switches?

Figure	2.6.	Edge-triggered	interfaces	can	generate	interrupts	on	a	switch
touch.	These	negative	logic	switches	require	internal	pull-up	resistors.	R1
and	R13	are	0-ohm	resistors	can	could	be	desoldered	to	disconnect	the
switches	from	the	microcontroller.

Checkpoint	2.6:	What	values	to	you	write	into	DIR,	AFSEL,	PUE,	and	PDE	to
configure	the	switch	interfaces	of	PF4	and	PF0	in	Figure	2.6?

Using	 edge	 triggering	 to	 synchronize	 software	 to	 hardware	 centers	 around	 the
operation	of	 the	 trigger	 flags,	RIS.	A	busy-wait	 interface	will	 read	 the	appropriate
RIS	bit	over	and	over,	until	it	is	set.	When	the	RIS	bit	is	set,	the	software	will	clear
the	RIS	bit	 (by	writing	a	one	 to	 the	corresponding	IC	bit)	and	perform	the	desired
function.	With	interrupt	synchronization,	 the	initialization	phase	will	arm	the	trigger

flag	by	setting	the	corresponding	IME	bit.	In	this	way,	the	active	edge	of	the	pin	will
set	the	RIS	and	request	an	interrupt.	The	interrupt	will	suspend	the	main	program	and
run	 a	 special	 interrupt	 service	 routine	 (ISR).	 This	 ISR	will	 clear	 the	RIS	 bit	 and
perform	 the	desired	 function.	At	 the	end	of	 the	 ISR	 it	will	 return,	causing	 the	main
program	to	resume.	In	particular,	five	conditions	must	be	simultaneously	true	for	an
edge-triggered	interrupt	to	be	requested:
	

•	The	trigger	flag	bit	is	set	(RIS)
•	The	arm	bit	is	set	(IME)
•	The	level	of	the	edge-triggered	interrupt	must	be	less	than

BASEPRI
•	The	edge-triggered	interrupt	must	be	enabled	in	the

NVIC_EN0_R
•	The	edge-triggered	interrupt	must	be	disabled	in	the

NVIC_DIS0_R
•	Bit	0	of	the	special	register	PRIMASK	is	0

	

Table	2.9	listed	the	registers	for	Port	A.	The	other	ports	have	similar	registers.	We
will	begin	with	a	simple	example	that	counts	the	number	of	falling	edges	on	Port	F
bits	4,0	(Program	2.12).	The	initialization	requires	many	steps.	(a)	The	clock	for	the
port	 must	 be	 enabled.	 (b)	 The	 global	 variables	 should	 be	 initialized.	 (c)	 The
appropriate	pins	must	be	enabled	as	inputs.	(d)	We	must	specify	whether	to	trigger	on
the	rise,	the	fall,	or	both	edges.	In	this	case,	we	will	trigger	on	the	fall	of	PF4,PF0.
(e)	 It	 is	 good	 design	 to	 clear	 the	 trigger	 flag	 during	 initialization	 so	 that	 the	 first
interrupt	occurs	due	to	the	first	rising	edge	after	the	initialization	has	been	run.	We	do
not	wish	 to	 trigger	on	a	 falling	edge	 that	might	have	occurred	during	 the	power	up
phase	of	the	system.	(f)	We	arm	the	edge-trigger	by	setting	the	corresponding	bits	in
the	 IMregister.	 (g)	We	 establish	 the	 priority	 of	 Port	 F	 by	 setting	 bits	 23	 –	 21	 in
the NVIC_PRI7_R 	register.	We	activate	Port	F	interrupts	in	the	NVIC	by	writing	a
one	 to	 bit	 30	 in	 the NVIC_EN0_R 	 register	 (“IRQ	 number”).	 In	most	 systems	we
would	not	enable	 interrupts	 in	 the	device	 initialization.	Rather,	 it	 is	good	design	 to
initialize	all	devices	in	the	system,	and	then	enable	interrupts.

Checkpoint	2.7:	If	both	switches	are	touched	simultaneously,	what	will	happen?
How	many	interrupts	are	generated?

int32_t	Count1,Count2	=	0;
void	Switch_Init(void){
		SYSCTL_RCGCGPIO_R	|=	0x20;						//	(a)	activate	clock	for	Port	F
		Count1=	Count2	=	0;													//	(b)	initialize	counters
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;	//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;									//	allow	changes	to	PF4-0
		GPIO_PORTF_DIR_R	=	0x02;								//	(c)	make	PF4,PF0	in	and	PF1	is	out
		GPIO_PORTF_DEN_R	|=	0x13;							//		enable	digital	I/O	on	PF4,PF0,	PF1
		GPIO_PORTF_PUR_R	|=	0x11;							//	pullups	on	PF4,PF0

		GPIO_PORTF_IS_R	&=	~0x11;							//	(d)	PF4,PF0	are	edge-sensitive
		GPIO_PORTF_IBE_R	&=	~0x11;						//					PF4,PF0	are	not	both	edges
		GPIO_PORTF_IEV_R	&=	~0x11;						//					PF4,PF0	falling	edge	event
		GPIO_PORTF_ICR_R	=	0x11;								//	(e)	clear	flags
		GPIO_PORTF_IM_R	|=	0x11;								//	(f)	arm	interrupt	on	PF4,PF0
		NVIC_PRI7_R	=	(NVIC_PRI7_R&0xFF00FFFF)|0x00A00000;	//	(g)	priority	5
		NVIC_EN0_R	=	0x40000000;								//	(h)	enable	interrupt	30	in	NVIC
}
void	GPIOPortF_Handler(void){
		if(GPIO_PORTF_RIS_R&0x10){		//	poll	PF4
				GPIO_PORTF_ICR_R	=	0x10;		//	acknowledge	flag4
				Count1++;																//	event	occurred
		}
		if(GPIO_PORTF_RIS_R&0x01){		//	poll	PF0
				GPIO_PORTF_ICR_R	=	0x01;		//	acknowledge	flag0
				Count2++;																//	event	occurred

}
}
Program	2.12.	Interrupt-driven	edge-triggered	input	that	counts	falling
edges	of	PF4,PF0.

2.4.2.	Edge-triggered	Interrupts	on	the	MSP432
Synchronizing	software	to	hardware	events	requires	the	software	to	recognize	when
the	hardware	 changes	 states	 from	busy	 to	 done.	Many	 times	 the	busy	 to	 done	 state
transition	is	signified	by	a	rising	(or	falling)	edge	on	a	status	signal	in	the	hardware.
For	these	situations,	we	connect	this	status	signal	to	an	input	of	the	microcontroller,
and	we	use	edge-triggered	 interfacing	 to	configure	 the	 interface	 to	set	a	 flag	on	 the
rising	 (or	 falling)	 edge	 of	 the	 input.	 Using	 edge-triggered	 interfacing	 allows	 the
software	to	respond	quickly	to	changes	in	the	external	world.	If	we	are	using	busy-
wait	 synchronization,	 the	 software	 waits	 for	 the	 flag.	 If	 we	 are	 using	 interrupt
synchronization,	we	configure	 the	flag	 to	 request	an	 interrupt	when	set.	Each	of	 the
digital	I/O	pins	on	ports	P1	–	P6	can	be	configured	for	edge	triggering.	Table	2.11
shows	many	of	the	registers	available	for	Port	1.	The	differences	between	members
of	the	MSP432	family	include	the	number	of	ports	(e.g.,	the	MSP432P401	has	ports	1
–	10),	which	pins	can	interrupt	(e.g.,	the	MSP432P401	can	interrupt	on	ports	1	–	6)
and	 the	number	of	pins	 in	each	port	 (e.g.,	 the	MSP432P401	has	pins	6	–	0	on	Port
10).	For	more	details,	refer	to	the	datasheet	for	your	specific	microcontroller.

Each	of	the	pins	on	Ports	1	–	6	on	the	MSP432P401	can	be	configured	as	an	edge-
triggered	input.	When	writing	C	code	using	these	registers,	include	the	header	file	for
your	particular	microcontroller	(e.g.,	msp432p401r.h).	To	use	a	pin	as	regular	digital
input	or	output,	we	clear	 its	SEL0	and	SEL1	bits.	For	 regular	 digital	 input/output,

we	clear	DIR	(Direction)	bits	to	make	them	input,	and	we	set	DIR	bits	to	make	them
output.

Address 7 6 5 4 3 2 1 0 Name
0x4000.4C00 DATA DATA DATA DATA DATA DATA DATA DATA P1IN
0x4000.4C02 DATA DATA DATA DATA DATA DATA DATA DATA P1OUT
0x4000.4C04 DIR DIR DIR DIR DIR DIR DIR DIR P1DIR
0x4000.4C06 REN REN REN REN REN REN REN REN P1REN
0x4000.4C08 DS DS DS DS DS DS DS DS P1DS
0x4000.4C0A SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 SEL0 P1SEL0
0x4000.4C0C SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 SEL1 P1SEL1
0x4000.4C0E 	 	 	 P1IV P1IV
0x4000.4C18 IES IES IES IES IES IES IES IES P1IES
0x4000.4C1A IE IE IE IE IE IE IE IE P1IE
0x4000.4C1C IFG IFG IFG IFG IFG IFG IFG IFG P1IFG

Table	2.11.	MSP432	Port	1	registers.	SEL0	SEL1	bits,	see	Table	2.3.	All	except	PxIV	are	8
bits	wide.

To	 configure	 an	 edge-triggered	 pin,	 we	 first	 configure	 the	 pin	 as	 a	 regular	 digital
input.	Most	busy	to	done	conditions	are	signified	by	edges,	and	therefore	we	trigger
on	edges	of	those	signals.	Next	we	write	to	the	IES	(Interrupt	Edge	Select)	to	define
the	active	edge.	We	can	trigger	on	the	rising	or	falling	edge,	as	listed	in	Table	2.12.
We	clear	the	IE	(Interrupt	Enable)	bits	if	we	are	using	busy-wait	synchronization,	and
we	 set	 the	 IE	 bits	 to	 use	 interrupt	 synchronization.	 For	 input	 signals	 we	 have	 the
option	 of	 adding	 either	 a	 pull-up	 resistor	 or	 a	 pull-down	 resistor.	 If	 we	 set	 the
corresponding	REN	(Resistor	Enable)	bit	on	an	input	pin,	we	internally	connect	the
equivalent	of	a	20	–	50	kΩ	resistor	to	the	pin.	As	previously	mentioned	we	choose
pull	 up	by	 setting	 the	 corresponding	bit	 in	P1OUT	 to	 1.	We	 choose	 pull	 down	by
clearing	the	corresponding	bit	in	P1OUT	to	0.

The	16-bit	P1IV	(Interrupt	Vector)	register	specifies	a	number	of	the	highest	priority
flag	that	is	set	in	the	P1IFG	register.	The	value	is	0x00	if	no	flag	is	set.	Pin	0	is	the
highest	priority	and	Pin	7	is	the	lowest.	If	pin	n	is	the	highest	priority	flag	that	is	set,
then	P1IV	will	be	2*(n+1),	meaning	it	will	be	one	of	these	values:	0x02,	0x04,	0x06,
0x08,	0x0A,	0x0C,	0x0E,	or	0x10.

The	hardware	sets	an	IFG	 (Interrupt	Flag)	bit	 (called	 the	 trigger)	and	 the	software
clears	it	(called	the	acknowledgement).	The	triggering	event	listed	in	Table	2.12	will
set	the	corresponding	IFGbit	in	the P1IFG 	register	regardless	of	whether	or	not	that
bit	is	allowed	to	request	an	interrupt.	In	other	words,	clearing	an	IE	bit	disables	the
corresponding	pin’s	interrupt,	but	it	will	still	set	the	corresponding	IFG	bit	when	the
interrupt	would	have	occurred.	To	use	interrupts,	clear	the	IE	bit,	configure	the	bits
in	Table	2.11,	 and	 then	 set	 the	IE	 bit.	The	 software	 can	acknowledge	 the	 event	by
writing	zeros	 to	 the	corresponding	IFG	bitsin	 the P1IFG 	 register.	 For	 example,	 to
clear	bit	2in	the P1IFG 	register,	we	simply	execute

P1IFG	&=	(~0x04);

However,	this	mechanism	has	a	critical	section,	and	should	not	be	used	if	there	are

multiple	interrupts	active	on	a	single	port.	The	example	will	illustrate	using	P1IV	to
acknowledge.

DIR SEL0
SEL1

IE IES Port	mode

0 00 0 0 Input,	rising	edge	trigger
0 00 0 1 Input,	falling	edge	trigger
0 00 1 0 Input,	 rising	 edge	 trigger,

interrupt
0 00 1 1 Input,	 falling	 edge	 trigger,

interrupt
Table	2.12.	Edge-triggered	modes.

A	 typical	 application	 of	 pull-up	 and	 pull-down	 mode	 is	 the	 interface	 of	 simple
switches.	 Using	 these	 modes	 eliminates	 the	 need	 for	 an	 external	 resistor	 when
interfacing	 a	 switch.	 The	 P1.1	 and	 P1.4	 interfaces	 will	 use	 software-configured
internal	 resistors.	 The	 P1.1	 and	 P1.4	 interfaces	 in	 Figure	 2.7	 implement	 negative
logic	switch	inputs.		

Figure	2.7.	Edge-triggered	interfaces	can	generate	interrupts	on	a	switch
touch.	These	negative	logic	switches	require	internal	pull-up	resistors.

Using	 edge	 triggering	 to	 synchronize	 software	 to	 hardware	 centers	 around	 the
operation	of	 the	trigger	flags,	IFG.	A	busy-wait	 interface	will	 read	 the	appropriate
IFG	bit	over	and	over,	until	it	is	set.	When	the	IFG	bit	is	set,	the	software	will	clear
the	 bit	 by	 writing	 a	 zero	 to	 it	 and	 perform	 the	 desired	 function.	 With	 interrupt
synchronization,	 the	 initialization	 phase	 will	 arm	 the	 trigger	 flag	 by	 setting	 the
corresponding	IE	 bit.	 In	 this	way,	 the	 active	 edge	 of	 the	 pin	will	 set	 the	 IFG	 and
request	an	interrupt.	The	interrupt	will	suspend	the	main	program	and	run	a	special
interrupt	 service	 routine	 (ISR).	 This	 ISR	 will	 clear	 the	 IFG	 bit	 and	 perform	 the
desired	 function.	At	 the	 end	of	 the	 ISR	 it	will	 return,	 causing	 the	main	program	 to
resume.	 In	 particular,	 five	 conditions	 must	 be	 simultaneously	 true	 for	 an	 edge-
triggered	interrupt	to	be	requested:

• 	The	trigger	flag	bit	is	set	(IFG)
• 	The	arm	bit	is	set	(IE)
• 	The	level	of	the	edge-triggered	interrupt	must	be	less	than

BASEPRI
• 	The	edge-triggered	interrupt	must	be	enabled	in	the

NVIC_ISER1
• 	Bit	0	of	the	special	register	PRIMASK	is	0

In	Volumes	1	and	2,	we	developed	blind-cycle	and	busy-wait	solutions.	However,	in
this	section	we	will	redesign	the	systems	using	interrupt	synchronization.	Table	2.11
lists	 the	registers	 for	Port	1.	The	other	ports	have	similar	 registers.	However,	only
Ports	1	–	6	can	request	interrupts.	We	will	begin	with	a	simple	example	that	counts
the	number	of	falling	edges	on	Port	1	bits	1	and	4	(Program	2.13).	The	initialization
requires	 many	 steps.	 We	 enable	 interrupts	 (EnableInterrupts())	 only	 after	 all
devices	are	initialized.

(a)	The	global	variables	should	be	initialized.

(b)	The	appropriate	pins	must	be	enabled	as	inputs.

(c)	We	must	 specify	 whether	 to	 trigger	 on	 the	 rising	 or	 the	 falling	 edge.	We	 will
trigger	on	the	falling	of	either	P1.1	or	P1.4.	A	falling	edge	occurs	whenever	we	touch
either	SW1	or	SW2.

(d)	 It	 is	 good	 design	 to	 clear	 the	 trigger	 flag	 during	 initialization	 so	 that	 the	 first
interrupt	occurs	due	to	the	first	falling	edge	after	the	initialization	has	been	run.	We
do	not	wish	to	trigger	on	a	rising	edge	that	might	have	occurred	during	the	power	up
phase	of	the	system.

(e)	We	arm	the	edge-trigger	by	setting	the	corresponding	bits	in	the	IE	register.

(f)	We	 establish	 the	 priority	 of	 Port	 1	 by	 setting	 bits	 31	 –	 29	 in	 the NVIC_IPR8
register.

(g)	 We	 activate	 Port	 1	 interrupts	 in	 the	 NVIC	 by	 setting	 bit	 3	 in
the NVIC_ISER1 register.

The	proper	way	 to	poll	 the	 interrupt	 is	 to	use	P1IV.	 If	 the	 software	 reads	P1IV	 it
will	 get	 the	number	 (2*(n+1))	where	n	 is	 the	 pin	 number	 of	 the	 lowest	 bit	with	 a
pending	interrupt.	This	access	will	clear	only	flag	n.

int32_t	Count1,Count2	=	0;
void	Switch_Init(void){							
		Count1	=	Count2	=	0;									//	(a)	initialize	counters
		P1SEL1	&=	~0x12;														//	(b)	configure	P1.1,	P1.4	as	GPIO
		P1SEL0	&=	~0x12;														//					built-in	Buttons	1	and	2
		P1DIR	&=	~0x12;															//					make	P1.1,	P1.4	in
		P1REN	|=	0x12;																//					enable	pull	resistors
		P1OUT	|=	0x12;																//					P1.1,	P1.4	is	pull-up
		P1IES	|=	0x12;																//	(c)	P1.1,	P1.4	is	falling	edge	event
		P1IFG	&=	~0x12;															//	(d)	clear	flag1	and	flag4
		P1IE	|=	0x12;																	//	(e)	arm	interrupt	on	P1.1,	P1.4
		NVIC_IPR8	=	(NVIC_IPR8&0x00FFFFFF)|0x40000000;	//	(f)	priority	2
		NVIC_ISER1	=	0x00000008;						//	(g)	enable	interrupt	35	in	NVIC
}
void	PORT1_IRQHandler(void){	uint8_t	status;
		status	=	P1IV;	//	4	for	P1.1	and	10	for	P1.4

		if(status	==	4){
				Count1++;																//	event	occurred
		}
		if(status	==	10){
				Count2++;																//	event	occurred
		}
}
Program	2.13.	Interrupt-driven	edge-triggered	input	that	counts	falling
edges	of	P1.4	and	P1.1.

2.5.	UART	Interface
In	 this	 section	 we	 will	 develop	 a	 simple	 device	 driver	 using	 the	 Universal
Asynchronous	 Receiver/Transmitter	 (UART).	 This	 serial	 port	 allows	 the
microcontroller	to	communicate	with	devices	such	as	other	computers,	printers,	input
sensors,	and	LCDs.		Serial	transmission	involves	sending	one	bit	a	time,	such	that	the
data	is	spread	out	over	time.	The	total	number	of	bits	transmitted	per	second	is	called
the	baud	rate.	The	reciprocal	of	 the	baud	rate	 is	 the	bit	 time,	which	 is	 the	 time	 to
send	 one	 bit.	 Most	 microcontrollers	 have	 at	 least	 one	 UART.	 The	 details	 of	 the
UART	operation	on	the	MSP432/TM4C	can	be	found	in	Volume	2.	In	this	book,	we
present	 general	 features	 common	 to	 all	 devices,	 and	 also	 include	 interrupt	 driven
drivers.	Each	UART	will	have	a	baud	rate	control	register,	which	we	use	 to	select
the	transmission	rate.	Each	device	is	capable	of	creating	its	own	serial	clock	with	a
transmission	frequency	approximately	equal	to	the	serial	clock	in	the	computer	with
which	 it	 is	 communicating.	 A	 frame	 is	 the	 smallest	 complete	 unit	 of	 serial
transmission.	 Figure	 2.8	 plots	 the	 signal	 versus	 time	 on	 a	 serial	 port,	 showing	 a
single	frame,	which	includes	a	start	bit	(which	is	0),	8	bits	of	data	(least	significant
bit	 first),	 and	 a	 stop	bit	 (which	 is	 1).	 	 There	 is	 always	 only	 one	 start	 bit,	 but	 the
UARTs	allow	us	to	select	the	5	to	8	data	bits	and	1	or	2	stop	bits.	The	UART	can	add
even,	odd,	or	no	parity	bit.	However,	we	will	employ	the	typical	protocol	of	1	start
bit,	8	data	bits,	no	parity,	and	1	stop	bit.	This	protocol	is	used	for	both	transmitting
and	receiving.	The	information	rate,	or	bandwidth,	is	defined	as	the	amount	of	data
or	useful	information	transmitted	per	second.	From	Figure	2.8,	we	see	that	10	bits	are
sent	for	every	byte	of	usual	data.	Therefore,	the	bandwidth	of	the	serial	channel	(in
bytes/second)	is	the	baud	rate	(in	bits/sec)	divided	by	10.

Figure	2.8.	A	serial	data	frame	with	8-bit	data,	1	start	bit,	1	stop	bit,	and	no
parity	bit.

Checkpoint	2.8:	Assuming	the	protocol	drawn	in	Figure	2.8	and	a	baud	rate	of
115200	bits/sec,	what	is	the	bandwidth	in	bytes/sec?

Table	2.13	shows	the	three	most	commonly	used	RS232	signals.	The	RS232	standard
uses	a	DB25	connector	that	has	25	pins.	The	EIA-574	standard	uses	RS232	voltage
levels	and	a	DB9	connector	that	has	only	9	pins.		The	most	commonly	used	signals	of
the	full	RS232	standard	are	available	with	the	EIA-574	protocols.		Only	TxD,	RxD,
and	SG	are	required	to	implement	a	simple	bidirectional	serial	channel	(Figure	2.9).
We	define	the	data	terminal	equipment	(DTE)	as	the	computer	or	a	terminal	and	the
data	communication	equipment	(DCE)	as	the	modem	or	printer.

DB25
Pin

RS232
Name

DB9
Pin

EIA-
574
Name

Signal Description True DTE DCE

2 BA 3 103 TxD Transmit	Data -12V out in
3 BB 2 104 RxD Receive	Data -12V in out
7 AB 5 102 SG Signal	Ground 	 	 	

Table	2.13.	The	commonly-used	signals	on	the	RS232	and	EIA-574	protocols.

Figure	2.9.	Hardware	interface	implementing	an	asynchronous	RS232
channel.	The	TM4C123	and	TM4C1294	have	eight	UART	ports.

Observation:	Most	MSP432/TM4C	development	kits	connect	the	UART0
channel	through	the	USB	cable,	so	the	circuit	shown	in	Figure	2.9	will	not	be
needed.	On	the	PC	side	of	the	cable,	the	serial	channel	becomes	a	virtual	COM
port.		

RS232	 is	 a	 non-return-to-zero	 (NRZ)	 protocol	 with	 true	 signified	 as	 a	 voltage
between	 -5	 and	 ‑15	 V.	 False	 is	 signified	 by	 a	 voltage	 between	 +5	 and	 +15	 V.	 A
MAX3232	converter	chip	is	used	to	translate	between	the	+5.5/-5.5	V	RS232	levels
and	the	0/+3.3	V	digital	levels,	as	shown	in	Figure	2.9.	The	capacitors	in	this	circuit
are	important,	because	they	form	a	charge	pump	used	to	create	the	±5.5	voltages	from
the	+3.3	V	supply.	The	RS232	timing	is	generated	automatically	by	the	UART.	During
transmission,	 the	 Maxim	 chip	 translates	 a	 digital	 high	 on	 microcontroller	 side	 to
-5.5V	on	the	RS232/EIA‑574	cable,	and	a	digital	low	is	translated	to	+5.5V.	During
receiving,	the	Maxim	chip	translates	negative	voltages	on	RS232/EIA‑574	cable	to	a
digital	 high	 on	 the	 microcontroller	 side,	 and	 a	 positive	 voltage	 is	 translated	 to	 a
digital	 low.	The	computer	 is	 classified	as	DTE,	 so	 its	 serial	output	 is	pin	3	 in	 the
EIA‑574	cable,	and	its	serial	input	is	pin	2	in	the	EIA‑574	cable.	When	connecting	a
DTE	to	another	DTE,	we	use	a	cable	with	pins	2	and	3	crossed.	I.e.,	pin	2	on	one
DTE	is	connected	to	pin	3	on	the	other	DTE	and	pin	3	on	one	DTE	is	connected	to

pin	2	on	the	other	DTE.		When	connecting	a	DTE	to	a	DCE,	then	the	cable	passes	the
signals	straight	across.	In	all	situations,	the	grounds	are	connected	together	using	the
SG	wire	in	the	cable.	This	channel	is	classified	as	full	duplex,	because	transmission
can	occur	in	both	directions	simultaneously.

Figure	2.10	shows	a	data	flow	graph	with	buffered	input	and	buffered	output.	First	in
first	out	(FIFO)	queues	are	statically	allocated	global	structures.	The	producer	puts
into	 the	 FIFO	 and	 the	 consumer	 gets	 from	 the	 FIFO.	 Because	 they	 are	 global
variables,	 it	means	 they	will	 exist	 permanently	 and	 can	 be	 carefully	 shared	 by	 the
foreground	 and	background	 threads.	The	 advantage	of	 using	 a	FIFO	 structure	 for	 a
data	 flow	 problem	 is	 that	 we	 can	 decouple	 the	 producer	 and	 consumer	 threads.
Without	 the	 FIFO	 we	 would	 have	 to	 produce	 one	 piece	 of	 data,	 then	 process	 it,
produce	another	piece	of	data,	 then	process	 it.	With	 the	FIFO,	 the	producer	 thread
can	 continue	 to	 produce	 data	 without	 having	 to	 wait	 for	 the	 consumer	 to	 finish
processing	 the	 previous	 data.	 This	 decoupling	 can	 significantly	 improve	 system
performance.	

Figure	2.10.	A	data	flow	graph	showing	two	FIFOs	that	buffer	data	between
producers	and	consumers.

Checkpoint	2.9:	What	does	it	mean	if	the	RxFifo	in	Figure	2.10	is	empty?	

Checkpoint	2.10:	What	does	it	mean	if	the	TxFifo	in	Figure	2.10	is	empty?

2.5.1.	Transmitting	in	asynchronous	mode
We	will	begin	with	transmission,	because	it	is	simple.	The	transmitter	portion	of	the
UART	includes	a	data	output	pin,	with	digital	logic	levels	as	drawn	in	Figure	2.11.
The	 TM4C	 transmitter	 has	 a	 16-element	 FIFO	 and	 a	 10-bit	 shift	 register,	 which
cannot	be	directly	accessed	by	 the	programmer	 (Figure	2.11).	The	MSP432	simply
has	the	data	register	and	shift	register.	The	data	register,	FIFO,	and	shift	register	 in
the	transmitter	are	separate	from	the	data	register,	FIFO,	and	shift	register	associated
with	 the	 receiver.	 To	 output	 data	 using	 the	UART,	 the	 software	will	 first	 check	 to
make	 sure	 the	 transmit	 data	 register	 is	 not	 fulland	 then	 write	 to	 the	 transmit	 data
register	(e.g., UART0_DR_R	UCA0TXBUF).	The	bits	are	shifted	out	in	this	order:
start,	b0,	b1,	b2,	b3,	b4,	b5,	b6,	b7,	and	then	stop,	where	b0	is	the	LSB	and	b7	is	the	MSB.

The	transmit	data	register	is	write	only,	which	means	the	software	can	write	to	it	(to
start	 a	 new	 transmission)	 but	 cannot	 read	 from	 it.	 Even	 though	 the	 transmit	 data
register	is	at	the	same	address	as	the	receive	data	register,	the	transmit	and	receive
data	registers	are	two	separate	registers.

Figure	2.11.	Data	and	shift	registers	implement	the	serial	transmission.

On	 the	TM4C,	we	will	 interrupt	when	 the	 transmit	FIFO	 is	almost	empty.	The	 ISR
will	 pass	 data	 from	 the	 software	 FIFO	 to	 the	 hardware	 FIFO.	 The	 use	 of	 FIFOs
separates	 the	 data	 production	 (software)	 from	 the	 data	 consumption	 (UART
hardware).

On	the	MSP432,	we	will	interrupt	when	the	transmit	data	register	is	empty.	The	ISR
will	pass	one	byte	of	data	from	the	software	FIFO	to	the	hardware	UART.

In	all	cases,	we	will	disarm	the	UART	transmitter	when	the	software	FIFO	is	empty,
and	rearm	it	when	new	data	are	available.

2.5.2.	Receiving	in	asynchronous	mode
Receiving	 data	 frames	 is	 a	 little	 trickier	 than	 transmission	 because	 we	 have	 to
synchronize	the	receive	shift	register	with	the	incoming	data.	The	receiver	portion	of
the	UART	includes	an	RXD	data	 input	pin	with	digital	 logic	levels.	At	 the	input	of
the	microcontroller,	true	is	3.3V	and	false	is	0V.	The	TM4C	microcontrollers	have	a
16-element	FIFO	to	buffer	 the	 incoming	frames.	All	microcontrollers	have	a	10-bit
shift	 register	 and	 a	 data	 register.	 The	 FIFO	 and	 shift	 register	 cannot	 be	 directly
accessed	by	 the	programmer	(Figure	2.12).	Again	 the	receive	hardware	 is	separate
from	 the	 transmitter	 hardware.	 The	 receive	 data	 register, UART0_DR_R
UCA0RXBUF ,	is	read	only,	which	means	write	operations	to	this	address	have	no
effect	on	this	register	(recall	write	operations	activate	the	transmitter).	The	receiver
obviously	cannot	start	a	transmission,	but	it	recognizes	a	new	frame	by	its	start	bit.
The	bits	are	shifted	in	using	the	same	order	as	the	transmitter	shifted	them	out:	start,
b0,	b1,	b2,	b3,	b4,	b5,	b6,	b7,	and	then	stop.

Figure	2.12.	Data	register	shift	registers	implement	the	receive	serial
interface.

The	receiver	waits	for	the	1	to	0	edge	signifying	a	start	bit,	then	shifts	in	10	bits	of
data	one	at	a	time	from	the	RXD	line.	The	start	and	stop	bits	are	removed	(checked
for	framing	errors).	The	8	bits	of	data	are	available	to	be	read	from	the	receive	data
register.	 On	 the	 TM4C,	 the	 FIFO	 implements	 hardware	 buffering	 so	 data	 can	 be
safely	stored	if	the	software	is	performing	other	tasks.	

We	will	interrupt	when	the	receive	UART	has	data.	The	ISR	will	pass	data	from	the
UART	 hardware	 to	 the	 software	 FIFO.	 The	 use	 of	 FIFOs	 separates	 the	 data
production	(UART	hardware)	from	the	data	consumption	(software).	We	will	arm	the
UART	receiver	at	initialization	and	it	will	remain	armed	throughout.	If	there	are	no
incoming	frames,	 there	will	be	no	 interrupts	and	 the	software	FIFO	will	eventually
become	empty.	The	system	will	remain	in	the	idle	state	until	new	data	arrives.	You
can	find	UART	examples	on	the	book	web	site	as	UART_xxx	and	UARTints_xxx.

2.5.3.	Interrupt-driven	UART	on	the	TM4C123
The	TM4C	microcontrollers	have	one	to	eight	UARTs.	The	specific	port	pins	used	to
implement	 the	 UARTs	 vary	 from	 one	 chip	 to	 the	 next.	 To	 find	 which	 pins	 your
microcontroller	uses,	you	will	need	to	consult	its	datasheet.	Table	2.14	shows	some
of	 the	 registers	 for	 the	 UART0.	 If	 the	 microcontroller	 has	 multiple	 UARTs,	 the
register	names	will	replace	the	0	with	a	1	–	7.	For	the	exact	register	addresses,	you
should	 include	 the	 appropriate	 header	 file	 (e.g.,	 tm4c1294ncpdt.h).	 To	 activate	 a
UART	you	will	need	 to	 turn	on	 the	UART	clock	 in	 the	SYSCTL_RCGCUART_R
register.	 You	 should	 also	 turn	 on	 the	 clock	 for	 the	 digital	 port	 in	 the
SYSCTL_RCGCGPIO_R	register.	You	need	to	enable	the	transmit	and	receive	pins
as	digital	signals.	The	alternative	function	for	these	pins	must	also	be	selected.

The	OE,	BE,	PE,	and	FE	are	error	 flags	associated	with	 the	 receiver.	You	can	see
these	flags	in	two	places:	associated	with	each	data	byte	inUART0_DR_R or	as	a
separate	error	register	inUART0_RSR_R .	The	overrun	error	(OE)	is	set	if	data	has
been	lost	because	the	input	driver	latency	is	too	long.	BE	 is	a	break	error,	meaning
the	other	device	has	sent	a	break.	PE	is	a	parity	error	(however,	we	will	not	be	using
parity).	 The	 framing	 error	 (FE)	 will	 get	 set	 if	 the	 baud	 rates	 do	 not	 match.	 The
software	can	clear	these	four	error	flags	by	writing	any	value	to UART0_RSR_R .

The	status	of	the	two	FIFOs	can	be	seen	in	the UART0_FR_R 	register.	The	BUSY

flag	 is	 set	while	 the	 transmitter	 still	 has	unsent	 bits.	 It	will	 become	zero	when	 the
transmit	FIFO	is	empty	and	the	last	stop	bit	has	been	sent.	If	you	implement	busy-wait
output	by	first	outputting	 then	waiting	for	BUSY	 to	become	0,	 then	 the	 routine	will
write	new	data	and	return	after	that	particular	data	has	been	completely	transmitted.

The UART0_CTL_R 	control	register	contains	the	bits	that	turn	on	the	UART.	TXE
is	 the	 Transmitter	 Enable	 bit,	 and	RXE	 is	 the	 Receiver	 Enable	 bit.	We	 set	TXE,
RXE,	and	UARTEN	equal	to	1	in	order	to	activate	the	UART	device.		However,	we
should	clear	UARTEN	during	the	initialization	sequence.

	 31–
12

11 10 9 8 7–0 Name

$4000.C000 	 OE BE PE FE DATA UART0_DR_R
	 	 	 	 	 	 	 	 	 	
	 31–3 3 2 1 0 	
$4000.C004 	 OE BE PE FE UART0_RSR_R
	 	 	 	 	 	 	 	 	 	
	 31–

8
7 6 5 4 3 2–0 	

$4000.C018 	 TXFE RXFF TXFF RXFE BUSY 	 UART0_FR_R
	 	 	 	 	 	 	 	 	 	
	 31–

16
15–0 	

$4000.C024 	 DIVINT UART0_IBRD_R
	 	 	 	 	 	 	 	 	 	
	 31–6 5–0 	
$4000.C028 	 DIVFRAC UART0_FBRD_R
	 	 	 	 	 	 	 	 	 	
	 31–

8
7 6	–	5 4 3 2 1 0 	

$4000.C02C 	 SPS WLEN FEN STP2 EPS PEN BRK UART0_LCRH_R
	 	 	 	 	 	 	 	 	 	
	 31–

10
9 8 7 6–3 2 1 0 	

$4000.C030 	 RXE TXE LBE 	 SIRLP SIREN UARTEN UART0_CTL_R
	 	 	 	 	 	 	 	 	 	
	 31–6 5-3 2-0 	
$4000.C034 	 RXIFLSEL TXIFLSEL UART0_IFLS_R
	 	 	 	 	 	 	 	 	 	
	 31-

11
10 9 8 7 6 5 4 	 	

$4000.C038 	 OEIM BEIM PEIM FEIM RTIM TXIM RXIM 	 UART0_IM_R
$4000.C03C 	 OERIS BERIS PERIS FERIS RTRIS TXRIS RXRIS 	 UART0_RIS_R
$4000.C040 	 OEMIS BEMIS PEMIS FEMIS RTMIS TXMIS RXMIS 	 UART0_MIS_R
$4000.C044 	 OEIC BEIC PEIC FEIC RTIC TXIC RXIC 	 UART0_ICR_R

Table	2.14.	Some	UART	registers.	Each	register	is	32	bits	wide.	Shaded	bits	are	zero.
	

The UART0_IBRD_R 	and	UART0_FBRD_R 	 registers	specify	 the	baud	rate.	The
baud	rate	divider	 is	 a	22-bit	 binary	 fixed-point	value	with	 a	 resolution	of	2-6.	 The
Baud16	clock	is	created	from	the	system	bus	clock,	with	a	frequency	of	(Bus	clock

frequency)/divider.	The	baud	rate	is	16	times	slower	than	Baud16

Baud	rate	=	Baud16/16	=	(Bus	clock	frequency)/(16*divider)

For	example,	if	the	bus	clock	is	8	MHz	and	the	desired	baud	rate	is	19200	bits/sec,
then	the	divider	should	be	8,000,000/16/19200	or	26.04167.	As	a	binary	fixed-point
number,	this	number	is	about	11010.000011.	We	can	establish	this	baud	rateby	putting
the	11010	into UART0_IBRD_R and	the	000011	into UART0_FBRD_R .	In	reality,
11010.000011	 is	 equal	 to	1667/64	or	26.046875.	The	baud	 rates	 in	 the	 transmitter
and	receiver	must	match	within	5%	for	the	channel	to	operate	properly.	The	error	for
this	example	is	0.02%.

The	 three	 registers UART0_LCRH_R , UART0_IBRD_R ,
and UART0_FBRD_R form	an	internal	30-bit	register.	This	internal	register	is	only
updated	when	a	write	operation	to UART0_LCRH_R is	performed,	so	any	changes
to	 the	 baud-rate	 divisor	 must	 be	 followed	 by	 a	 write	 to	 the UART0_LCRH_R
register	for	the	changes	to	take	effect.	Out	of	reset,	both	FIFOs	are	disabled	and	act
as	 1-byte-deep	 holding	 registers.	 The	 FIFOs	 are	 enabled	 by	 setting	 the	 FENbit
inUART0_LCRH_R .

To	 use	 interrupts,	 we	 will	 enable	 the	 FIFOs	 by	 setting	 the	 FENbit	 in
the UART0_LCRH_R 	 register.	RXIFLSEL	 specifies	 the	 receive	 FIFO	 level	 that
causes	 an	 interrupt.	TXIFLSEL	 specifies	 the	 transmit	 FIFO	 level	 that	 causes	 an
interrupt.

RXIFLSEL RX	FIFOSet	RXMIS	interrupt	trigger	when
0x0	 ≥	⅛	full Receive	FIFO	goes	from	1	to	2	characters
0x1	 ≥	¼	full Receive	FIFO	goes	from	3	to	4	characters
0x2	 ≥	½	full Receive	FIFO	goes	from	7	to	8	characters
0x3	 ≥	¾	full Receive	FIFO	goes	from	11	to	12	characters
0x4	 ≥	⅞	full Receive	FIFO	goes	from	13	to	14	characters
	
TXIFLSEL TX	FIFOSet	TXMIS	interrupt	trigger	when
0x0	 ≤	⅞	empty	 Transmit	FIFO	goes	from	15	to	14	characters
0x1	 ≤	¾	empty	 Transmit	FIFO	goes	from	13	to	12	characters
0x2	 ≤	½	empty	 Transmit	FIFO	goes	from	9	to	8	characters
0x3	 ≤	¼	empty	 Transmit	FIFO	goes	from	5	to	4	characters
0x4	 ≤	⅛	empty	 Transmit	FIFO	goes	from	3	to	2	characters
	
There	 are	 seven	 possible	 interrupt	 trigger	 flags	 that	 are	 in	 the	 UART0_RIS_R
register.	The	setting	of	 the	TXRIS	and	RXRIS	 flags	 is	defined	above.	The	OERIS
flag	is	set	on	an	overrun,	new	incoming	frame	received	but	the	receive	FIFO	is	full.
The	BERIS	flag	is	set	on	a	break	error.	The	PERIS	flag	is	set	on	a	parity	error.	The
FERIS	 flag	 is	 set	 on	 a	 framing	 error	 (stop	bit	 is	 not	 high).	The	RTRISis	 set	 on	 a
receiver	 timeout,	 which	 is	 when	 the	 receiver	 FIFO	 is	 not	 empty	 and	 no	 incoming
frames	have	occurred	in	a	32-bit	time	period.		Each	of	the	seven	trigger	flags	has	a
corresponding	 arm	 bit	 in	 the UART0_IM_R 	 register.	 A	 bit	 in	 the

UART0_MIS_R register	 set	 if	 the	 trigger	 flag	 is	 both	 set	 and	 armed.	 To
acknowledge	an	interrupt	(make	the	trigger	flag	become	zero),	software	writes	a	1	to
the	corresponding	bit	inUART0_IC_R .

The	 UART	 system	 has	 two	 channels,	 one	 for	 input	 and	 one	 for	 output,	 and	 each
channel	 employs	 a	 separate	 FIFO	 queue.	 Program	 2.14	 shows	 the	 interrupt-driven
UART	 device	 driver.	 During	 initialization,	 Port	 A	 pins	 0	 and	 1	 are	 enabled	 as
alternate	function	digital	signals.	The	two	software	FIFOs	are	initialized.		The	baud
rate	 is	 set	 at	 115200	 bits/sec,	 and	 the	 hardware	 FIFOs	 are	 enabled.	 A	 transmit
interrupt	will	occur	as	 the	 transmit	FIFO	goes	from	2	elements	down	to	1	element.
Not	 waiting	 until	 the	 hardware	 FIFO	 is	 completely	 empty	 allows	 the	 software	 to
refill	 the	 hardware	 FIFO	 and	 maintain	 a	 continuous	 output	 stream,	 achieving
maximum	bandwidth.	There	are	two	conditions	that	will	request	a	receive	interrupt.
First,	 if	 the	 receive	 FIFO	 goes	 from	 2	 to	 3	 elements	 a	 receive	 interrupt	 will	 be
requested.	At	this	time	there	is	still	13	free	spaces	in	the	receive	FIFO	so	the	latency
requirement	 for	 this	 real-time	 input	will	 be	 130	 bit	 times	 (about	 1	ms).	 The	 other
potential	source	of	receiver	interrupts	is	the	receiver	time	out.	This	trigger	will	occur
if	the	receiver	becomes	idle	and	there	are	data	in	the	receiver	FIFO.	This	trigger	will
allow	the	interface	to	receive	input	data	when	it	comes	just	one	or	two	frames	at	a
time.	In	the	NVIC,	the	priority	is	set	at	2	and	UART0	(IRQ=5)	is	activated.	Normally,
one	 does	 not	 enable	 interrupts	 in	 the	 individual	 initialization	 functions.	 Rather,
interrupts	 should	 be	 enabled	 in	 the	main	 program,	 after	 all	 initialization	 functions
have	completed.

When	the	main	thread	wishes	to	output	it	calls UART_OutChar ,	which	will	put	the
data	into	the	software	FIFO.	FIFOs	will	be	presented	in	detail	 later	in	Section	4.3.
Next,	 it	 copies	 as	much	 data	 from	 the	 software	 FIFO	 into	 the	 hardware	 FIFO	 and
arms	the	transmitter.	The	transmitter	interrupt	service	will	also	get	as	much	data	from
the	 software	 FIFO	 and	 put	 it	 into	 the	 hardware	 FIFO.
The copySoftwareToHardware function	 has	 a	 critical	 section	 and	 is	 called	 by
bothUART_OutChar 	and	the	ISR.	To	remove	the	critical	section,the	transmitter	is
temporarily	 disarmed	 in	 the UART_OutChar function
when copySoftwareToHardware 	 is	called.	This	helper	function	guarantees	data	is
transmitted	in	the	same	order	it	was	produced.	When	input	frames	are	received	they
are	placed	into	the	receive	hardware	FIFO.	If	this	FIFO	goes	from	2	to	3	elements,	or
if	 the	receiver	becomes	 idle	with	data	 in	 the	FIFO,	a	 receive	 interrupt	occurs.	The
helper	function copyHardwareToSoftware will	get	from	the	receive	hardware	FIFO
and	put	into	the	receive	software	FIFO.	When	the	main	thread	wished	to	input	data	it
calls UART_InChar .	 This	 function	 simply	 gets	 from	 the	 software	 FIFO.	 If	 the
receive	software	FIFO	is	empty,	it	will	spin.

#define	FIFOSIZE			16									//	size	of	the	FIFOs	(must	be	power	of	2)
#define	FIFOSUCCESS	1									//	return	value	on	success
#define	FIFOFAIL				0									//	return	value	on	failure
AddIndexFifo(Rx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
AddIndexFifo(Tx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)

void	UART_Init(void){
		SYSCTL_RCGCUART_R	|=	0x01;	//	activate	UART0
		SYSCTL_RCGCGPIO_R	|=	0x01;	//	activate	port	A
		RxFifo_Init();		TxFifo_Init();								//	initialize	empty	FIFOs
		UART0_CTL_R	&=	~UART_CTL_UARTEN;						//	disable	UART
		UART0_IBRD_R	=	3;			//	IBRD=int(6,000,000/(16*115,200))	=	int(3.2552)
		UART0_FBRD_R	=	16;		//	FBRD	=	round(0.2552	*	64)	=	16
		UART0_LCRH_R	=	(UART_LCRH_WLEN_8|UART_LCRH_FEN);	//	8-bit,	FIFOs
		UART0_IFLS_R	&=	~0x3F;	//	TX	FIFO	<=	1/8	full,	RX	FIFO	>=	1/8	full
		UART0_IFLS_R	+=	(UART_IFLS_TX1_8|UART_IFLS_RX1_8);//	and	RX	time-out
		UART0_IM_R	|=	(UART_IM_RXIM|UART_IM_TXIM|UART_IM_RTIM);
		UART0_CTL_R	|=	0x0301;																//	enable	RXE	TXE	UARTEN
		GPIO_PORTA_AFSEL_R	|=	0x03;											//	enable	alt	funct	on	PA1-0
		GPIO_PORTA_DEN_R	|=	0x03;													//	enable	digital	I/O	on	PA1-0
		NVIC_PRI1_R	=	(NVIC_PRI1_R&0xFFFF00FF)|0x00004000;	//	UART0=priority	2
		NVIC_EN0_R	=	NVIC_EN0_INT5;									//	enable	interrupt	5	in	NVIC
		EnableInterrupts();
}
//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO
//	stop	when	hardware	RX	FIFO	is	empty	or	software	RX	FIFO	is	full
void	static	copyHardwareToSoftware(void){		char	letter;
		while(((UART0_FR_R&UART_FR_RXFE)==0)&&(RxFifo_Size()	<	(FIFOSIZE-1))){
				letter	=	UART0_DR_R;
				RxFifo_Put(letter);
		}
}
//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO
//	stop	when	software	TX	FIFO	is	empty	or	hardware	TX	FIFO	is	full
void	static	copySoftwareToHardware(void){		char	letter;
		while(((UART0_FR_R&UART_FR_TXFF)	==	0)	&&	(TxFifo_Size()	>	0)){
				TxFifo_Get(&letter);
				UART0_DR_R	=	letter;
		}
}
//	input	ASCII	character	from	UART
//	spin	if	RxFifo	is	empty
char	UART_InChar(void){
		char	letter;
		while(RxFifo_Get(&letter)	==	FIFOFAIL){};
		return(letter);
}
//	output	ASCII	character	to	SCI
//	spin	if	TxFifo	is	full
void	UART_OutChar(char	data){

		while(TxFifo_Put(data)	==	FIFOFAIL){};
		UART0_IM_R	&=	~UART_IM_TXIM;										//	disable	TX	FIFO	interrupt
		copySoftwareToHardware();
		UART0_IM_R	|=	UART_IM_TXIM;											//	enable	TX	FIFO	interrupt
}
//	at	least	one	of	three	things	has	happened:
//	hardware	TX	FIFO	goes	from	3	to	2	or	less	items
//	hardware	RX	FIFO	goes	from	1	to	2	or	more	items
//	UART	receiver	has	timed	out
void	UART0_Handler(void){
		if(UART0_RIS_R&UART_RIS_TXRIS){							//	hardware	TX	FIFO	<=	2	items
				UART0_ICR_R	=	UART_ICR_TXIC;								//	acknowledge	TX	FIFO
				//	copy	from	software	TX	FIFO	to	hardware	TX	FIFO
				copySoftwareToHardware();
				if(TxFifo_Size()	==	0){													//	software	TX	FIFO	is	empty
						UART0_IM_R	&=	~UART_IM_TXIM;						//	disable	TX	FIFO	interrupt
				}
		}
		if(UART0_RIS_R&UART_RIS_RXRIS){							//	hardware	RX	FIFO	>=	2	items
				UART0_ICR_R	=	UART_ICR_RXIC;								//	acknowledge	RX	FIFO
				//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO
				copyHardwareToSoftware();
		}
		if(UART0_RIS_R&UART_RIS_RTRIS){							//	receiver	timed	out
				UART0_ICR_R	=	UART_ICR_RTIC;								//	acknowledge	receiver	time	out
				//	copy	from	hardware	RX	FIFO	to	software	RX	FIFO
				copyHardwareToSoftware();
		}
}
Program	2.14.	Interrupt-driven	device	driver	for	the	UART	uses	two	FIFOs
to	buffer	data	(UARTints_xxx).

2.5.4.	Interrupt-driven	UART	on	the	MSP432
Table	 2.15	 shows	 the	 device	 registers	 used	 for	 UART	 I/O.	 The	 system	 has	 two
channels,	one	for	input	and	one	for	output,	and	each	channel	employs	a	separate	FIFO
queue.	 Program	 2.15	 shows	 the	 interrupt-driven	 UART	 device	 driver.	 During
initialization,	 Port	 1	 pins	 2	 and	 3	 are	 enabled	 as	 alternate	 function	 digital	 signals.
The	two	software	FIFOs	are	initialized.	The	baud	rate	is	set	at	115200	bits/sec,	and
the	UART	is	enabled.	A	transmit	interrupt	will	occur	if	 the	transmit	data	register	is
empty.	A	receive	interrupt	will	occur	if	there	is	data	in	the	receive	data	register.	In
the	NVIC,	 the	priority	 is	 set	 at	2	and	 the	UART	(eUSCI_A,	module	0,	 IRQ=16)	 is
activated.	 Normally,	 one	 does	 not	 enable	 interrupts	 in	 the	 individual	 initialization

functions.	 Rather,	 interrupts	 should	 be	 enabled	 in	 the	 main	 program,	 after	 all
initialization	functions	have	completed.

We	will	employ	TXIFG	and	RXIFG	interrupt	trigger	flags,	located	in	the	UCA0IFG
register.	The	arm	bits	TXIE	and	RXIE	are	located	in	the	UCA0IE	register.		TXIFG
is	set	when	the	TXBUF	is	empty	meaning	it	is	safe	to	start	another	output.	Writing	to
TXBUF	automatically	clears	TXIFG,	acknowledging	the	transmit	 interrupt.	RXIFG
is	 set	 when	 the	RXBUF	 is	 full	 meaning	 it	 is	 time	 to	 read	 the	RXBUF.	 Reading
RXBUF	 automatically	 clears	 RXIFG,	 acknowledging	 the	 receive	 interrupt.	 The
Interrupt	Enable	Registers	UCAxIE	and	UCBxIE	are	reset	after	a	hardware	reset	or
when	the	USCI	module	is	in	reset	(bit	0	of	UCxxCTLW0	is	1).

When	the	main	thread	wishes	to	output	it	calls UART_OutChar ,	which	will	put	the
data	into	the	software	TxFifo.	Next,	it	enables	the	transmit	interrupts.	The	UART	ISR
will	copy	data	from	the	TxFifo	to	the	TXBUF.	The	use	of	the	FIFO	guarantees	data	is
transmitted	 in	 order.	When	 the	TxFifo	 becomes	 empty	 it	 will	 disarm	 the	 transmit
interrupts.

	 15 14 13 12 11 10 9 8 	
0x40001000 PEN PAR MSB 7BIT SPB MODEx SYNC UCAxCTLW0
	 7 6 5 4 3 2 1 0 	
	 SSELx RXEIE BRKIE DORM TXADDR TXBRK SWRST UCAxCTLW0
	 	 	 	 	 	 	 	 	 	
	 15	–	0 	
0x40001006 UCBRx UCAxBRW
	 	 	 	 	 	 	 	 	 	
	 15	–	8 7	–	4 3	–	1 0 	
0x40001008 BRSx BRFx 	 UCOS16 UCAxMCTLW
	 	 	 	 	 	 	 	 	 	
	 7 6 5 4 3 2 1 0 	
0x4000100A LISTEN FE OE PE BRK RXERR IDLE BUSY UCAxSTATW
	 	 	 	 	 	 	 	 	 	
	 15	–	8	 7	–	0 	
0x4000100C 	 RXBUFx UCAxRXBUF
	 	 	 	 	 	 	 	 	 	
	 15	–	8	 7	–	0 	
0x4000100E 	 TXBUFx UCAxTXBUF
	 	 	 	 	 	 	 	 	 	
	 15	–	4 3 2 1 0 	
0x4000101A 	 TXCPTIE STTIE TXIE RXIE UCAxIE
	 	 	 	 	 	 	 	 	 	
	 15	–	4 3 2 1 0 	
0x4000101C 	 TXCPTIFG STTIFG TXIFG RXIFG UCAxIFG

Table	2.15.	UART	registers.	Each	register	is	16	bits	wide.	Shaded	bits	are	zero.
When	an	input	frame	is	received	it	is	placed	into	the	receive	data	register	RXBUF,
and	a	receive	interrupt	occurs.	The	ISR	will	read	the	data	from	RXBUF	and	put	it	in
the	software	FIFO	RxFifo.	The	ISR	is	not	allowed	to	spin.	So	if	RxFifobecomes	full
data	 are	 lost.	When	 the	main	 thread	wishes	 to	 input	 data	 it	 calls UART_InChar .

This	 function	 simply	 gets	 from	 the	 software	 FIFO.	 In	 contrast	 to	 the	 ISR,	 the
foreground	is	allowed	to	spin.	So	if	the	main	program	calls UART_InChar 	and	the
RxFifo	is	empty,	it	will	spin.

	
#define	FIFOSIZE			16									//	size	of	the	FIFOs	(must	be	power	of	2)
#define	FIFOSUCCESS	1									//	return	value	on	success
#define	FIFOFAIL				0									//	return	value	on	failure
AddIndexFifo(Rx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
AddIndexFifo(Tx,	FIFOSIZE,	char,	FIFOSUCCESS,	FIFOFAIL)
void	UART_Init(void){		//	should	be	called	only	once
		RxFifo_Init();							//	initialize	FIFOs
		TxFifo_Init();
		UCA0CTLW0	=	0x0001;		//	hold	the	USCI	module	in	reset	mode
		UCA0CTLW0	=	0x00C1;		//	UART,SMCLK,	8bit,	1	stop,no	parity,	LSB	first
		UCA0BRW	=	26;								//	UCBR	=	baud	rate	=	3000000/115200	=	26.0417
		UCA0MCTLW	=	0x0000;		//	clear	first	and	second	modulation,	UCOS16=0
		P1SEL0	|=	0x0C;
		P1SEL1	&=	~0x0C;						//	P1.3	and	P1.2	as	primary	module	function
		NVIC_IPR4	=	(NVIC_IPR4&0xFFFFFF00)|0x00000040;	//	priority	2
		NVIC_ISER0	=	0x00010000;	//	enable	interrupt	16	in	NVIC
		UCA0CTLW0	&=	~0x0001;				//	enable	the	USCI	module
		UCA0IE	=	0x0001;					//	enable	interrupts	on	receive	full
																							//	disable	interrupts	on	transmit,	start,	complete
}																						//	must	modify	UCxxIE	while	USCI	module	not	reset
//	input	ASCII	character	from	UART
//	spin	if	RxFifo	is	empty
char	UART_InChar(void){
		char	letter;
		while(RxFifo_Get(&letter)	==	FIFOFAIL){};
		return(letter);
}
//	output	ASCII	character	to	UART
//	spin	if	TxFifo	is	full
void	UART_OutChar(char	data){
		while(TxFifo_Put(data)	==	FIFOFAIL){};	//	spin	if	full
		UCA0IE	=	0x0003;											//	enable	interrupts	on	transmit	empty
}
//	interrupt	16	occurs	on	either:
//	UCTXIFG	TX	data	register	is	empty
//	UCRXIFG	RX	data	register	is	full
//	vector	at	0x00000080	in	startup_msp432.s
void	EUSCIA0_IRQHandler(void){	char	data;
		if(UCA0IFG&0x02){													//	TX	data	register	empty
				if(TxFifo_Get(&data)	==	FIFOFAIL){

						UCA0IE	=	0x0001;								//	disable	interrupts	on	transmit	empty
				}else{
						UCA0TXBUF	=	data;									//	send	data,	acknowledge	interrupt
				}
		}
		if(UCA0IFG&0x01){													//	RX	data	register	full
				RxFifo_Put((char)UCA0RXBUF);//	clears	UCRXIFG
		}
}
Program	2.15.	Interrupt-driven	device	driver	for	the	UART	uses	two	software
FIFOs	to	buffer	data	(UARTint_MSP432).

2.6.	Synchronous	Transmission	and	Receiving	using
the	SSI

SSI	allows	microcontrollers	to	communicate	synchronously	with	peripheral	devices
and	other	microcontrollers.	The	SSI	 system	can	operate	 as	 a	master	or	 as	 a	 slave.
The	 channel	 can	 have	 one	 master	 and	 one	 slave,	 or	 it	 can	 have	 one	 master	 and
multiple	 slaves.	With	 multiple	 slaves,	 the	 configuration	 can	 be	 a	 star	 (centralized
master	 connected	 to	 each	 slave),	 or	 a	 ring	 (each	 node	 has	 one	 receiver	 and	 one
transmitter,	where	the	nodes	are	connected	in	a	circle.)	The	master	initiates	all	data
communication.	Figure	2.13	shows	the	I/O	port	locations	of	some	of	the	synchronous
serial	ports	on	the	Texas	Instruments	microcontrollers.

Figure	2.13.	Synchronous	serial	port	pins	on	four	MSP432/TM4C
microcontrollers.

Texas	Instruments	microcontrollers	have	0	to	8	Synchronous	Serial	Interface	or	SSI
modules.	Another	name	for	this	protocol	is	Serial	Peripheral	Interface	or	SPI.	The
fundamental	 difference	 between	 a	 UART,	 which	 implements	 an	 asynchronous
protocol,	 and	 a	 SSI,	 which	 implements	 a	 synchronous	 protocol,	 is	 the	 manner	 in
which	 the	 clock	 is	 implemented.	 Two	 devices	 communicating	 with	 asynchronous
serial	 interfaces	 (UART)	 operate	 at	 the	 same	 frequency	 (baud	 rate)	 but	 have	 two
separate	 clocks.	 With	 a	 UART	 protocol,	 the	 clock	 signal	 is	 not	 included	 in	 the
interface	 cable	 between	 devices.	 Two	UART	 devices	 can	 communicate	with	 each
other	 as	 long	 as	 the	 two	 clocks	 have	 frequencies	 within	 ±5%	 of	 each	 other.	 Two
devices	 communicating	 with	 synchronous	 serial	 interfaces	 (SSI)	 operate	 from	 the
same	clock	(synchronized).	With	a	SSI	protocol,	 the	clock	signal	 is	 included	in	 the
interface	cable	between	devices.	Typically,	the	master	device	creates	the	clock,	and
the	slave	device(s)	uses	the	clock	to	latch	the	data	(in	or	out.)

The	 SSI	 protocol	 includes	 four	 I/O	 lines.	 The	 slave	 select	 SSI0Fss/STE	 is	 an
optional	 negative	 logic	 control	 signal	 from	 master	 to	 slave	 signal	 signifying	 the
channel	is	active.	The	second	line,	SCK/CLK,	is	a	50%	duty	cycle	clock	generated
by	the	master.	The	SSI0Tx/SIMO	(master	out	slave	in,	MOSI)	is	a	data	line	driven
by	 the	master	 and	 received	by	 the	 slave.	The	SSI0Rx/SOMI	 (master	 in	 slave	 out,
MISO)	is	a	data	line	driven	by	the	slave	and	received	by	the	master.	In	order	to	work
properly,	the	transmitting	device	uses	one	edge	of	the	clock	to	change	its	output,	and
the	receiving	device	uses	the	other	edge	to	accept	the	data.

Figure	2.14.	A	synchronous	serial	interface	between	a	microcontroller	and	an
I/O	device.

The	 interface	 is	 classified	 as	 synchronous	 because	 the	 hardware	 clock	 is	 shared
between	devices,	see	Figure	2.14.		On	the	TM4C	the	shift	register	can	be	configured
from	4	to	16	bits.	On	the	MSP432	the	shift	register	can	be	configured	as	7	or	8	bits.
The	shift	register	in	the	master	and	the	shift	register	in	the	slave	are	linked	to	form	a
distributed	register.	Figure	2.14	illustrates	communication	between	master	and	slave.
Typically,	the	microcontroller	and	the	I/O	device	slave	are	so	physically	close	we	do
not	use	 interface	 logic.	The	SSI	on	 the	TM4C	employs	 two	hardware	FIFOs.	Both
FIFOs	 are	 8	 elements	 deep	 and	 4	 to	 16	 bits	wide,	 depending	 on	 the	 selected	 data
width.	When	performing	I/O	the	software	puts	into	the	transmit	FIFO	by	writing	to	the
SSI0_DR_R/UCxTXBUF	 register	and	gets	 from	the	receive	FIFO	by	reading	from
the	SSI0_DR_R/UCxRXBUF	register.

When	designing	with	SSI,	you	will	need	to	consult	the	data	sheets	for	your	specific
microcontroller.	There	are	many	SSI	examples	on	the	book	web	site.

2.7.	Input	Capture	or	Input	Edge	Time	Mode

2.7.1.	Basic	principles
The	 Texas	 Instruments	 microcontrollers	 have	 timers	 that	 are	 separate	 and	 distinct
from	SysTick,	see	Figure	2.15.	Input	edge	time	mode	(or	input	capture	mode)	is	used
to	make	time	measurements	on	input	signals.		We	can	use	input	capture	to	measure	the
period	or	pulse	width	of	digital-level	signals.	The	input	capture	system	can	also	be
used	 to	 trigger	 interrupts	 on	 rising	 or	 falling	 transitions	 of	 external	 signals.	 Each
timer	input	capture	module	has

An	external	input	pin,	e.g.,	CCP0/TAx.y
A	clock,	with	prescale,	used	to	measure	time
Control	registers	to	set	the	mode
Flag	register	that	indicate	status
Arm	and	enable	registers	to	implement	interrupts
A	capture	register,	e.g.,	TAR/TAxCCRy

	
The	various	members	of	 the	MSP432/TM4C	family	have	from	zero	 to	 twenty	 input
capture	pins,	and	the	pins	are	grouped	into	modules.	Figure	2.15	shows	the	port	pins
and	 timer	 modules	 used	 for	 input	 capture	 on	 the	MSP432	 and	 TM4C123.	 On	 the
TM4C,	 the	 input	 capture	 and	 output	 compare	 pins	 are	 labeled	 TxCCPy.	 On	 the
MSP432,	the	input	capture	and	output	compare	pins	are	labeled	TAx.y.	Some	timer
modules	 are	 not	 attached	 to	 any	 I/O	 pins.	 For	 example,	 the	 TM4C1294	 has	 eight
timers,	but	Timer	6	and	Timer	7	do	not	have	 I/O	pins.	Timers	without	pins	can	be
used	 to	 generate	 periodic	 interrupts,	 but	 not	 for	 input	 capture.	 Tables	 1.4,	 and	 1.5
describe	how	to	attach	I/O	pins	to	the	timer	modules.

In	this	book	we	use	the	term	arm	to	describe	the	bit	that	allows/denies	a	specific	flag
from	 requesting	 an	 interrupt.	 The	 Texas	 Instruments	 manuals	 refer	 to	 this	 bit	 as	 a
mask.	I.e.,	the	device	is	armed	when	the	mask	bit	is	1.	Typically,	there	is	a	separate
arm	 bit	 for	 every	 flag	 that	 can	 request	 an	 interrupt.	 An	 external	 input	 signal	 is
connected	to	the	input	capture	pin.

Figure	2.15.	Input	capture	pins	on	the	MSP432,	and	the	TM4C123.

During	 initialization	 we	 specify	 whether	 the	 rising	 or	 falling	 edge	 of	 the	 external
signal	will	trigger	an	input	capture	event.	The	timers	can	have	16,	24,	32,	48,	or	64
bits.	 The	 n-bit	 counter	 decrements	 at	 the	 rate	 of	 the	 bus	 clock,	 when	 it	 hits	 0,	 it
automatically	rolls	over	to	all	ones	and	continues	to	count	down	(Figure	2.16).

	

Figure	2.16.	Rising	or	falling	edge	of	the	input	causes	the	counter	to	be
latched	into	a	register,	setting	a	flag.

Two	or	three	actions	result	from	an	input	capture	event:	1)	the	current	timer	value	is
copied	 into	 the	 input	 capture	 register,	 2)	 the	 input	 capture	 flag	 is	 set	 and	 3)	 an
interrupt	is	requested	if	armed.	This	means	an	interrupt	can	be	requested	on	a	capture
event.	When	using	 the	prescaler	on	 the	TM4C,	 the	16-bit	counter	 is	extended	to	24
bits.	The	MSP432	counters	are	16	bits.	The	input	capture	mechanism	has	many	uses.
Three	of	common	applications	are:

1.	An	ISR	is	executed	on	the	active	edge	of	the	external	signal
2.	Perform	two	rising	edge	input	captures	and	subtract	the	two

to	get	period
3.	Perform	a	rising	edge	and	then	a	falling	edge	capture	and

subtract	the	two	measurements	to	get	pulse	width

2.7.2.	Period	measurement	on	the	TM4C123
Next	we	will	overview	the	specific	input	capture	functions	on	the	TM4C	family.	This
section	is	intended	to	supplement	rather	than	replace	the	data	sheets.	When	designing
systems	 with	 input	 capture,	 please	 refer	 to	 the	 reference	 manual	 of	 your	 specific
microcontroller.	 Table	 2.16	 shows	 some	 of	 the	 registers	 for	 Timer	 0.	 We	 begin
initialization	by	enabling	the	clock	for	 the	timer	and	for	 the	digital	port	we	will	be
using.	We	enable	 the	digital	pin	and	select	 its	alternative	function.	We	will	disable
the	 timer	 during	 initialization	 by	 clearing	 the	 TAEN	 (or	 TBEN)	 bit	 in
the TIMER0_CTL_R 	register.	To	use	16-bit	mode,	we	set	GPTMCFG	field	to	4.
We	clear	 the	TAAMS	 (or	TBAMS)	bit	 for	capture	mode.	We	set	 the	TACMR	 (or
TBCMR)	bit	for	input	edge	time	mode.	The	TAMR	(or	TBMR)	field	is	set	to	3	for
capture	mode.	In	summary,	we	write	a	0x0007	to	the TIMER0_TAMR_R 	register	to
select	 input	capture	mode.	Table	2.17	 lists	 the	edge	capture	modes	 for	TAEVENT
(or	TBEVENT.)

When	we	are	measuring	time	with	prescaler,	such	as	period	measurement	and	pulse
width	measurement,	we	set	the	24-bit	reload	value	to	0xFFFFFF.	In	this	way,	the	24-
bit	 subtraction	 of	 two	 capture	 events	 yields	 the	 time	difference	 between	 events.	 In
particular,	 we	 will	 initialize TIMER0_TAILR_R 	 to	 0xFFFF
and TIMER0_TAPR_R 	 to	 0xFF.	We	arm	 the	 input	 capture	by	 setting	 the	CAEIM
(or	CBEIM)	bit	 in	 the TIMER0_IMR_R 	 register.	 It	 is	 good	 practice	 to	 clear	 the
trigger	 flag	 in	 the	 initialization	 so	 that	 the	 first	 interrupt	 occurs	 do	 to	 actions
occurring	after	the	initialization,	and	not	due	to	edges	that	might	have	occurred	during
power	 up.	 The	 trigger	 flags	 are	 in	 the TIMER0_RIS_R 	 register.	 These	 flags	 are
cleared	 by	 writing	 1’s	 into	 corresponding	 bits	 in	 the TIMER0_ICR_R 	 register.
After	all	configuration	bits	are	set,	the	Timer	can	be	enabled	by	setting	the	TAEN	(or
TBEN)	 bit	 in	 the TIMER0_CTL_R 	 register.	 If	 interrupts	 are	 required,	 then	 the
NVIC	 must	 be	 configured	 by	 setting	 the	 priority	 and	 enabling	 the	 appropriate
interrupt	number.	

There	 is	 an	 8-bit	 prescaler	 defined	 for	 each	 submodules	 A	 and
B: TIMER0_TAPMR_R and 	TIMER0_TBPMR_R .	The	prescalers	on	the	TM4C
are	 used	 to	 extend	 the	 16-bit	 timer	 to	 24	 bits.	 The	 TAEVENTbits
of TIMER0_CTL_R 	 register	 specify	whether	 the	 rising	 or	 falling	 edge	 of	CCP0
will	trigger	an	input	capture	event	on	Timer	0A.	Two	or	three	actions	result	from	an
input	 capture	 event:	 1)	 the	 current	 timer	 value	 is	 copied	 into	 the	 input	 capture
register, TIMER0_TAR_R ,	 2)	 the	 input	 capture	 flag	 (CAERIS)	 is	 set,	 and	 3)	 an
interrupt	is	requested	if	the	mask	bit	(CAEIM)	is	1.		The	CAERIS	and	CBERIS	flag
bitsin	the TIMER0_RIS_R 	 register	do	not	behave	 like	a	 regular	memory	 location.

In	particular,	 the	 flag	 cannot	be	 set	 by	 software.	Rather,	 an	 input	 capture	or	 output
compare	hardware	event	will	set	the	flag.

	
	 31–3 2–0 Name
$4003.0000 	 GPTMCFG TIMER0_CFG_R
	 	 	 	 	 	 	 	 	 	
	 31–4 3 2 1-0 	
$4003.0004 	 TAAMS TACMR TAMR TIMER0_TAMR_R
	 	 	 	 	 	 	 	 	 	
	 31–4 3 2 1-0 	
$4003.0008 	 TBAMS TBCMR TBMR TIMER0_TBMR_R
	 	 	 	 	 	 	 	 	 	
	 14 13 11-10 8 6 5 3-2 0 	
$4003.000C TBPWML TBOTE TBEVENT TBEN TAPWML TAOTE TAEVENT TAEN TIMER0_CTL_R
	 	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0 	
$4003.0018 	 CBEIM CBMIM TBTOIM 	 CAEIM CAMIM TATOIM TIMER0_IMR_R
	 	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0 	
$4003.001C 	 CBERIS CBMRIS TBTORIS 	 CAERIS CAMRIS TATORIS TIMER0_RIS_R
	 	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0 	
$4003.0020 	 CBEMIS CBMMIS TBTOMIS 	 CAEMIS CAMMIS TATOMIS TIMER0_MIS_R
	 	 	 	 	 	 	 	 	 	
	 31-11 10 9 8 7-4 2 1 0 	
$4003.0020 	 CBECINTCBMCINT TBTOCINT 	 CAECINT CAMCINT TATOCINT TIMER0_ICR_R
	 	 	 	 	 	 	 	 	 	
	 31–16 15–0 	
$4003.0028 TAILRH TAILRL TIMER0_TAILR_R
	 	 	 	
	 31–16 15–0 	
$4003.002C 	 TBILRL TIMER0_TBILR_R
	 	 	 	
	 31–16 15–0 	
$4003.0030 TAMRH TAMRL _TAMATCHR_R
	 	 	 	
	 31–16 15–0 	
$4003.0034 	 TBMRL _TBMATCHR_R
	 	 	 	 	 	 	 	 	 	
	 31–8 7-0 	
$4003.0038 	 TAPSR TIMER0_TAPR_R
	 	 	 	
	 31–8 7-0 	
$4003.003C 	 TBPSR TIMER0_TBPR_R
	 	 	 	
	 31–8 7-0 	
$4003.0040 	 TAPSMR TIMER0_TAPMR_R
	 	 	 	
	 31–8 7-0 	
$4003.0044 	 TBPSMR TIMER0_TBPMR_R

	 	 	 	 	 	 	 	 	 	
	 31–16 15-0 	
$4003.0048 TARH TARL TIMER0_TAR_R
	 	 	 	
	 31–16 15-0 	
$4003.004C 	 TBRL TIMER0_TBR_R

Table	2.16.	Timer0	registers.	Each	register	is	32	bits	wide.	Shaded	bits	are	zero.	The	bits
shown	in	bold	will	be	used	in	this	section.	Timers	1,	2,	…	have	the	same	formats.

	

The	 other	 peculiar	 behavior	 of	 the	 flag	 is	 that	 the	 software	 must	 write	 a	 one	 to
the TIMER0_ICR_R 	register	in	order	to	clear	the	flag.	If	the	software	writes	a	zero
to	the	TIMER0_ICR_R 	register,	no	change	will	occur.	From	Table	2.16,	we	see	the
CAERIStrigger	flag	is	in	bit	2	of	the TIMER0_RIS_R 	register.	The	proper	way	to
clear	this	trigger	flag	is

		TIMER0_ICR_R	=	0x0004;
	

Writes	the TIMER0_RIS_R 	 register	have	no	effect.	No	effect	occurs	 in	 the	bits	 to
which	we	write	a	zero	in	the TIMER0_ICR_R 	register.

TAEVENT Active	edge
00 Capture	on	rising
01 Capture	on	falling
10 Reserved
11 Capture	on	both	rising	and	falling

Table	2.17.	Two	control	bits	define	the	active	edge	used	for	input	capture	(TBEVENT	is	the
same).

Before	one	implements	a	system	that	measures	period,	 it	 is	appropriate	 to	consider
the	issues	of	resolution,	precision	and	range.	The	resolution	of	a	period	measurement
is	 defined	 as	 the	 smallest	 change	 in	 period	 that	 can	 reliably	 be	 detected.	 In	 the
following	 example,	 the	TM4C123	bus	 clock	 is	 80	MHz.	This	means,	 if	 the	period
increases	by	12.5	ns,	then	there	will	be	one	more	Timer	clock	between	the	first	rising
edge	and	the	second	rising	edge.	In	this	situation,	the	24-bit	subtraction	will	increase
by	1,	 therefore	 the	period	measurement	 resolution	 is	12.5	ns.	The	 resolution	 is	 the
smallest	measurable	change.	Resolution	definesthe	units	of	 the	measurement.	 In	 this
first	example,	if	the	calculation	of Period 	results	in	1000,	then	it	represents	a	period
of	1000•12.5ns	or	12.5µs.		The	precision	of	the	period	measurement	is	defined	as	the
number	of	separate	and	distinguishable	measurements.		If	the	24-bit	counter	is	used,
there	are	about	16	million	different	periods	that	can	be	measured.	We	can	specify	the
precision	in	alternatives,	e.g.,	224,	or	in	bits,	e.g.,	24	bits.	The	last	issue	to	consider	is
the	range	of	the	period	measurement,	which	is	defined	as	the	minimum	and	maximum
values	that	can	reliably	be	measured.	We	are	concerned	what	happens	if	the	period	is
too	 small	 or	 too	 large.	 A	 good	 measurement	 system	 should	 be	 able	 to	 detect
overflows	 and	 underflows.	 In	 addition,	we	would	 not	 like	 the	 system	 to	 crash,	 or

hang-up	if	the	input	period	is	out	of	range.	Similarly,	it	is	desirable	if	the	system	can
detect	when	there	is	no	period.	For	edge	detection,	the	input	must	be	high	for	at	least
two	system	clock	periods	and	low	for	at	least	two	system	clock	periods.

In	 this	 example,	 the	digital	 input	 signal	 is	 connected	 to	 an	 input	 capture	pin.	 If	 the
motor	shaft	rotates	once	there	will	be	N	rising	edges	on	the	pin.	Each	rising	edge	will
cause	an	input	capture	interrupt	(Figure	2.17).

Figure	2.17.	To	measure	period	we	connect	the	external	signal	an	input
capture.

The	period	 is	 calculated	 as	 the	 difference	 inTIMER0_TAR_R 	 latch	 values	 from
one	rising	edge	to	the	other.	If	N=100,	and	the	motor	is	spinning	at	300	RPM,	then	the
period	will	be	 [(60000ms/min)/(300RPM)/100edges/rotation)],	which	will	be	2.00
ms/edge,	as	shown	in	Figure	2.18.

For	example,	if	the	period	is	2000	µs,	the	Timer0A	interrupts	will	be	requested	every
160,000	 cycles,	 and	 the	24-bit	 difference	betweenTIMER0_TAR_R 	 latch	 values
will	be	160,000.	This	subtraction	 remains	valid	even	 if	 the	 timer	 reaches	zero	and
wraps	around	in	between	Timer0A	interrupts.	On	the	other	hand,	this	method	will	not
operate	properly	if	the	period	is	larger	than	224	cycles,	or	about	209	ms.
	

Figure	2.18.	Timing	example	showing	counter	rollover	during	24-bit	period
measurement.

	

The	 resolution	 is	 12.5	ns	 because	 the	period	must	 increase	by	 at	 least	 this	 amount
before	 the	 difference	 between	 Timer0A	 measurements	 will	 reliably	 change.	 Even
though	a	24-bit	counter	is	used,	the	precision	is	a	little	less	than	24	bits,	because	the
shortest	period	that	can	be	handled	with	this	interrupt-driven	approach	is	about	1	µs.
It	 takes	 about	 1	 µs	 to	 complete	 the	 context	 switch,	 execute	 the	 ISR	 software,	 and
return	 from	 interrupt.	 This	 factor	 is	 determined	 by	 experimental	 measurement.	 In

other	words,	 as	 the	period	 approaches	1	µs,	 a	higher	 and	higher	percentage	of	 the
computer	execution	is	utilized	just	in	the	handler	itself.	For	example,	if	you	wanted	to
limit	 execution	 time	 in	 this	 ISR	 to	 5%,	 then	 the	 shorted	 period	 you	 could	measure
would	be	20	µs.

Because	the	input	capture	interrupt	has	a	separate	vector	the	software	does	not	poll.
An	interrupt	is	requested	on	each	rising	edge	of	the	input	signal.	In	this	situation	we
count	all	the	cycles	required	to	process	the	interrupt.	The	period	measurement	system
written	 for	 the	 TM4C123	 is	 presented	 in	 Program	 2.16.	 The	 24-bit	 subtraction	 is
produced	by	ANDing	the	difference	with	0x0FFFFFF,	calculating	the	number	of	bus
clocks	 between	 rising	 edges.	 The	 first	 period	 measurement	 will	 be	 incorrect	 and
should	be	neglected.
	

uint32_t	Period;														//	24-bit,	12.5	ns	units
uint32_t	static	First;								//	Timer0A	first	edge,	12.5	ns	units
int32_t	Done;																//	mailbox	status	set	each	rising
void	PeriodMeasure_Init(void){
		SYSCTL_RCGCTIMER_R	|=	0x01;						//	activate	timer0
		SYSCTL_RCGCGPIO_R	|=	0x02;							//	activate	port	B
		First	=	0;																							//	first	will	be	wrong
		Done	=	0;																								//	set	on	subsequent
		GPIO_PORTB_DIR_R	&=	~0x40;							//	make	PB6	input
		GPIO_PORTB_AFSEL_R	|=	0x40;						//	enable	alt	funct	on	PB6
		GPIO_PORTB_DEN_R	|=	0x40;								//	configure	PB6	as	T0CCP0
		GPIO_PORTB_PCTL_R	=	(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x07000000;
		TIMER0_CTL_R	&=	~0x00000001;					//	disable	timer0A	during	setup
		TIMER0_CFG_R	=	0x00000004;							//	configure	for	16-bit	capture	mode
		TIMER0_TAMR_R	=	0x00000007;						//	configure	for	rising	edge	event
		TIMER0_CTL_R	&=	~0x0000000C;					//	rising	edge
		TIMER0_TAILR_R	=	0x0000FFFF;					//	start	value
		TIMER0_TAPR_R	=	0xFF;												//	activate	prescale,	creating	24-bit
		TIMER0_IMR_R	|=	0x00000004;						//	enable	capture	match	interrupt
		TIMER0_ICR_R	=	0x00000004;							//	clear	timer0A	capture	match	flag
		TIMER0_CTL_R	|=	0x00000001;						//	timer0A	24-b,	+edge,	interrupts
		NVIC_PRI4_R	=	(NVIC_PRI4_R&0x00FFFFFF)|0x40000000;	//Timer0A=priority	2
		NVIC_EN0_R	=	1<<19;												//	enable	interrupt	19	in	NVIC
		EnableInterrupts();
}
void	Timer0A_Handler(void){
		TIMER0_ICR_R	=	0x00000004;							//	acknowledge	timer0A	capture
		Period	=	(First	-	TIMER0_TAR_R)&0x00FFFFFF;	//	12.5ns	resolution
		First	=	TIMER0_TAR_R;											//	setup	for	next
		Done	=	1;																								//	set	semaphore
}

Program	2.16.	24-bit	period	measurement	(PeriodMeasure_xxx).

2.7.3.	Period	measurement	on	the	MSP432
Next	we	will	overview	 the	specific	 input	capture	 functions	on	 the	MSP432	family.
This	 section	 is	 intended	 to	 supplement	 rather	 than	 replace	 the	 data	 sheets.	 When
designing	 systems	with	 input	 capture,	 please	 refer	 to	 the	 reference	manual	 of	 your
specific	 microcontroller.	 Table	 2.18	 shows	 the	 registers	 for	 Timer	 A0.	 Similar
registers	are	available	for	the	A1,	A2,	and	A3	timers.	The	first	decision	is	to	select	a
clock	using	the	TASSEL	bits.	When	measuring	frequency	or	counting	events	we	can
connect	an	input	signal	to	TAxCLK	and	use	this	input	to	count	the	counter.	We	will
use	 ACLK	 when	 measuring	 times	 on	 the	 order	 of	 seconds	 or	 minutes.	 On	 the
MSP432,	the	ACLK	can	be	10	kHz,	32.768	kHz,	or	100	kHz.	We	will	use	the	high
speed	SMCLK	 for	 most	 examples	 in	 this	 book	 because	 it	 provides	 the	 best	 time
resolution.	The	INCLK	is	an	internal	signal	that	could	be	selected.	One	example	of
INCLK	 is	 the	analog	comparator,	where	a	clock	edge	is	generated	when	an	analog
input	crosses	a	predefined	threshold.	Table	2.19	shows	how	to	select	the	timer	clock,
which	affects	measurement	resolution.
The	second	decision	is	 to	specify	the	prescaler.	The	first	prescale	is	ID,	 see	Table
2.20.	The	second	prescale	 is	TAIDEX+1.	When	measuring	 time	events	 like	period
and	pulse	width,	the	resolution	of	the	measurement	is	the	period	of	the	selected	clock,
T,	multiplied	by	the	prescale.

Resolution	=	T	*	2ID	*	(TAIDEX+1)
	

	
	 15-10 9-8 7-6 5-4 3 2 1 0 Name
$4000.0000 	 TASSEL ID MC 	 TACLR TAIE TAIFG 	TA0CTL
	 	 	 	 	 	 	 	 	 	
	 15-14 13-12 11 10 9 8 7-5 4 3 2 1 0 	
$4000.0002 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL0
$4000.0004 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL1
$4000.0006 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL2
$4000.0008 CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL3
$4000.000A CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL4
$4000.000C CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL5
$4000.000E CM CCIS SCS SCCI 	 CAP OUTMOD CCIE CCI OUT COV CCIFG 	TA0CCTL6
	 	 	 	 	 	 	 	 	 	
	 15–0 	
$4000.0010 16-bit	counter 	TA0R
$4000.0012 16-bit	Capture/Compare	0	Register 	TA0CCR0
$4000.0014 16-bit	Capture/Compare	1	Register 	TA0CCR1
$4000.0016 16-bit	Capture/Compare	2	Register 	TA0CCR2
$4000.0018 16-bit	Capture/Compare	3	Register 	TA0CCR3
$4000.001A 16-bit	Capture/Compare	4	Register 	TA0CCR4
$4000.001C 16-bit	Capture/Compare	5	Register 	TA0CCR5

$4000.001E 16-bit	Capture/Compare	6	Register 	TA0CCR6
	 	 	 	
	 15-3 2-0 	
$4000.0020 	 TAIDEX 	TA0EX0
	 	 	 	
	 15-0 	
$4000.002E TAIV 	TA0IV

Table	2.18.	Timer	A0	registers.	Each	register	is	16	bits	wide.	Shaded	bits	are	reserved.	The
bits	shown	in	bold	will	be	used	in	this	section.	Timers	1,	2,	and	3	have	the	same	formats.

	

TASSEL Selected	Clock
00 TAxCLK
01 ACLK
10 SMCLK
11 INCLK

Table	2.19.	Two	TASSEL	bits	specify	the	clock	used	to	count	the	counter.
	

ID Prescale
00 /1
01 /2
10 /4
11 /8

Table	2.20.	Two	ID	bits	specify	the	first	prescaler	which	can	be	used	to	slow	down	the
clock.

The	largest	elapsed	time	we	can	measure	will	be	the	resolution	times	65536	(size	of
the	counter).	For	example,	using	ACLK	counting	at	10	kHz	with	a	/64	prescale,	the
resolution	will	be	6.4	ms,	the	16-bit	counter	will	roll	over	after	7	minutes.

The	MC	bits	specify	the	clock	mode,	as	shown	in	Table	2.21.	We	will	use	“up	mode”
to	create	periodic	interrupts.	We	will	use	“continuous	mode”	when	measuring	period
or	pulse	width.	 In	 this	mode	 the	 counter	keeps	 track	of	 time	and	 the	 input	 edge	on
TAx.y	 latches	 the	 current	 time	 into	 the	TAxCCRy	 register.	We	will	 use	 “up/down
mode”	to	create	PWM	outputs.

MC Mode	control
00 Stop
01 Up	mode:	Timer	counts	up	to	TAxCCR0
10 Continuous	mode:	Timer	counts	up	to	0xFFFF
11 Up/down	mode:	 Timer	 counts	 up	 to	TAxCCR0

then	down	to	0x0000
Table	2.21.	Two	ID	bits	specify	the	first	prescaler	which	can	be	used	to	slow	down	the

clock.
Writing	 a	 1	 to	 the	 TACLR	 bit	 will	 reset	 the	 timer	 and	 automatically	 clear	 the
TACLR	bit.	The	TAIFG	flag	bit	is	set	when	the	timer	rolls	over.	Its	associated	arm
bit	is	TAIE.	To	clear	this	interrupt	trigger,	the	software	writes	a	0	to	TAIFG.

As	mentioned	earlier	for	each	timer	there	are	seven	associated	submodules.	Five	of
the	submodules	have	a	pin	that	could	be	used	as	an	input	to	measure	time	events	or	as
an	output	to	generate	waveforms.	Table	2.22	lists	the	three	choices	for	selecting	the
edge	that	will	cause	an	input	capture	event.	A	capture	event	copies	the	TAxR	counter
into	TAxCCRy	 register	 and	 sets	 the	CCIFG	 flag.	 If	 armed	 (CCIE)	 this	 flag	 will
interrupt.	 To	 acknowledge	 the	 interrupt,	 the	 software	 writes	 a	 zero	 into	 the	 flag.
These	are	the	steps	to	configure	an	input	capture:

1)	Connect	the	input	signal	to	one	of	the	TAx.y	timer	pins
2)	Specify	the	timer	function	in	its	PxSEL1	and	PxSEL0	register
3)	Specify	it	as	an	input	by	clearing	the	direction	bit	in	PxDIR
4)	Halt	the	timer	during	initialization	(MC=00)
5)	Select	the	clock	source	and	prescaler
6)	Specify	the	rising,	falling	or	both	edges	in	the	CM	bits	(Table
2.22)
				Set	CCIS	to	00	to	select	the	input	pin
				Set	SCS	to	1	to	synchronize	input	pin	to	the	clock	(prevents
glitches)
				Set	CAP	to	1	for	capture	mode
				Set	CCIE	to	arm	the	CCIFG	capture	flag
7)	Set	the	interrupt	priority	in	the	NVIC
8)	Arm	the	interrupt	in	the	NVIC
9)	Reset	and	start	the	timer,	placing	it	in	continuous	mode

	

CM Capture	mode
00 No	capture
01 Capture	on	rising	edge
10 Capture	on	falling	edge
11 Capture	on	both	rising	and	falling	edges

Table	2.22.	Two	CM	bits	specify	which	edge	on	the	TAx.y	input	causes	the	input	capture.
The	basic	idea	of	period	measurement	is	to	generate	two	input	captures	on	the	same
edge	(both	rise	or	both	fall),	record	the	times	of	each	edge,	and	calculate	period	as
the	 difference	 between	 those	 two	 times.	 Before	 one	 implements	 a	 system	 that
measures	period,	it	is	appropriate	to	consider	the	issues	of	resolution,	precision	and
range.	The	resolution	of	a	period	measurement	is	defined	as	the	smallest	change	in
period	that	can	reliably	be	detected.	In	Example	6.2,	the	SMCLK	clock	is	12	MHz.

This	means,	 if	 the	period	 increases	by	83.3	ns,	 then	 there	will	 be	one	more	Timer
clock	between	the	first	 rising	edge	and	 the	second	rising	edge.	 In	 this	situation,	 the
16-bit	subtraction	will	increase	by	1,	therefore	the	period	measurement	resolution	is
83.3	ns.	The	resolution	is	the	smallest	measurable	change.	Resolution	definesthe	units
of	the	measurement.	In	this	first	example,	if	the	calculation	of Period 	results	in	1000,
then	 it	 represents	 a	period	of	1000•83.3ns	or	83.3µs.	 	The	precision	 of	 the	period
measurement	is	defined	as	the	number	of	separate	and	distinguishable	measurements.	
If	 the	 16-bit	 counter	 is	 used,	 there	 are	 about	 65,536	 different	 periods	 that	 can	 be
measured.	We	can	specify	 the	precision	in	alternatives,	e.g.,	216,	or	 in	bits,	e.g.,	16
bits.	 The	 last	 issue	 to	 consider	 is	 the	 range	 of	 the	 period	measurement,	 which	 is
defined	as	the	minimum	and	maximum	values	that	can	reliably	be	measured.	We	are
concerned	what	happens	if	the	period	is	too	small	or	too	large.	A	good	measurement
system	should	be	able	to	detect	overflows	and	underflows.	In	addition,	we	would	not
like	the	system	to	crash,	or	hang-up	if	the	input	period	is	out	of	range.	Similarly,	it	is
desirable	 if	 the	 system	can	detect	when	 there	 is	no	period.	For	edge	detection,	 the
input	must	 be	 high	 for	 at	 least	 two	 system	 clock	 periods	 and	 low	 for	 at	 least	 two
timer	clock	periods.

In	 this	 example,	 the	 digital	 input	 signal	 is	 connected	 to	 an	 input	 capture	 pin,
P7.3/TA0.0.	The	diodes,	47k,	and	220nF	create	a	0	 to	3.3V	signal	on	V1.	The	10k-
4.7k	create	 a	 reference	voltage	Vt,	 and	 the	10k	positive	 feedback	 resistor	 removes
glitches.	V2	is	a	squarewave	at	the	same	frequency	as	the	input.	Let	N	be	the	number
of	rising	edges	as	the	shaft	rotates	once.	We	will	set	the	timer	period	to	5.33µs.	Each
rising	edge	will	cause	Timer	A0	to	generate	an	input	capture	interrupt	(Figure	2.19).

	
Figure	2.19.	To	measure	period,	we	connect	the	external	signal	an	input
capture,	P7.3	on	the	MSP432.

	

The	period	is	calculated	as	the	difference	in	TA0CCR0	latch	values	from	one	rising
edge	to	the	other.	If	N=100,	and	the	motor	 is	spinning	at	300	RPM,	then	 the	period
will	 be	 [(60000ms/min)/(300RPM)/100edges/rotation)],	 which	 will	 be	 2.00
ms/edge,	see	Figure	2.20.

Figure	2.20.	Timing	example	showing	counter	rollover	during	16-bit	period
measurement.

	

For	example,	if	the	period	is	2000	µs,	the	capture	interrupts	will	be	requested	every
2	ms,	 which	will	 be	 every	 2000/5.333	 =	 375	 timer	 clocks.	 The	 16-bit	 difference
between	TA0CCR0	latch	values	will	be	375.	This	subtraction	remains	valid	even	if
the	timer	reaches	0xFFFF	and	wraps	around	in	between	interrupts.	On	the	other	hand,
this	 method	 will	 not	 operate	 properly	 if	 the	 period	 is	 larger	 than	 216	 timer	 clock
periods,	or	about	349	ms.

The	 resolution	 is	 5.33µs	 because	 the	 period	must	 increase	 by	 at	 least	 this	 amount
before	 the	 difference	 between	Timer	A0	measurements	will	 reliably	 change.	 Even
though	a	16-bit	counter	is	used,	the	precision	is	a	little	less	than	16	bits,	because	the
shortest	period	 that	 can	be	handled	with	 this	 interrupt-driven	approach	 is	 about	10
µs.	 It	 takes	 on	 the	 order	 of	 10	µs	 to	 complete	 the	 context	 switch,	 execute	 the	 ISR
software,	 and	 return	 from	 interrupt.	 This	 factor	 is	 determined	 by	 experimental
measurement.	 In	other	words,	 as	 the	period	approaches	10	µs,	 a	higher	 and	higher
percentage	of	the	computer	execution	is	utilized	just	in	the	handler	itself.

Because	the	TA0.0	input	capture	interrupt	has	a	separate	vector	the	software	does	not
poll.	An	interrupt	is	requested	on	each	rising	edge	of	the	input	signal.	In	this	situation
we	 count	 all	 the	 cycles	 required	 to	 process	 the	 interrupt.	The	 period	measurement
system	written	for	the	MSP432	is	presented	in	Program	2.17.	The	16-bit	subtraction
is	 produced	by	 defining	 the	 variables	 as	 16-bit	 unsigned	 integers.	The	 first	 period
measurement	will	be	incorrect	and	should	be	neglected.

uint16_t	Period;														//	16-bit,	5.33us	units
uint16_t	static	First;								//	Timer	A0	first	edge,	5.33us	units
int32_t	Done;																//	mailbox	status	set	each	rising
void	PeriodMeasure_Init(void){
		Clock_Init48MHz();		//	48	MHz	bus	clock;	12	MHz	SMCLK
		P7SEL0	|=	0x08;					//	2)	configure	P7.3	as	TA0CCP0
		P7SEL1	&=	~0x08;			
		P7DIR	&=	~0x08;					//	3)	make	P7.3	in
		TA0CTL	&=	~0x0030;		//	4)	halt	Timer	A0
		TA0CTL	=	0x02C0;				//	5)	SMCLK,	divide	by	8
		TA0EX0	|=	0x0007;			//				clock	divide	by	8,	12MHz/64	=	187.5kHz
		TA0CCTL0	=	0x4910;		//	6)	rising,	capture,	sync,	arm

		NVIC_IPR2	=	(NVIC_IPR2&0xFFFFFF00)|0x00000040;	//	7)	priority	2
		NVIC_ISER0	=	0x00000100;	//	8)	enable	interrupt	8	in	NVIC
		TA0CTL	|=	0x0024;							//	9)	reset	and	start	in	continuous	mode
		EnableInterrupts();
}
void	TA0_0_IRQHandler(void){
		TA0CCTL0	&=	~0x0001;							//	acknowledge	TA0.0	capture
		Period	=	TA0CCR0	-	First;	//	5.33us	resolution
		First	=	TA0CCR0;											//	setup	for	next
		Done	=	1;																		//	set	semaphore
}
Program	2.17.	16-bit	period	measurement	(PeriodMeasure_MSP432).

2.7.4.	Pulse	width	measurement
The	basic	idea	of	pulse	width	measurement	is	to	cause	an	input	capture	event	on	both
the	rising	and	falling	edges	of	an	input	signal.	Each	edge	captures	a	timer	value.	The
difference	between	these	two	captured	times	will	be	the	pulse	width.	Just	like	period
measurement,	 the	 resolution	 is	 determined	 by	 the	 rate	 at	 which	 the	 timer	 is
decremented.	The	maximum	pulse	width	is	224	times	the	resolution,	and	is	limited	by
the	24-bit	timer.

The	difficulty	with	pulse	width	measurement	 using	one	 timer	 is	 the	need	 to	 switch
from	 rising	 to	 falling	 edge	 during	 each	 measurement.	 However,	 to	 handle	 shorter
pulses	we	will	need	to	use	two	input	capture	pins.	One	pin	measures	the	time	of	the
rise	 and	 the	 other	 pin	 measures	 the	 time	 of	 the	 fall.	 In	 order	 for	 input	 capture	 to
operate,	 the	input	must	be	high	for	at	 least	 two	bus	clocks	and	low	for	at	 least	 two
bus	 clocks.	 Otherwise	 the	 minimum	 pulse	 width	 does	 not	 depend	 on	 software
execution	 time	 or	 interrupt	 latency.	However,	 the	minimum	 period	will	 depend	 on
software	speed.

2.7.5.	Ultrasonic	distance	measurement
One	method	to	measure	the	distance	between	two	objects	is	to	transmit	an	ultrasonic
wave	 from	 one	 object	 at	 the	 other	 and	 listen	 for	 the	 reflection	 (Figure	 2.21).	 The
instrument	must	be	able	 to	generate	 the	sound	pulse,	hear	 the	echo	and	measure	 the
time,	 tin,	 between	 pulse	 and	 echo.	 If	 the	 speed	 of	 sound,	 c,	 is	 known,	 then	 the
distance,	 d,	 can	 be	 calculated.	 Our	 microcontrollers	 also	 have	 mechanisms	 to
measure	the	pulse	width	tin.

d	=	c	tin	/	2

Figure	2.21.	An	ultrasonic	pulse-echo	transducer	measures	the	distance	to
an	object,	Ping))).

2.8.	Pulse	Width	Modulation
Generating	 output	 waves	 is	 an	 essential	 task	 for	 real-time	 systems,	 so	 the
microcontrollers	 have	 multiple	 methods	 to	 create	 output	 waves.	 Pulse	 width
modulation	 (PWM)	 is	 an	 effective	 and	 thus	 popular	mechanism	 for	 the	 embedded
microcontrollers	to	control	external	devices.	Typically,	the	period	of	a	PWM	output
is	fixed,	and	the	duty	cycle	is	varied.	The	output	is	one	for	High	cycles	and	then	zero
for	Low	cycles.	To	make	the	period	constant	we	will	configure	it	so	High+Low	is	a
constant.

	

2.8.1.	Pulse	width	modulation	on	the	TM4C123
PWM	 outputs	 are	 so	 important,	 the	 TM4C	 has	 a	 dedicated	 PWM	 modules.	 The
number	of	PWMs	and	associated	pins	vary	from	one	microcontroller	to	the	next,	see
Figure	2.22.

Figure	2.22.	PWM	pins.	The	TM4C123	has	two	PWM	modules,	each	with
four	PWM	generator	blocks	and	a	control	block	(sixteen	total	outputs),	and
the	TM4C1294	has	one	PWM	module,	with	four	PWM	generator	blocks	and
a	control	block	(eight	total	outputs).

The	 PWM0	 block	 produces	 the	 PWM0	 and	 PWM1	 outputs,	 the	 PWM1	 block
produces	the	PWM2	and	PWM3	outputs,	and	the	PWM2	block	produces	the	PWM4
and	PWM5	outputs.	The	design	of	a	PWM	system	considers	three	factors.	The	first
factor	is	period	of	the	PWM	output.	Most	applications	choose	a	period,	initialize	the
waveform	at	that	period,	and	adjust	the	duty	cycle	dynamically.	The	second	factor	is

precision,	 which	 is	 the	 total	 number	 of	 duty	 cycles	 that	 can	 be	 created.	 A	 16-bit
channel	can	potentially	create	up	to	65536	different	duty	cycles.	However,	since	the
duty	cycle	register	must	be	less	than	or	equal	to	the	period	register,	the	precision	of
the	 system	 is	 determined	 by	 the	 value	 written	 to	 the	 period	 register.	 The	 last
consideration	is	the	number	of	channels.	Different	members	of	the	TM4C	family	have
from	 zero	 to	 sixteen	 PWM	 outputs	 (refer	 to	 the	 data	 sheet	 for	 your	 specific
microcontroller.)

Program	2.18	shows	the	initialization	on	a	TM4C123	for	generating	a	PWM	on	the
PB6/PWM0A	pin.	1)	First,	we	activate	 the	clock	for	 the	PWM	module.	2)	Second,
we	activate	the	output	pin	as	a	digital	alternate	function.	3)	Next,	we	select	the	clock
to	be	used	for	the	PWM	in	RCC	register.	If	we	do	not	use	the	PWM	divider,	then	it	is
clocked	from	the	bus	clock.	With	 the	divider	we	can	choose	 /2,	 /4,	 /8,	 /16,	 /32,	or
/64.	If	the	TM4C123	is	running	at	50	MHz,	this	program	specifies	the	PWM	clock	to
be	 25	 MHz.	 4)	 We	 set	 the	 PWM	 to	 countdown	 mode.	 We	 specify	 in
the PWM_0_GENA_R 	 register	 that	 the	comparator	action	is	 to	set	 to	one,	and	the
load	 action	 is	 set	 to	 zero.	 5)	 We	 specify	 the	 period	 in	 the	 PWM_0_LOAD_R
register.	6)	We	specify	the	duty	cycle	in	the	PWM_0_CMPA_R 	register.	7)	Lastly,
we	start	and	enable	the	PWM.

We	call PWM0A_Init once	 to	 turn	 it	on,	and	 then	call PWM0A_Duty to	 adjust	 the
duty	cycle.	Assume	the	bus	clock	is	50	MHz,	we	call PWM0A_Init(25000,12500);
to	create	a	1	ms	period	50	%	duty	cycle	output	on	PWM0A	(PB6).

//	period	is	16-bit	number	of	PWM	clock	cycles	in	one	period	(3<=period)
//	duty	is	number	of	PWM	clock	cycles	output	is	high		(2<=duty<=period-1)
//	PWM	clock	rate	=	processor	clock	rate/SYSCTL_RCC_PWMDIV
//																=	BusClock/2
void	PWM0A_Init(uint16_t	period,	uint16_t	duty){
		SYSCTL_RCGCPWM_R	|=	0x00000001;		//	1)	activate	clock	for	PWM0
																																			//	allow	time	to	finish	activating
		while((SYSCTL_PRPWM_R&0x00000001)==0){};
		SYSCTL_RCGCGPIO_R	|=	0x00000002;	//	activate	clock	for	Port	B
																																			//	allow	time	to	finish	activating
		while((SYSCTL_PRGPIO_R&0x00000002)==0){};
		GPIO_PORTB_AFSEL_R	|=	0x40;						//	2)	enable	alt	funct	on	PB6
		GPIO_PORTB_ODR_R	&=	~0x40;							//				disable	open	drain	on	PB6
		GPIO_PORTB_DEN_R	|=	0x40;								//				enable	digital	I/O	on	PB6
		GPIO_PORTB_AMSEL_R	&=	~0x40;					//				disable	analog	function	on	PB6
																																			//				configure	PB6	as	PWM
		GPIO_PORTB_PCTL_R	=	(GPIO_PORTB_PCTL_R&0xF0FFFFFF)+0x04000000;
		SYSCTL_RCC_R	=	0x00100000	|									//	3)	use	PWM	divider
				((SYSCTL_RCC_R	&	(~0x000E0000))	+	//				clear	PWM	divider	field
				0x00000000);																					//				configure	for	/2	divider
		PWM0_0_CTL_R	=	0;																//	4)	re-loading	down-counting	mode
																																			//				PB6	goes	low	on	LOAD

		PWM0_0_GENA_R	=	0x000000C8;						//				PB6	goes	high	on	CMPA	down
		PWM0_0_LOAD_R	=	period	-	1;						//	5)	cycles	needed	to	count	down	to	0
		PWM0_0_CMPA_R	=	duty	-	1;								//	6)	count	value	when	output	rises
		PWM0_0_CTL_R	|=	0x00000001;						//	7)	start	PWM0	Generator	0
		PWM0_ENABLE_R	|=	0x00000001;					//				enable	PWM0	Generator	0
}
//	change	duty	cycle
//	duty	is	number	of	PWM	clock	cycles	output	is	high		(2<=duty<=period-1)
void	PWM0A_Duty(uint16_t	duty){
		PWM0_0_CMPA_R	=	duty	-	1;								//	6)	count	value	when	output	rises
}
Program	2.18.	Implementation	of	a	16-bit	PWM	output	(PWM_xxx).

2.8.2.	Pulse	width	modulation	on	the	MSP432
On	the	MSP432	each	Timer	A	module	can	create	one	to	four	PWM	outputs	by	using
submodule	0	 to	define	 the	period	and	using	one	 to	 four	of	 the	other	 submodules	 to
create	the	output	and	set	the	duty	cycle.		In	this	example	Timer	A0	is	set	to	up/down
mode.	PWM	outputs	can	also	be	created	with	up	mode,	but	 in	 this	section	we	will
describe	up/down	mode.

In	this	example,	we	will	set	TA0CCR0	 to	10,	and	TA0CCR1	 to	7	creating	a	70%
duty	cycle	PWM	output	on	P2.4/TA0.1.	In	up/down	mode,	the	TA0R	timer	will	count
0,	1,	2,	…	9,	10,	9,	…,	2,	1,	0,	1,	2,	…	over	and	over.	We	will	use	toggle/reset	mode
to	 control	 the	 output	 on	 P2.4/TA0.1.	 When	 the	 timer	 matches	TA0CCR0=10	 the
TA0.1	output	is	cleared	and	the	CCIFG	flag	in	TA0CCR0	register	is	set.	Each	time
the	TA0R	matches	TA0CCR1=7	the	TA0.1	output	is	toggled	and	the	CCIFG	flag	in
TA0CCR1	register	is	set.	The	output	is	reset	when	the	timer	is	at	maximum,	so	the
first	 time	 it	matches	 the	 timer	 is	 counting	down.	So,	 the	output	goes	high	when	 the
timer	matches	TA0CCR1	on	 the	way	down,	and	 is	cleared	when	 it	matches	on	 the
way	up,	see	Figure	2.23.	The	period	of	the	wave	will	be	2*TA0CCR0,	and	the	time
it	 is	 high	 will	 be	 2*TA0CCR1,	 therefore	 the	 duty	 cycle	 will	 be
TA0CCR1/TA0CCR0.	 Output	 compare	 events	 will	 again	 be	 requested	 at	 a	 rate
twice	as	 fast	as	 the	 resulting	square	wave	 frequency.	One	event	 is	 required	 for	 the
rising	 edge	 and	 another	 for	 the	 falling	 edge.	 In	 the	 examples	 below,	 we	 make
High plus Low 	be	a	constant.	By	adjusting	the	ratio	of	High 	and	Low 	the	software
can	control	the	duty	cycle.

Figure	2.23.	The	PWM	output	with	timer	in	up-down	mode	and	output
compare	in	toggle-reset	mode.

This	implementation	occurs	in	hardware	and	does	not	require	interrupts.	Therefore,	it
can	generate	waves	close	to	0	or	100%	duty	cycle.	Figure	2.24	shows	a	system	using
two	PWM	outputs	to	control	two	DC	motors.	The	interface	driver	will	be	shown	in
Section	10.2.

	

Figure	2.24.	The	PWM	output	can	adjust	the	power	to	two	DC	motors.
Program	 2.19configures	 Timer	 A0	 for	 two	 PWM	 outputs.	 The	 user
calls PWM_Init once	 to	 turn	 it	 on,	 and	 then	 calls PWM_Duty 	 to	 adjust	 the	 duty
cycle.

void	PWM_Init(uint16_t	period,	uint16_t	duty1,	uint16_t	duty2){										
		Clock_Init48MHz();						//	48	MHz	HFXTCLK,	SMCLK	=	12	MHz
		P2DIR	|=	0x30;										//	P2.4,	P2.5	output
		P2SEL0	|=	0x30;									//	P2.4,	P2.5	TimerA0	functions
		P2SEL1	&=	~0x30;								//	P2.4,	P2.5	TimerA0	functions
		TA0CCTL0	=	0x0080;						//	CCI0	toggle
		TA0CCR0	=	period;							//	Period	is	2*period*8*83.33ns	is	1.333*period
		TA0EX0	=	0x0000;								//				divide	by	1
		TA0CCTL1	=	0x0040;						//	CCR1	toggle/reset
		TA0CCR1	=	duty1;								//	CCR1	duty	cycle	is	duty1/period
		TA0CCTL2	=	0x0040;						//	CCR2	toggle/reset
		TA0CCR2	=	duty2;								//	CCR2	duty	cycle	is	duty2/period
		TA0CTL	=	0x02F0;								//	SMCLK=12MHz,	divide	by	8,	up-down	mode
}
void	PWM_Duty1(uint16_t	duty1){	
		TA0CCR1	=	duty1;								//	CCR1	duty	cycle	is	duty1/period
}
void	PWM_Duty2(uint16_t	duty2){	
		TA0CCR2	=	duty2;								//	CCR2	duty	cycle	is	duty2/period
}
Program	2.19.	Software	to	generate	a	PWM	output	using	Timer	A0

(TimerA0PWM_MSP432).
Checkpoint	2.11:	When	does	an	output	compare	event	occur	when	in	PWM
mode?

Checkpoint	2.12:	What	happens	during	an	output	compare	event	in	PWM	mode?

Divide	 by	 8	 slows	 down	 the	 12	MHz	 SMCLK	 to	 count	 the	 timer	 every	 666.7ns.
Figure	 2.25	 shows	 the	 logic	 analyzer	 output	 when	 Program	 2.19is	 called
with PWM_Init(10,7,2) 	creating	a	70%	duty	cycle	PWM	on	P2.4	and	a	20%	duty
cycle	PWM	on	P2.5.	Just	like	Figure	2.11	the	timer	counts	0	to	10,	and	then	9	to	1,	so
there	are	20	counts	per	wave.	20	counts	times	666.7ns	creates	the	13.33μs	period	for
P2.4	and	P2.5.	When	the	timer	is	7,	P2.4	is	toggled,	and	when	the	timer	is	2,	P2.5	is
toggled.

Figure	2.25.	The	PWM	output	with	13.33us	period	and	70%	on	P2.4	and
20%	on	P2.5.

With	 the	 counter	 in	 up	mode,	 we	 can	 use	OUTMOD=7	 (reset/set)	mode	 to	 create
PWM	outputs.	 In	 this	mode	 the	 period	 of	 the	wave	will	 be	TA0CCR0+1,	 and	 the
time	 it	 is	 high	 will	 be	 TA0CCR1,	 therefore	 the	 duty	 cycle	 will	 once	 again	 be
TA0CCR1/(TA0CCR0+1).	 When	 creating	 PWMs	 with	 this	 approach	 all	 outputs
will	go	high	at	the	same	time.

	

2.9.	Analog	Output
A	 digital	 to	 analog	 convertor	 (DAC)	 converts	 digital	 signals	 into	 analog	 form	 as
illustrated	in	Figure	2.26.	Although	one	can	interface	a	DAC	to	a	regular	output	port,
most	DACs	are	interfaced	using	high-speed	synchronous	protocols.	The	DAC	output
can	 be	 current	 or	 voltage.	Additional	 analog	 processing	may	 be	 required	 to	 filter,
amplify	 or	modulate	 the	 signal.	We	 can	 also	 use	DACs	 to	 design	 variable	 gain	 or
variable	offset	analog	circuits.

The	 DAC	 precision	 is	 the	 number	 of	 distinguishable	 DAC	 outputs	 (e.g.,	 1024
alternatives,	 10	 bits).	 The	DAC	 range	 is	 the	maximum	 and	minimum	DAC	 output
(volts,	amps).	The	DAC	resolution	 is	 the	smallest	distinguishable	change	 in	output.
The	 units	 of	 resolution	 are	 in	 volts	 or	 amps	 depending	 on	 whether	 the	 output	 is
voltage	or	current.	The	resolution	is	the	change	in	output	that	occurs	when	the	digital
input	changes	by	1.

Range(volts)	=	Precision(alternatives)	•	Resolution(volts)

The	DAC	accuracy	is	(Actual	-	Ideal)	/	Ideal	where	Ideal	is	referred	to	the	National
Institute	of	Standards	and	Technology	(NIST).	One	can	choose	the	full	scale	range	of
the	DAC	to	simplify	the	use	of	fixed-point	math.	For	example,	if	an	8-bit	DAC	had	a
full	scale	range	of	0	to	2.55	volts,	then	the	resolution	would	be	exactly	10	mV.	This
means	that	if	the	DAC	digital	input	were	12310,	then	the	DAC	output	voltage	would
be	1.23	volts.

Figure	2.26.	A	10-bit	DAC	provides	analog	output.	A	10-bit	ADC	provides
analog	input.

A	 DAC	 gain	 error	 is	 a	 shift	 in	 the	 slope	 of	 the	 Vout	 versus	 digital	 input	 static
response.	 A	 DAC	 offset	 error	 is	 a	 shift	 in	 the	 Vout	 versus	 digital	 input	 static

response.	The	DAC	 transient	 response	has	 three	components:	delay	phase,	 slewing
phase,	ringing	phase.	During	the	delay	phase,	the	input	has	changed	but	the	output	has
not	yet	begun	to	change.	During	the	slewing	phase,	the	output	changes	rapidly.	During
the	ringing	phase,	the	output	oscillates	while	it	stabilizes.	For	purposes	of	linearity,
let	m,	n	be	digital	 inputs,	and	 let	 f(n)	be	 the	analog	output	of	 the	DAC,	 see	Figure
2.27.	One	quantitative	measure	of	 linearity	 is	 the	correlation	coefficient	of	a	 linear
regression	fit	of	the	f(n)	responses.	If	∆	is	the	DAC	resolution,	it	is	linear	if

f(n+1)-f(n)	=	f(m+1)-f(m)		=	∆ for	all	n,	m

The	DAC	is	monotonic	if

sign(f(n+1)-f(n))	=	sign(f(m+1)-f(m))	 for	all	n,	m

Conversely,	the	DAC	is	nonlinear	if

f(n+1)-f(n)	≠	f(m+1)-f(m)	 for	some	n,	m

Practically	 speaking	 all	 DACs	 are	 nonlinear,	 but	 the	 worst	 nonlinearity	 is
nonmonotonicity.		The	DAC	is	nonmonotonic	if

sign(f(n+1)-f(n))	≠	sign(f(m+1)-f(m))	 for	some	n,	m

Figure	2.27.	Nonlinear	and	nonmonotonic	DACs.
Many	 manufacturers,	 like	 Analog	 Devices,	 Texas	 Instruments,	 Sipex	 and	 Maxim
produce	 DACs.	 These	 DACs	 have	 a	 wide	 range	 of	 performance	 parameters	 and
come	in	many	configurations.	The	following	paragraphs	discuss	the	various	issues	to
consider	when	selecting	a	DAC.	Although	we	assume	the	DAC	is	used	to	generate	an
analog	 waveform,	 these	 considerations	 will	 generally	 apply	 to	 most	 DAC
applications.

Precision/range/resolution.	 These	 three	 parameters	 affect	 the	 quality	 of	 the	 signal
that	can	be	generated	by	the	system.	The	more	bits	in	the	DAC	the	finer	the	control
the	system	has	over	the	waveform	it	creates.	As	important	as	this	parameter	is,	it	is
one	of	the	more	difficult	specifications	to	establish	a	priori.	Multiple	versions	of	the
software	(e.g.,	4-bit,	8-bit,	10-bit,	and	12-bit	DAC)	are	used	 to	see	experimentally
the	 effect	 of	 DAC	 precision	 on	 the	 overall	 system	 performance.	 Figure	 2.28
illustrates	how	DAC	precision	affects	 the	quality	of	 the	generated	waveform.	DAC
parameters	 of	 noise	 include	 signal	 to	 noise	 ratio	 (SNR),	 signal	 to	 noise	 ratio	 plus
distortion	(SINAD),	and	total	harmonic	distortion	(THD)

Figure	2.28.	The	waveform	on	the	top	uses	a	4-bit	DAC,	while	on	one	on	the
bottom	uses	a	12-bit	DAC.

Channels.	Even	though	multiple	channels	could	be	implemented	using	multiple	DAC
chips,	it	is	usually	more	efficient	to	design	a	multiple	channel	system	using	a	multiple
channel	DAC.	Some	advantages	of	using	a	DAC	with	more	channels	than	originally
conceived	 are	 future	 expansion,	 automated	 calibration,	 and	 automated	 testing.	 A
multiple	channel	DAC	allows	you	to	update	all	channels	at	the	same	time.

Configuration.	DACs	can	have	voltage	or	current	outputs.	Current	output	DACs	can
be	used	 in	a	wide	spectrum	of	applications	(e.g.,	adding	gain	and	filtering),	but	do
require	 external	 components.	 DACs	 can	 have	 internal	 or	 external	 references.	 An
internal	 reference	 DAC	 is	 easier	 to	 use	 for	 standard	 digital	 input/analog	 output
applications,	 but	 the	 external	 reference	 DAC	 can	 often	 be	 used	 in	 variable	 gain
applications	 (multiplying	 DAC).	 Sometimes	 the	 DAC	 generates	 a	 unipolar	 output,
while	other	times	the	DAC	produces	bipolar	outputs.

Power.	There	are	three	power	issues	to	consider.	The	first	consideration	is	the	type
of	power	required.	Older	devices	require	three	power	voltages	(e.g.,	+5	and	-5	V),
while	most	devices	will	operate	on	a	single	voltage	supply	(e.g.,	+2.7,	+3.3,	or	+5
V.)	 If	 a	 single	 supply	 can	be	used	 to	power	 all	 the	digital	 and	analog	 components,
then	 the	 overall	 system	 costs	 will	 be	 reduced.	 The	 second	 consideration	 is	 the
amount	of	power	required.	Some	devices	can	operate	on	less	 than	0.1	mW	and	are
appropriate	 for	 battery-operated	 systems	 or	 for	 systems	 where	 excess	 heat	 is	 a
problem.	 The	 last	 consideration	 is	 the	 need	 for	 a	 low-power	 sleep	 mode.	 Some
battery	operated	systems	need	the	DAC	only	intermittently.	In	these	applications,	we
wish	to	give	a	shutdown	command	to	the	DAC,	so	that	it	draws	less	current	when	not
needed.

Speed.	There	are	 a	 couple	of	parameters	manufacturers	use	 to	 specify	 the	dynamic
behavior	of	the	DAC.	The	most	common	is	settling	time,	another	is	maximum	output
rate.	When	operating	 the	DAC	in	variable	gain	mode,	we	are	also	 interested	 in	 the
gain/bandwidth	 product	 of	 the	 analog	 amplifier.	 When	 comparing	 specifications
reported	by	different	manufacturers	it	is	important	to	consider	the	exact	situation	used
to	collect	the	parameter.	In	other	words,	one	manufacturer	may	define	settling	time	as
the	 time	 to	 reach	0.1%	of	 the	 final	output	after	a	 full	 scale	change	 in	 input	given	a
certain	load	on	the	output,	while	another	manufacturer	may	define	settling	time	as	the
time	to	reach	1%	of	 the	final	output	after	a	1	volt	change	 in	 input	under	a	different
load.	The	speed	of	 the	DAC	together	with	 the	speed	of	 the	computer/software	will

determine	the	effective	frequency	components	in	the	generated	waveforms.	Both	the
software	(rate	at	which	the	software	outputs	new	values	 to	 the	DAC)	and	the	DAC
speed	must	be	fast	enough	for	the	given	application.	In	other	words,	if	the	software
outputs	new	values	to	the	DAC	at	a	rate	faster	than	the	DAC	can	respond,	then	errors
will	occur.	Figure	2.29	illustrates	the	effect	of	DAC	output	rate	on	the	quality	of	the
generated	waveform.	According	 to	 the	Nyquist	Theorem	states	 the	digital	data	 rate
must	be	greater	than	twice	the	maximum	frequency	component	of	the	desired	analog
waveform.	However,	 both	waveforms	 in	 Figure	 2.29	 satisfy	 the	Nyquist	 Theorem,
but	increasing	the	output	rate	by	eight	improves	the	signal	to	noise	ratio	by	eight.	31
dB	is	a	ratio	of	about	35	to	1,	and	49	dB	is	a	ratio	of	about	281	to	1.	If	the	goal	is	to
create	a	sine	wave	at	a	fixed	frequency,	we	could	improve	the	SNR	greatly	by	using
an	analog	low	pass	filter.

Experimental	data	of	a	32-output	523	Hz	sine-wave						Experimental	data	of	a	256-output	523	Hz
sine-wave

						 			
Signal/noise	ratio	is	31	dB	(3dB-	-28dB) Signal/noise	ratio	is	49	dB	(3dB-	-46dB)
	
Figure	2.29.	The	waveform	on	the	right	was	created	by	a	system	with	eight
times	the	output	rate	than	the	left.	Voltage	versus	time	data	on	top	and	the
Fourier	Transform	(frequency	spectrum	dB	versus	kHz)	of	the	data	on	the
bottom.	There	is	a	point	in	the	spectrum	at	0,	which	is	the	DC	component.
However,	the	signal	is	the	523	Hz	bump	with	a	magnitude	of	3dB,
representing	the	sine	wave.	The	noise	are	all	the	other	points	not	at	0	or	523
Hz.	The	largest	noise	on	the	left	is	-28	dB.	The	largest	noise	on	the	right	is
-46	dB.

Interface.	 Three	 approaches	 exist	 for	 interfacing	 the	 DAC	 to	 the	 computer.	 In	 a
digital	 logic	 or	 parallel	 interface,	 the	 individual	 data	 bits	 are	 connected	 to	 a
dedicated	computer	output	port.	For	example,	a	12-bit	DAC	requires	a	12-bit	output
port	bits	to	interface.	The	software	simply	writes	to	the	parallel	port(s)	to	change	the
DAC	output.	The	second	approach	is	called	µP-bus	or	microprocessor-compatible.

These	devices	are	intended	to	be	interfaced	onto	the	address/data	bus	of	an	expanded
mode	microcontroller.	The	third	approach	is	a	high-speed	serial	interface	like	I2C	or
SPI.	 This	 approach	 requires	 the	 fewest	 number	 of	 I/O	 pins.	 Even	 if	 the
microcontroller	 does	 not	 support	 the	 SPI	 interface	 directly,	 these	 devices	 can	 be
interfaced	to	regular	I/O	pins	via	the	bit-banging	software	approach.

Package.	DIP	packages	are	convenient	for	creating	and	testing	an	original	prototype.
On	the	other	hand,	surface	mount	packages	require	less	board	space.	Because	surface
mount	packages	do	not	require	holes	in	the	PC	board,	circuits	with	these	devices	are
easier/cheaper	to	produce.

Cost.	Cost	 is	 always	 a	 factor	 in	 engineering	 design.	Beside	 the	 direct	 costs	 of	 the
individual	 components	 in	 the	 DAC	 interface,	 other	 considerations	 that	 affect	 cost
include:	1)	power	supply	requirements;	2)	manufacturing	costs;	3)	the	labor	involved
in	individual	calibration	if	required;	and	4)	software	development	costs.

2.10.	Analog	Input

2.10.1.	ADC	Parameters
An	analog	to	digital	converter	(ADC)	converts	an	analog	signal	into	digital	form.	The
input	signal	is	usually	an	analog	voltage	(Vin),	and	the	output	is	a	binary	number.	The
ADC	precision	is	the	number	of	distinguishable	ADC	inputs	(e.g.,	4096	alternatives,
12	bits).	The	ADC	range	 is	 the	maximum	and	minimum	ADC	 input	 (volts,	 amps).
The	ADC	resolution	 is	 the	 smallest	 distinguishable	 change	 in	 input	 (volts,	 amps).
The	resolution	is	the	change	in	input	that	causes	the	digital	output	to	change	by	1.

Range(volts)	=	Precision(alternatives)	•	Resolution(volts)

Normally	 we	 don’t	 specify	 accuracy	 for	 just	 the	 ADC,	 but	 rather	 we	 give	 the
accuracy	 of	 the	 entire	 system	 (including	 transducer,	 analog	 circuit,	 ADC	 and
software).	 Therefore,	 accuracy	 is	 defined	 as	 part	 of	 the	 systems	 approach	 to	 data
acquisition	systems.	An	ADC	is	monotonic	if	it	has	no	missing	codes.	This	means	if
the	analog	signal	 is	a	slow	rising	voltage,	 then	the	digital	output	will	hit	all	values
sequentially.	The	ADC	is	linear	if	the	resolution	is	constant	through	the	range.	Let	f(x)
be	 the	 input/output	ADC	 transfer	 function.	One	quantitative	measure	of	 linearity	 is
the	correlation	coefficient	of	a	 linear	regression	fit	of	 the	 f(x)	 responses.	The	ADC
speed	is	the	time	to	convert,	called	tc.	The	ADC	cost	is	a	function	of	the	number	and
price	of	internal	components.	There	are	four	common	encoding	schemes	for	an	ADC.
Table	2.23	shows	two	encoding	schemes	for	a	12-bit	unipolar	ADC.

Unipolar
Codes

Straight	Binary Complementary
Binary

+Vmax 1111,1111,1111 0000,0000,0000
+Vmax/2 1000,0000,0000 0001,1111,1111
+Vmax/1024 0000,0000,0001 1111,1111,1110
+0.00 0000,0000,0000 1111,1111,1111

Table	2.23.	Unipolar	codes	for	a	12-bit	ADC	with	a	range	of	0	to	+Vmax.
	

The	ADCs	on	the	MSP432	(14	bits)	and	TM4C	(12	bits)	families	use	straight	binary.
The	MSP432	has	a	range	of	0	to	2.5V,	and	the	TM4C	has	a	range	of	0	to	3.3	V.	To
convert	 between	 straight	 binary	 and	 complementary	 binary	we	 simply	 complement
(change	0	to	1,	change	1	to	0)	all	the	bits.	To	convert	between	offset	binary	and	2’s
complement,	we	complement	just	the	most	significant	bit.	The	exclusive-or	operation
can	be	used	to	complement	bits.

Just	 like	the	DAC,	one	can	choose	the	full	scale	range	to	simplify	the	use	of	fixed-

point	math.	For	example,	if	a	10-bit	ADC	had	a	full	scale	range	of	0	to	1.023	volts,
then	the	resolution	would	be	exactly	1	mV.	This	means	that	if	the	ADC	input	voltage
were	0.234	volts,	then	the	result	would	be	23410.		

The	 total	 harmonic	 distortion	 (THD)	 of	 a	 signal	 is	 a	 measure	 of	 the	 harmonic
distortion	present	and	is	defined	as	the	ratio	of	the	sum	of	the	powers	of	all	harmonic
components	to	the	power	of	the	fundamental	frequency.	Basically,	it	is	a	measure	of
all	 the	noise	processes	 in	an	ADC	and	usually	 is	given	 in	dB	 full	 scale.	A	similar
parameter	 is	 signal-to-noise	and	distortion	ratio	 (SINAD),	which	 is	measured	 by
placing	a	pure	 sine	wave	at	 the	 input	of	 the	ADC	(signal)	and	measuring	 the	ADC
output	(signal	plus	noise).	We	can	compare	precision	in	bits	to	signal-to-noise	ratio
in	dB	using	the	relation	dB	=	20	log10(2n).	For	example,	the	12-bit	MAX1247	ADC
has	 a	 SINAD	 of	 73	 dB.	 Notice	 that	 20	 log10(212)	 is	 72	 dB.	 The	 ADCs	 on	 most
microcontrollers	use	the	successive	approximation	technique.

For	a	discussion	of	ADC	techniques,	see	Chapter	8	of	Volume	2.

2.10.2.	Internal	ADC	on	TM4C
Table	2.24	shows	the	ADC	register	bits	required	to	perform	periodic	sampling	on	a
single	channel.	For	more	complex	configurations	refer	to	the	specific	data	sheet.	The
TM4C123	and	TM4C1294	can	sample	up	to	1	million	samples	per	second,	see	Table
2.25.	Running	the	ADC	slower	will	make	it	more	accurate,	and	use	less	power.

Address 31-2 1 0 Name
$400F.E638 	 ADC1 ADC0 SYSCTL_RCGCADC_R
	 	 	 	 	 	 	 	 	 	
	 31-14 13-12 11-10 9-8 7-6 5-4 3-2 1-0 	
$4003.8020 	 SS3 	 SS2 	 SS1 	 SS0 ADC0_SSPRI_R
	 	 	 	 	 	 	 	 	 	
	 31-16 15-12 11-8 7-4 3-0 	
$4003.8014 	 EM3 EM2 EM1 EM0 ADC0_EMUX_R
	 	 	 	 	 	 	 	 	 	
	 31-4 3 2 1 0 	
$4003.8000 	 ASEN3 ASEN2 ASEN1 ASEN0 ADC0_ACTSS_R
$4003.8028 	 SS3 SS2 SS1 SS0 ADC0_PSSI_R
$4003.8004 	 INR3 INR2 INR1 INR0 ADC0_RIS_R
$4003.8008 	 MASK3 MASK2 MASK1 MASK0 ADC0_IM_R
$4003.8FC4 	 Speed ADC0_PC_R
$4003.800C 	 IN3 IN2 IN1 IN0 ADC0_ISC_R
	 	 	 	 	 	 	 	 	 	
	 31-28 27-24 23-20 19-16 15-12 11-8 7-4 3-0 	
$4003.8040 MUX7 MUX6 MUX5 MUX4 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX0_R
	 	 	 	 	 	 	 	 	 	
	 31-16 15-12 11-8 7-4 3-0 	
$4003.8060 	 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX1_R
$4003.8080 	 MUX3 MUX2 MUX1 MUX0 ADC0_SSMUX2_R
$4003.80A0 	 	 	 	 MUX0 ADC0_SSMUX3_R

	 	 	 	 	 	 	 	 	 	
	 31 30 29 28 27 26 … 8 7 6 5 4 3 2 1 0 	
$4003.8044 TS7IE7END7D7TS6IE6 … D2TS1 IE1END1D1TS0 IE0END0D0ADC0_SSCTL0_R
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 	
$4003.8064 TS3IE3END3D3TS2IE2END2D2TS1 IE1END1D1TS0 IE0END0D0ADC0_SSCTL1_R
$4003.8084 TS3IE3END3D3TS2IE2END2D2TS1 IE1END1D1TS0 IE0END0D0ADC0_SSCTL2_R
$4003.80A4 	 	 	 	 	 	 	 	 	 	 	 	 TS0 IE0END0D0ADC0_SSCTL3_R
	 	 	 	 	 	 	 	 	 	
	 31-10 11-0 	
$4003.8048 	 DATA ADC0_SSFIFO0_R
$4003.8068 	 DATA ADC0_SSFIFO1_R
$4003.8088 	 DATA ADC0_SSFIFO2_R
$4003.80A8 	 DATA ADC0_SSFIFO3_R

Table	2.24.	Some	of	the	ADC	registers.	Each	register	is	32	bits	wide.	
	

The	 ADC	 has	 four	 sequencers,	 but	 we	 will	 use	 only	 sequencer	 3.	 We	 set	 the
ADC_SSPRI_R	register	to	0x3210	to	make	sequencer	3	the	lowest	priority.	Because
we	 are	 using	 just	 one	 sequencer,	we	 just	 need	 to	make	 sure	 each	 sequencer	 has	 a
unique	priority.	We	set	bits	15–12	(EM3)	in	the	ADC_EMUX_R	register	to	specify
how	 the	ADC	will	 be	 triggered.	 Table	 2.26	 shows	 the	 various	ways	 to	 trigger	 an
ADC	 conversion.	 In	 this	 section	 we	 will	 use	 timer	 triggering	 (EM3=0x5).	 If	 we
specify	 software	 start	 (EM3=0x0),	 then	 the	 software	 writes	 an	 8	 (SS3)	 to	 the
ADC_PSSI_R	 to	 initiate	 a	 conversion	 on	 sequencer	 3.	 Bit	 3	 (INR3)	 in	 the
ADC_RIS_R	register	will	be	set	when	the	conversion	is	complete.

We	can	enable	and	disable	the	sequencers	using	the	ADC_ACTSS_R	register.	There
are	 four	 sequencers	 on	 the	TM4C123.	Which	 channel	we	 sample	 is	 configured	 by
writing	to	the	ADC_SSMUX3_R	register.	The	ADC_SSCTL3_R	 register	specifies
the	mode	 of	 the	ADC	 sample.	We	 set	TS0	 to	measure	 temperature	 and	 clear	 it	 to
measure	the	analog	voltage	on	the	ADC	input	pin.	We	set	IE0	so	that	the	INR3	bit	is
set	on	ADC	conversion,	and	clear	it	when	no	flags	are	needed.	We	will	set	IE0	 for
both	interrupt	and	busy-wait	synchronization.	When	using	sequencer	3,	there	is	only
one	 sample,	 so	END0	will	 always	 be	 set,	 signifying	 this	 sample	 is	 the	 end	 of	 the
sequence.	We	set	the	D0	bit	 to	activate	differential	sampling,	such	as	measuring	the
analog	difference	between	ADC1	and	ADC0	pins.	 In	our	example,	we	clear	D0	 to
sample	a	single-ended	analog	input.	The	ADC_RIS_R	register	has	flags	that	are	set
when	 the	 conversion	 is	 complete,	 assuming	 the	 IE0	 bit	 is	 set.	 The	 ADC_IM_R
register	has	 interrupt	arm	bits.	The	ADC_ISC_R	 register	has	 interrupt	 trigger	bits.
The	IN3	bit	is	set	when	both	INR3	and	MASK3	are	set.	We	clear	the	INR3	and	IN3
bits	 by	 writing	 an	 8	 to	 the	ADC_ISC_R	 register.	 The	 interrupt	 vector	 for	 ADC
sequencer	3	is	at	0x00000084.

Value Description
0x7 1M	samples/second

0x5 500K	samples/second
0x3 250K	samples/second
0x1 125K	samples/second

Table	2.25.	The	Speed	bits	in	the	ADC0_PC_R	register.
	

Value Event
0x0 Software	start
0x1 Analog	Comparator	0
0x2 Analog	Comparator	1
0x3,	0x9-0x0E Reserved
0x4 External	(GPIO	PB4)
0x5 Timer
0x6 PWM0
0x7 PWM1
0x8 PWM2
0xF Always	(continuously

sample)
Table	2.26.	The	ADC	EM3,	EM2,	EM1,	and	EM0	bits	in	the	ADC_EMUX_R	register.
	

There	 are	 13	 steps	 to	 configure	 the	ADC	 to	 sample	 a	 single	 channel	 at	 a	 periodic
rate.	The	most	accurate	sampling	method	is	timer-triggered	sampling	(EM3=0x5).	On
the	TM4C123,	the	MUX	fields	are	4	bits	wide,	allowing	us	to	specify	channels	0	to
11.	On	the	TM4C1294,	the	channel	ranges	from	0	to	19.	See	Tables	1.4	and	1.5	to	see
mapping	from	pin	to	channel.

Step	1.	We	enable	the	ADC	clock	in	the	SYSCTL_RCGCADC_R	register.

Step	2.	Bits	3	–	0	of	the	ADC0_PC_R	register	specify	the	maximum	sampling	rate	of
the	ADC.	 In	 this	 example,	we	will	 sample	 slower	 than	 125	 kHz,	 so	 the	maximum
sampling	rate	is	set	at	125	kHz.	This	will	require	less	power	and	produce	a	longer
sampling	time	as	described	the	S/H	section,	creating	a	more	accurate	conversion.

Step	3.	We	will	set	the	priority	of	each	of	the	four	sequencers.	In	this	case,	we	are
using	 just	one	sequencer,	 so	 the	priorities	are	 irrelevant,	except	 for	 the	 fact	 that	no
two	sequencers	should	have	the	same	priority.	The	default	configuration	has	Sample
Sequencer	0	with	the	highest	priority,	and	Sample	Sequencer	3	as	the	lowest	priority.

Step	4.	Next,	we	need	to	configure	the	timer	to	run	at	the	desired	sampling	frequency.
We	 enable	 the	 Timer0	 clock	 by	 setting	 bit	 0	 of	 the	 SYSCTL_RCGCTIMER_R
register.	This	initialization	is	similar	to	Program	2.6	with	two	changes.	First	we	set
bit	 5	 of	 the	TIMER0_CTL_R	 register	 to	 activate	TAOTE,	which	 is	 the	Timer	A
output	 trigger	 enable.	 Secondly,	we	 do	 not	 arm	 any	 Timer0	 interrupts.	 The	 rate	 at
which	 the	 timer	 rolls	 over	 determines	 the	 sampling	 frequency.	Let	prescale	 be	 the

value	 loaded	 into	 TIMER0_TAPR_R,	 and	 let	 period	 be	 the	 value	 loaded	 into
TIMER0_TAILR_R.	 	If	the	period	of	the	bus	clock	frequency	is	Δt,	 then	 the	ADC
sampling	period	will	be

Δt	*(prescale	+	1)*(period	+	1)

The	 fastest	 sampling	 rate	 is	determined	by	 the	 speed	of	 the	processor	handling	 the
ADC	interrupts	and	by	 the	speed	of	 the	main	program	consuming	 the	data	 from	 the
FIFO.	If	the	bus	clock	is	80	MHz,	the	slowest	possible	sampling	rate	for	this	example
is	80MHz/232,	which	is	about	0.018	Hz,	which	is	every	53	seconds.

Step	 5.	 Before	 configuring	 the	 sequencer,	 we	 need	 to	 disable	 it.	 To	 disable
sequencer	 3,	 we	 write	 a	 0	 to	 bit	 3	 (ASEN3)	 in	 the	 ADC0_ACTSS_R	 register.
Disabling	 the	 sequencer	 during	 programming	 prevents	 erroneous	 execution	 if	 a
trigger	event	were	to	occur	during	the	configuration	process.

Step	 6.	 We	 configure	 the	 trigger	 event	 for	 the	 sample	 sequencer	 in	 the
ADC0_EMUX_R	register.		For	this	example,	we	write	a	0101	to	bits	15–12	(EM3)
specifying	timer	trigger	mode.

Step	7.	For	each	sample	in	the	sample	sequence,	configure	the	corresponding	input
source	 in	 the	 ADC0_SSMUXn	 register.	 	 In	 this	 example,	 we	 write	 the	 channel
number	(0,	1,	2,	or	3)	to	bits	3–0	in	the	ADC0_SSMUX3_R	register.

Step	8.	For	 each	 sample	 in	 the	 sample	 sequence,	we	 configure	 the	 sample	 control
bits	in	the	corresponding	nibble	in	the	ADC0_SSCTLn	register.	When	programming
the	 last	 nibble,	 ensure	 that	 the	 END	 bit	 is	 set.	 Failure	 to	 set	 the	 END	 bit	 causes
unpredictable	behavior.	Sequencer	3	has	only	one	sample,	so	we	write	a	0110	to	the
ADC0_SSCTL3_R	 register.	 	Bit	3	 is	 the	TS0	bit,	which	we	clear	because	we	are
not	measuring	 temperature.	Bit	2	 is	 the	IE0	 bit,	which	we	 set	 because	we	want	 to
request	an	interrupt	when	the	sample	is	complete.	Bit	1	is	the	END0	bit,	which	is	set
because	this	is	the	last	(and	only)	sample	in	the	sequence.	Bit	0	is	the	D0	bit,	which
we	clear	because	we	do	not	wish	to	use	differential	mode.

Step	9.	 If	 interrupts	are	 to	be	used,	write	a	1	 to	 the	corresponding	mask	bit	 in	 the
ADC0_IM_R	 register.	 We	 want	 an	 interrupt	 to	 occur	 when	 the	 conversion	 is
complete	(set	bit	3,	MASK3).

Step	10.	We	enable	the	sample	sequencer	logic	by	writing	a	1	to	the	corresponding
ASENn.	 To	 enable	 sequencer	 3,	 we	 write	 a	 1	 to	 bit	 3	 (ASEN3)	 in	 the
ADC0_ACTSS_R	register.

Step	11.	The	priority	of	 the	ADC0	sequencer	3	 interrupts	 are	 in	bits	13–15	of	 the
NVIC_PRI4_R	register.

Step	 12.	 Since	 we	 are	 requesting	 interrupts,	 we	 need	 to	 enable	 interrupts	 in	 the
NVIC.	 ADC	 sequencer	 3	 interrupts	 are	 enabled	 by	 setting	 bit	 17	 in	 the
NVIC_EN0_R	register.

Step	13.	Lastly,	we	must	enable	interrupts	in	the	PRIMASK	register.

The	timer	starts	the	conversion	at	a	regular	rate.	Bit	3	(INR3)	in	the	ADC0_RIS_R
register	will	be	set	when	the	conversion	is	done.	This	bit	is	armed	and	enabled	for
interrupting,	 so	 conversion	 complete	 will	 trigger	 an	 interrupt.	 The	 IN3	 bit	 in	 the
ADC0_ISC_R	register	triggers	the	interrupt.		The	ISR	acknowledges	the	interrupt	by
writing	 a	 1	 to	 bit	 3	 (IN3).	 The	 12-bit	 result	 is	 read	 from	 the	ADC0_SSFIFO3_R
register.	The	book	web	site	for	has	example	code.	In	order	to	reduce	latency	of	other
interrupt	 requests	 in	 the	 system,	 this	 ISR	 simply	 stores	 the	 12-bit	 conversion	 in	 a
FIFO,	 to	 be	 processed	 later	 in	 the	 main	 program.	 Program	 2.20	 shows	 the
initialization	 and	 interrupt	 service	 routine	 to	 affect	 the	 periodic	 sampling.	 For	 the
port	pin,	we	disable	its	DEN,	clear	its	DIR,	set	its	AFSEL	and	enable	its	AMSEL	bit.

void	ADC0_InitTimer0ATriggerSeq3PD3(uint32_t	period){
		volatile	uint32_t	delay;
		SYSCTL_RCGCADC_R	|=	0x01;					//	1)	activate	ADC0
		SYSCTL_RCGCGPIO_R	|=	0x08;				//	Port	D	clock
		delay	=	SYSCTL_RCGCGPIO_R;				//	allow	time	for	clock	to	stabilize
		GPIO_PORTD_DIR_R	&=	~0x08;				//	make	PD3	input
		GPIO_PORTD_AFSEL_R	|=	0x08;			//	enable	alternate	function	on	PD3
		GPIO_PORTD_DEN_R	&=	~0x08;				//	disable	digital	I/O	on	PD3
		GPIO_PORTD_AMSEL_R	|=	0x08;			//	enable	analog	functionality	on	PD3
		ADC0_PC_R	=	0x01;													//	2)	configure	for	125K	samples/sec
		ADC0_SSPRI_R	=	0x3210;								//	3)	seq	0	is	highest,	seq	3	is	lowest
		SYSCTL_RCGCTIMER_R	|=	0x01;			//	4)	activate	timer0
		delay	=	SYSCTL_RCGCGPIO_R;
		TIMER0_CTL_R	=	0x00000000;				//	disable	timer0A	during	setup
		TIMER0_CTL_R	|=	0x00000020;			//	enable	timer0A	trigger	to	ADC
		TIMER0_CFG_R	=	0;													//	configure	for	32-bit	timer	mode
		TIMER0_TAMR_R	=	0x00000002;			//	configure	for	periodic	mode
		TIMER0_TAPR_R	=	0;												//	prescale	value	for	trigger
		TIMER0_TAILR_R	=	period-1;				//	start	value	for	trigger
		TIMER0_IMR_R	=	0x00000000;				//	disable	all	interrupts
		TIMER0_CTL_R	|=	0x00000001;			//	enable	timer0A	32-b,	periodic
		ADC0_ACTSS_R	&=	~0x08;								//	5)	disable	sample	sequencer	3
		ADC0_EMUX_R	=	(ADC0_EMUX_R&0xFFFF0FFF)+0x5000;	//	6)	timer	trigger
		ADC0_SSMUX3_R	=	4;												//	7)	PD3	is	analog	channel	4
		ADC0_SSCTL3_R	=	0x06;									//	8)	set	flag	and	end	after	first	sample																					
		ADC0_IM_R	|=	0x08;												//	9)	enable	SS3	interrupts
		ADC0_ACTSS_R	|=	0x08;									//	10)	enable	sample	sequencer	3
		NVIC_PRI4_R	=	(NVIC_PRI4_R&0xFFFF00FF)|0x00004000;	//	11)priority	2
		NVIC_EN0_R	=	1<<17;											//	12)	enable	interrupt	17	in	NVIC
		EnableInterrupts();											//	13)	enable	interrupts
}
void	ADC0Seq3_Handler(void){
		ADC0_ISC_R	=	0x08;								//	acknowledge	ADC	sequence	3	completion
		Fifo_Put(ADC0_SSFIFO3_R);		//	pass	to	foreground

}
Program	2.20.	Software	to	sample	data	using	the	ADC
(ADCT0ATrigger_xxx).

The	 above	 example	 only	 samples	 one	 analog	 input.	 The
ADCSWTriggerTwoChan_xxx	project	samples	two	channels	using	software	start.

2.10.3.	Internal	ADC	on	MSP432
Table	 2.27	 shows	 the	ADC	 register	 bits	 required	 to	 perform	 sampling	 on	 a	 single
channel.	 For	 more	 complex	 configurations	 refer	 to	 the	 specific	 data	 sheet.	 When
converting	from	analog	to	digital	we	can	select	speed	(how	fast	it	runs),	power	(how
much	energy	it	takes)	and	accuracy	(the	number	of	bits	in	the	result).	For	example,	to
reduce	 power	 we	 can	 run	 slower	 or	 reduce	 the	 number	 of	 bits.	 Bits	 4	 –	 0	 in
ADC14MCTL0	 specify	 the	 channel	 to	 convert.	 See	 Table	 2.3	 to	 see	 the	mapping
between	I/O	pins	and	the	ADC	analog	input	channel.	For	example,	channel	6	exists
on	pin	P4.7.	On	the	MSP432,	we	will	need	to	set	bits	in	the	SEL0	SEL1	bits	to	11	to
activate	 the	 analog	 interface.	Most	 of	 the	ADC	 control	 bits	 can	 only	 be	 set	 when
ADC14ENC	=	0,	so	clearing	this	bit	will	occur	first	during	initialization.

	 31-30 29-27 26 25 24-22 21-19 18-17 16 	
0x40012000 PDIV SHSx SHP ISSH DIVx SSELx CONSx BUSY ADC14CTL0
	 15-12 11-8 7 6-5 4 3-2 1 0 	
	 SHT1x SHT0x MSC 	 ON 	 ENC SC ADC14CTL0
	 	 	 	 	 	 	 	 	 	
	 31-28 27	–	24 22 21 20-16 	
0x40012004 	 CH3MAP	–	CH0MAP BATmap 	 CStartAdr ADC14CTL1
	 15-6 5	–	4 3 2 1-0 	
	 	 RES DF REFBURST PWRMD ADC14CTL1
	 	 	 	 	 	 	 	 	 	
	 31-16 15 14 13 12 11-8 	
0x40012018 	 WINCTH WINC DIF 	 VRSEL ADC14MCTL0
	 7 6 5 4	–	0 	
	 EOS 	 	 ADC14INCHx ADC14MCTL0
	 	 	 	 	 	 	 	 	 	
	 31	–	16 15	–	0 	
0x40012098 	 Conversion_Results ADC14MEM0
	 	 	 	 	 	 	 	 	 	
	 31 	 5 4 3 2 1 0 	
0x4001213C IE31 … IE5 IE4 IE3 IE2 IE1 IE0 ADC14IER0
	 	 	 	 	 	 	 	 	 	
	 31 	 5 4 3 2 1 0 	
0x40012144 IFG31 … IFG5 IFG4 IFG3 IFG2 IFG1 IFG0 ADC14IFGR0

Table	2.27.	The	MSP432	ADC	registers.	Each	register	is	32	bits	wide.	
The	PDIV	field	selects	a	ADC	clock	divider	(00	is	divide	by	1,	01	is	divide	by	4,	10
is	 divide	 32,	 and	 11	 is	 divide	 by	 64).	 Running	 with	 a	 slower	 clock	 increases

accuracy	but	will	take	longer	to	convert.	We	will	set	the	SHSx	field	to	000	to	select
the	ADC14SC	 signal	 as	 the	 sample	 and	 hold	 source.	SHP	 is	 the	 sample	 and	 hold
pulse	mode	select.	With	SHP=0	 the	ADC	runs	 faster.	The	ISSH	bit	 can	be	used	 to
invert	the	sample	and	hold	pulse.	We	will	clear	this	bit.	We	use	the	3-bit	DIVx	field
to	select	another	ADC	clock	divider.	If	the	value	of	this	field	is	n,	then	there	will	be
a	divide	by	n+1.	Again	this	defines	a	tradeoff	between	accuracy	and	speed.	The	3-bit
field	SSELx	defines	the	clock	source.	We	will	set	it	to	100	to	select	the	SMCLK.	For
other	choices	see	Table	2.28.

Value ADC	Clock	Source
000 MODCLK
001 SYSCLK
010 ACLK
011 MCLK
100 SMCLK
101 HSMCLK

Table	2.28.	The	ADC	clock	selection	SSELx		bits.
The	 ADC	 has	 a	 sample	 and	 hold	 module	 (SHM)	 at	 its	 input.	 The	 first	 ADC
conversion	 step	 is	 to	 put	 the	 SHM	 in	 sample	mode	 during	 which	 time	 the	 analog
signal	 is	 connected	 to	 a	 sampling	 capacitor.	 Current	 flows	 as	 the	 voltage	 on	 the
capacitor	rises	or	falls	to	equalize	to	the	analog	input	voltage.	The	second	step	is	to
disconnect	 the	 capacitor	 from	 the	 analog	 input,	 hold	mode.	The	ADC	 converts	 the
voltage	 on	 the	 capacitor	 to	 digital	 form.	 The	 longer	 the	 sampling	 phase,	 the	more
accurate	will	be	the	conversion.	The	SHT1x	and	SHT0x	are	4-bit	fields	defining	the
length	 of	 the	 sampling	 period.	 SHT0x	 controls	 registers	 ADC14MEM0	 to
ADC14MEM7	 and	ADC14MEM24	 to	ADC14MEM31.	 Since	 we	 will	 be	 using
ADC14MEM0,	we	set	SHT0x.	Table	2.29	lists	the	sampling	periods	available.

Value Sampling	Period
0000 4	ADC14CLK	periods
0001 8	ADC14CLK	periods
0010 16	ADC14CLK	periods
0011 32	ADC14CLK	periods
0100 64	ADC14CLK	periods
0101 96ADC14CLK	periods
0110 128	ADC14CLK

periods
0110 192	ADC14CLK

periods
Table	2.29.	The	SHT0x	SHT1x	fields	define	the	sampling	period.
	

The	MSC	bit	selects	single	or	multiple	conversions.	We	will	clear	this	bit	so	when

the	software	starts	conversion	it	takes	sample	and	stops.	We	set	the	ON	bit	to	apply
power	to	the	ADC.	We	set	the	ENC	bit	to	enable	the	ADC.	As	mentioned	earlier	we
clear	 the	ENC	bit	while	configuring	 the	ADC.	The	software	will	 set	 the	SC	 bit	 to
start	 an	ADC	 conversion.	 Software	writes	 one	 to	SC	 but	 this	 bit	 is	 automatically
cleared.

There	are	32	ADC14MEMx	registers,	x	=	0	–	31,	similar	to	ADC14MEM0	and	32
ADC14MCTLx	registers	similar	to	ADC14MCTL0	shown	in	Table	2.27.	The	5-bit
CStartAdr	 field	 specifies	 the	 conversion	 start	 address.	 These	 bits	 select	 which
ADC14	conversion	memory	register	 is	used	 for	a	single	conversion	or	 for	 the	 first
conversion	 in	 a	 sequence.	 The	 value	 of	 CStartAdr	 is	 0	 to	 31,	 corresponding	 to
ADC14MEM0	 to	 ADC14MEM31.	 We	 will	 use	 ADC14MEM0	 and
ADC14MCTL0	in	our	example	by	setting	CStartAdr	to	0.

The	RES	 field	 specifies	 the	ADC	 resolution.	Again	we	 can	 trade	off	 accuracy	 for
speed.	Set	RES	to	00	for	8-bit	conversion,	set	RES	to	01	for	10	bits,	set	RES	to	10
for	12	bits	and	set	it	to	11	for	14	bits.	We	set	the	REFBURST	bit	if	we	desire	to	turn
off	the	reference	when	not	in	use.	In	our	example,	we	will	clear	this	bit	to	have	the
reference	on	continuously.

The	PWRMD	 field	 defines	 the	 power	 modes.	 Setting	 it	 to	 00	 will	 use	 the	 most
power	but	allow	for	14-bit	conversions	at	the	highest	speed.	We	set	PWRMD	to	10
for	low-power	mode	and	can	be	used	for	12-bit,	10-bit	and	8-bit	resolutions.

We	 perform	 the	 following	 steps	 to	 timer-trigger	 the	 ADC	 and	 sample	 data
periodically	using	 interrupt	 synchronization,	 see	Program	2.21.	This	method	has	no
sampling	jitter.

Step	1.	Halt	the	timer	during	initialization
Step	2.	We	 enable	 the	 timer	 to	 use	 SMCLK,	 divide	 by	 1,	 stop	mode,	 and	 disable
interrupts.	 Interrupts	will	be	generated	by	 the	ADC	module	when	 the	conversion	 is
complete	and	not	by	the	timer	when	the	conversion	is	started.
Step	 3.	 We	 configure	 the	 timer	 to	 start	 the	 ADC	 conversion	 periodically.	 In
particular,	bits	15-10	are	0	because	we	do	not	need	capture	events.	Bit	8	is	zero	to
use	compare	mode.	Bits	7-5	are	011	to	create	set/reset	output	mode,	which	will	be	a
squarewave	created	automatically	by	the	timer	and	sent	to	the	ADC.	The	frequency	of
this	squarewave	will	set	the	ADC	sampling	rate.	An	analog-to-digital	conversion	is
initiated	with	a	rising	edge	of	the	timer	squarewave	output.	Bit	4	is	clear	because	the
timer	does	not	create	interrupts.
Step	4.	In	this	step	we	set	the	sampling	period.	If	the	SMCLKis	12	MHz,	then	1	ms
period	output	will	 be	 created	 if	we	write	 a	 5999	 into TA0CCR1 	 and	we	write	 a
11999	into TA0CCR0 .
Step	5.	This	step	configures	the	timer	clock	as	divide	by	1.
Step	6.	Before	configuring	the	analog	reference,	we	make	sure	it	is	idle.
Step	7.	Bits	5-4	(REFVSEL)	set	to	1,1	to	select	the	2.5V	reference.	This	defines	the
ADC	range	 to	be	0	 to	2.5V.	Bit	3	 (REFTCOFF)	 is	 set	 to	disable	 the	 temperature
sensor.	Disabling	 the	 sensor	 saves	power.	Bit	1	 (REFOUT)	 is	 clear	 to	disconnect

the	reference	from	P5.6	.Bit	0	(REFON)	is	set	to	enable	the	reference.
Step	8.	After	configuring	the	analog	reference,	we	wait	for	it	to	stabilize.
Step	9.	Before	 configuring	 the	ADC,	we	 disable	 it.	 Clearing	 bit	 1	 (ADC14ENC)
allows	us	to	program	the	ADC	modes.
Step	10.	Before	configuring	the	ADC,	we	make	sure	it	is	idle.
Step	11.	We	write	 to	 the ADC14CTL0 	 register	 to	set	 the	ADC	conversion	mode.	
Bits	31-30	(PDIV)	are	set	to	0,0	to	specify	a	predivide	by	1.	Bits	29-27	(SHSx)	are
set	to	0,0,1	to	select	TA0_C1	output	as	the	ADC	trigger	source.	Again,	a	rising	edge
of	the	timer	output	will	initiate	an	ADC	conversion.	We	set	bit	26	(SHP)	to	make	the
sample/hold	use	pulse	mode.	We	clear	bit	25		(ISSH)	so	the	sample-and-hold		is	not
inverted.	We	set	bits	24-22	(DIVx)	to	0,0,0	to	the	clock	divider	to	1.	We	set	bits	21-
19	 (SSELx)	 to	 1,0,0	 to	 select	 the	 SMCLK	 to	 run	 the	 ADC.	 We	 set	 bits	 18-17
(CONSEQx)	to	1,0	to	set	the	ADC	mode	to	Repeat-single-channel.	We	will	set	both
bits	15-12	(SHT1x)	and	bits	11-8	(SHT0x)	to	select	32	clocks	each	for	sample-and-
hold	times	1	and	0.	The	longer	we	sample	the	more	accurate	the	result,	but	the	longer
it	takes	to	do	the	conversion.	We	clear	bit	7	(MSC)	so	there	is	one	sample	per	rising
edge	of	the	trigger.	Set	bit	4	(ON)	to	power	up	the	ADC.
Step	12.	We	write	to	the ADC14CTL1 	register	to	set	additional	ADC	modes.		We
set	 bits	 20-16	 (STARTADDx)	 to	 0,0,0,0,0	 to	 use	ADC14MEM0	 as	 the	 starting
address.	 We	 set	 bits	 5-4	 (RES)	 to	 1,1	 to	 select	 14-bit	 conversion	 requiring	 16
clocks.	 Clearing	 bit	 3	 (DF)	 specifies	 binary	 unsigned	 mode.	 Clearing	 bit	 2
(REFBURST)	will	power	the	reference	continuously.	Clearing	bits	1-0	(PWRMD)
specifies	 regular	power	mode.	 It	 takes	more	power	 to	 leave	 the	power	on,	but	 the
results	will	be	more	accurate.
Step	13.	Writing	to	the ADC14MCTL0 	register	the	range	and	the	channel.	We	clear
bit	14			(WINC)	to	disable	the	comparator.	We	clear	bit	13	(DIF)	to	specify	single-
ended	mode.	We	 set	 bits	 11-8	 (VRSEL)	 to	 0,0,0,1	 to	 set	 the	positive	 reference	 to
VREF	(2.5V)	and	the	negative	reference	to	ground.	We	set	bit	7	(EOS)	to	activate	an
end	of	sequence	event.	Bits	4-0	(INCHx)	set	the	input	channel.	Writing	a	6	specifies
channel	6,	which	is	P4.7.
Step	14.	In	this	step	we	arm	the	IFG0	for	interrupts	and	disarm	the	other	flags.
Step	15.	We	set	the	SEL0	and	SEL1	bits	for	P4.7	to	specify	analog	input.
Step	16.	we	set	the	ENC	bit	to	enable	the	ADC.
Step	17.	We	specify	the	priority	of	the	ADC	interrupt.	Because	the	trigger	occurs	in
hardware	 this	 interrupt	priority	needs	 to	high	enough	so	 the	ISR	is	 run	within	1	ms
(before	another	sample	would	be	triggered).
Step	18.	We	enable	ADC	interrupts	in	the	NVIC
Step	19.	Lastly,	we	activate	the	timer	to	begin	sampling.	Interrupts	will	be	enabled	in
the	main	program	after	all	devices	initialized

void	ADC0_InitTA0TriggerCh6(uint16_t	period){
		TA0CTL	&=	~0x0030;	//	1)	halt	Timer	A0
		TA0CTL	=	0x0200;			//	2)SMCLK,	stop	mode,	divide	by	one,	no	interrupt
		TA0CCTL1	=	0x0060;	//	3)	no	capture,	compare	mode,	set/reset
		TA0CCR1	=	(period-1)/2;		//	4)	specify	sampling	period

		TA0CCR0	=	(period	-	1);							
		TA0EX0	&=	~0x0007;	//	5)	configure	for	input	clock	divider	/1
		while(REFCTL0&0x0400){};	//	6)	wait	for	the	reference	to	be	idle
		REFCTL0	=	0x0039;		//	7)	configure	reference	for	static	2.5V
		while((REFCTL0&0x1000)	==	0){};		//	8)	wait	for	reference	to	stabilize
		ADC14CTL0	&=	~0x00000002;								//	9)	allow	programming
		while(ADC14CTL0&0x00010000){};			//	10)	wait	for	BUSY	to	be	zero
		ADC14CTL0	=	0x0C243310;					//	11)	ADC	mode
		ADC14CTL1	=	0x00000030;					//	12)	ADC14MEM0,	14-bit,	ref	on,	regular
		ADC14MCTL0	=	0x00000186;				//	13)	0	to	2.5V,	channel	6
		ADC14IER0	=	0x00000001;					//	14)	enable	ADC14IFG0	interrupt
		ADC14IER1	=	0;														//				disable	these	interrupts
		P4SEL1	|=	0x80;													//	15)	analog	mode	on	A6,	P4.7
		P4SEL0	|=	0x80;
		ADC14CTL0	|=	0x00000002;				//	16)	enable
		NVIC_IPR6	=	(NVIC_IPR6&0xFFFFFF00)|0x00000040;	//	17)	priority	2
		NVIC_ISER0	=	0x01000000;				//	18)	enable	interrupt	24	in	NVIC
		TA0CTL	|=	0x0014;											//	19)	reset	and	start	Timer	A0	in	up	mode
}
void	ADC14_IRQHandler(void){	uint16_t	result;
		if((ADC14IFGR0&0x00000001)	==	0x00000001){
				Fifo_Put(ADC14MEM0);}	//	pass	to	foreground
}
Program	2.21.	Software	to	sample	data	using	the	ADC
(ADCTA0Trigger_MSP432).

Checkpoint	2.13:	If	the	input	voltage	is	1.0V,	what	value,	in	14-bit	unsigned
binary	mode,	will	the	MSP432	ADC	return	(assuming	0	to	2.5V	range)?	What
will	a	TM4C	with	a	12-bit	ADC	return	(assuming	0	to	3.3V	range)?

The	 above	 example	 only	 samples	 one	 analog	 input.	 The
ADCSWTriggerTwoChan_MSP432	 project	 samples	 two	 channels	 using	 software
start.

2.10.4.	IR	distance	measurement
A	 nonmonotonic	 response	 is	 an	 input/output	 function	 that	 does	 not	 have	 a
mathematical	inverse.	For	example,	if	two	or	more	input	values	yield	the	same	output
value,	 then	 the	 transducer	 is	 nonmonotonic.	 Software	 will	 have	 a	 difficult	 time
correcting	 a	 nonmonotonic	 transducer.	 For	 example,	 the	 Sharp	 GP2Y0A21YK	 IR
distance	 sensor	 has	 a	 transfer	 function	 as	 shown	 in	 Figure	 2.30.	 If	 you	 read	 a
transducer	voltage	of	2	V,	you	cannot	tell	if	the	object	is	3	cm	away	or	12	cm	away.

Figure	2.30.	The	Sharp	IR	distance	sensor	exhibits	nonmonotonic	behavior.
	

The	transducer	in	Figure	2.17	uses	IR	light	to	measure	distance	to	a	reflecting	object.
These	sensors	require	a	nonuniform	power,	so	placing	a	10	µF	near	the	power	line	of
the	sensor	reduces	noise	on	other	components.	If	the	object	is	more	than	6	cm	away,
the	 output	 voltage	 is	 inversely	 related	 to	 voltage.	 If	 N	 is	 the	 ADC	 sample,	 then
distance	can	be	calculated	as

d	=	c/N where	c	is	a	calibration	constant

Figure	 2.31	 shows	 this	 sensor	 has	 a	 significant	 amount	 of	 noise.	 The	 nonlinear
median	 filter,	 presented	 in	Chapter	 6,	 is	 a	 good	 choice	 to	 improve	 signal	 to	 noise
ratio.

Figure	2.31.	Noise	on	a	GP2Y0A21YK	IR	distance	sensor	shows	large
periodic	spikes.

2.11.	OS	Considerations	for	I/O	Devices

2.11.1	Board	Support	Package
The	 entire	 book	 deals	 with	 interfacing	 I/O	 devices	 to	 build	 embedded	 systems.
However,	in	this	section	we	will	study	two	considerations	of	how	the	OS	can	manage
I/O.	It	is	good	design	practice	to	provide	an	abstraction	for	the	I/O	layer.	Names	for
this	abstraction	include	hardware	abstraction	layer	(HAL),	device	driver,	and	board
support	package	(BSP).	From	an	operating	system	perspective,	the	goal	is	the	make	it
easier	to	port	the	system	from	one	hardware	platform	to	another.	The	system	becomes
more	portable	if	we	create	a	BSP	for	our	hardware	devices.	A	BSP	could	allow	you
to	encapsulate	the	following:

Timer	initialization
ISR	Handlers
LED	output	functions
Switch	input	functions
Setting	up	the	interrupt	controller
Setting	up	communication	channel
CAN,	I2C,	ADC,	DAC,	SPI,	serial,	graphics

	
	

Example	2.1.	Design	a	BSP	for	using	a	periodic	interrupt.

Solution:	In	any	abstraction,	we	need	to	separate	what	the	system	does	from	how	it
does	it.	What	we	use	a	periodic	interrupt	for	is	to	run	a	task	at	a	fixed	rate.	How	we
do	 it	 on	 the	 microcontroller	 is	 to	 enable	 the	 SysTick	 timer	 and	 configure	 it	 to
interrupt	periodically,	as	presented	previously	in	Section	2.2.2.	What	the	user	needs
is	an	OS	function	that	he	or	she	can	call	specifying	their	task	and	how	often	it	should
run.

We	 can	 abstract	 the	 periodic	 interrupt,	 by	 defining	 the	 function	 in	 Program	 2.22,
which	is	essentially	Program	2.5	with	the	flexibility	to	specify	the	task	to	run	and	the
period	 with	 which	 to	 run	 it.	 We	 have	 hidden	 from	 the	 user	 the	 details	 of	 the
microcontroller.	 To	 run	 the	 functionTask once	 a	 second,	 the	 user
calls OS_AddPeriodicTask(1000,&Task);

uint32_t	static	volatile	Count;
uint32_t	static	Period;
void	(*CallBack)(void);		//	call	back	function
void	SysTick_Handler(void){

		Count++;
		if(Count==Period){
				Count	=	0;
				(*CallBack)();						//	execute	call	back	process
		}
}
//---------------------	OS_AddPeriodicTask	---------------------
//	Input:	thePeriod	is	a	time	period	in	ms
//								fp	is	a	function	to	be	executed	at	this	period
//	Output:	none
//	Example:	to	toggle	PD0	once	a	second,	we	can
//			void	toggle(void){PORTD0	^=	0x01;}
//			OS_AddPeriodicTask(1000,&toggle);
void	OS_AddPeriodicTask(uint32_t	thePeriod,	void(*fp)(void)){
		DisableInterrupt();						//	make	initialization	ritual	atomic
		Period	=	thePeriod;
		CallBack	=	fp;
		Count		=	0;
		NVIC_ST_CTRL_R	=	0;									//	disable	SysTick	during	setup
		NVIC_ST_RELOAD_R	=	49999;			//	reload	value,	1ms
		NVIC_ST_CURRENT_R	=	0;						//	any	write	to	current	clears	it
	 	 NVIC_SYS_PRI3_R	 =	 (NVIC_SYS_PRI3_R&0x00FFFFFF)|0x40000000;	 //priority
2															
		NVIC_ST_CTRL_R	=	0x00000007;//	enable	with	core	clock	and	interrupts
		EnableInterrupts();
}
Program	2.22.	RTOS	function	to	run	a	periodic	task.
	
	

Example	2.2.	Design	a	BSP	for	the	LEDs.

Solution:	Again,	we	need	to	separate	what	the	system	does	from	how	it	does	it.	We
can	turn	LEDs	on	and	off.	In	this	example,	the	four	LEDs	constitute	one	4-bit	device,
so	we	will	organize	the	solution	in	that	manner,	as	shown	in	Program	2.23.	Again,	we
have	hidden	from	the	user	the	fact	that	we	are	running	on	a	TM4C	using	Port	D.

#define	LEDS		(*((volatile	uint32_t	*)0x4000703C))
//---------------------	OS_LEDInit	---------------------
//	Initialize	the	set	of	4	LEDs
//	Input:	none
//	Output:	none
void	OS_LEDInit(void){	volatile	uint32_t	delay;
		SYSCTL_RCGCGPIO_R	|=	0x08;			//	activate	port	D
		delay	=	SYSCTL_RCGCGPIO_R;		//	allow	time	for	clock	to	stabilize

		GPIO_PORTD_DIR_R	|=	0x0F;				//	make	PD3-0	out
		GPIO_PORTD_AFSEL_R	&=	~0x0F;	//	regular	port	function
		GPIO_PORTD_DEN_R	|=	0x0F;				//	enable	digital	I/O	on	PD3-0
}
//---------------------	OS_LED_Out	---------------------
//	Output	to	the	4	LEDs
//	Input:	number	from	0	to	15,	specifying	which	LEDs	are	on	and	off
//	Output:	none
void	OS_LEDOut(uint32_t	number){
		LEDS	=	number;	//	friendly	access
}
Program	2.23.	BSP	for	four	LEDs.
	

2.11.2	Path	Expression
Path	 expression	 is	 a	 formal	 mechanism	 to	 specify	 the	 correct	 calling	 order	 in	 a
group	 of	 related	 functions.	 Consider	 a	 UART	 device	 driver	 with	 4	 functions,	 the
prototypes	are

void	UART_Init(void);									//	Initialize	Serial	port
char	UART_InChar(void);							//	Wait	for	new	serial	port	input
void	UART_OutChar(char	data);	//	Output	8-bit	to	serial	port
void	UART_Close(void);								//	Shut	down	serial	port
	

It	is	obvious	that	you	should	not	attempt	to	input/output	until	the	UARTis	initialized.
In	 this	 problem,	 we	 will	 go	 further	 and	 actually	 prevent	 the	 user	 from
executingUART_InChar and UART_OutChar before	 executingUART_Init .	 A
directed	 graph	 is	 a	 general	 method	 to	 specify	 the	 valid	 calling	 sequences	 (Figure
2.32).	An	arrow	represents	a	valid	calling	sequence	within	the	path	expression.	The
system	“state”	is	determined	by	the	function	it	called	last.	For	this	example,	we	begin
in	 the	 closed	 state,	 because	 the	 UART	 is	 initially	 disabled.	 The	 tail	 of	 an	 arrow
touches	the	function	we	called	last,	and	the	head	of	an	arrow	points	to	a	function	that
we	are	 allowed	 to	 call	 next.	 In	 this	method,	 a	 calling	 sequence	 is	valid	 if	 there	 is
sequence	of	arrows	to	define	it.	For	example,	these	calling	sequences	are	valid

Init	InChar	InChar	OutChar	Close d	b	e	i	j
Init	OutChar	OutChar	OutChar	OutChar	 d	c	g	g	g
Init	Close	Init	InChar	Close d	a	d	b	h

	
On	the	other	hand,	 the	 following	calling	sequences	are	 illegal	because	each	has	no
representative	sequence	of	arrows

Init	InChar	Init	OutChar	Close Can’t	initialize	twice

Close Can’t	close	because	already	disabled
OutChar	OutChar	OutChar	 Can’t	output	without	initialization

	

Figure	2.32.	Directed	graph	showing	path	expression	for	the	serial	port
driver.

A	 fast,	 but	memory	 inefficient	method,	 to	 represent	 a	 directed	graph	uses	 a	 square
matrix.	 Since	 there	 are	 four	 functions,	 the	matrix	will	 be	 4	 by	 4.	The	 row	number
(0,1,2,3)	 will	 specify	 the	 current	 state	 (the	 function	 called	 last),	 and	 the	 column
number	(0,1,2,3)	will	specify	the	function	that	might	be	called	next.	The	values	in	the
matrix	are	 true(1)/false(0)	 specifying	whether	or	not	 the	next	 function	call	 is	 legal.
Since	there	are	10	arrows	in	the	directed	graph,	there	will	be	exactly	10	true	values
in	 the	matrix,	 one	 for	 each	 arrow.	The	 remaining	values	will	 be	 false(0).	Program
2.24	shows	the	data	structure	for	the	directed	graph.	At	the	beginning	of	each	call	to
the	serial	port	driver,	the	OS	checks	to	verify	the	user	has	permission	to	execute	that
function.	Theglobal	variable 	State 	defines	 the	current	state.	For	example,	Path[3]
[0] will	 be	 true	 signifying	 it	 is	 OK	 to	 call UART_Init 	 if	 the	 UART	 is	 disabled.
Weassume	there	is	an	operating	system	function	called OS_Kill() ,	which	should	be
called	if	a	thread	makes	an	illegal	function	call,	destroying	the	thread	because	it	has
made	a	serious	programming	error.

	
int	State=3;		//	start	in	the	Closed	state
int	Path[4][4]={	/*			Init		InChar		OutChar			Close	*/
/*											column				0						1								2								3			*/
/*	Init				row	0*/	{			0	,				1			,				1			,				1		},
/*	InChar		row	1*/	{			0	,				1			,				1			,				1		},
/*	OutChar	row	2*/	{			0	,				1			,				1			,				1		},
/*	Close			row	3*/	{			1	,				0			,				0			,				0		}}
void	UART_Init(void){
		if(Path[State][0]==0)	OS_Kill();		//	kill	if	illegal
		State	=	0;																								//	perform	valid	Init
		SYSCTL_RCGCUART_R	|=	0x0001;	//	activate	UART0
		SYSCTL_RCGCGPIO_R	|=	0x0001;	//	activate	port	A
		UART0_CTL_R	&=	~0x0001;						//	disable	UART
		UART0_IBRD_R	=	3;	//	int(6,000,000	/	(16*115,200))	=	int(3.2552)
		UART0_FBRD_R	=	16;//	int(0.2552	*	64	+	0.5)	=	16

		UART0_LCRH_R	=	0x0070;							//	8-bit	word	length,	enable	FIFO
		UART0_CTL_R	=	0x0301;								//	enable	RXE,	TXE	and	UART
		GPIO_PORTA_AFSEL_R	|=	0x03;		//	enable	alt	funct	on	PA1-0
		GPIO_PORTA_DEN_R	|=	0x03;				//	enable	digital	I/O	on	PA1-0
}
char	UART_InChar(void){
		if(Path[State][1]==0)	OS_Kill();		//	kill	if	illegal
		State	=	1;																								//	perform	valid	InChar
		while((UART0_FR_R&0x0010)	!=	0);	//	wait	until	RXFE	is	0
		return((char)(UART0_DR_R&0xFF));
}
void	UART_OutChar(char	data){
		if(Path[State][2]==0)	OS_Kill();		//	kill	if	illegal
		State	=	2;																								//	perform	valid	OutChar
		while((UART0_FR_R&0x0020)	!=	0);		//	wait	until	TXFF	is	0
		UART0_DR_R	=	data;
}
void	UART_Close(void){
		if(Path[State][3]==0)	OS_Kill();		//	kill	if	illegal
		State	=	3;																								//	perform	valid	Close
		UART0_CTL_R	&=	~0x0001;						//	disable	UART
}
Program	2.24.	Directed	graph	showing	path	expression	for	the	serial	port
driver.

2.12.	Debugging

2.12.1.	Functional	Debugging
Functional	 debugging	 involves	 the	 verification	 of	 input/output	 parameters.	 It	 is	 a
static	 process	 where	 inputs	 are	 supplied,	 the	 system	 is	 run,	 and	 the	 outputs	 are
compared	against	the	expected	results.	We	will	present	seven	methods	of	functional
debugging.

1.	Single	Stepping	or	Trace.	Many	debuggers	allow	you	to	set	the	program	counter	to
a	specific	address	then	execute	one	instruction	at	a	time.	StepOver	will	execute	one
instruction,	 unless	 that	 instruction	 is	 a	 subroutine	 call,	 in	which	 case	 the	 simulator
will	execute	the	entire	subroutine	and	stop	at	the	instruction	following	the	subroutine
call.	StepOut	assumes	 the	execution	has	already	entered	a	 function	and	will	 finish
execution	of	the	function	and	stop	at	the	instruction	following	the	function	call.

2.	 Breakpoints	 without	 filtering.	 The	 first	 step	 of	 debugging	 is	 to	 stabilize	 the
system	with	the	bug.	In	the	debugging	context,	we	stabilize	the	problem	by	creating	a
test	routine	that	fixes	(or	stabilizes)	all	the	inputs.	In	this	way,	we	can	reproduce	the
exact	inputs	over	and	over	again.	Once	stabilized,	if	we	modify	the	program,	we	are
sure	that	the	change	in	our	outputs	is	a	function	of	the	modification	we	made	in	our
software	 and	 not	 due	 to	 a	 change	 in	 the	 input	 parameters.	 A	 breakpoint	 is	 a
mechanism	 to	 tag	 places	 in	 our	 software,	 which	 when	 executed	 will	 cause	 the
software	to	stop.

3.	Conditional	breakpoints.	One	of	the	problems	with	breakpoints	is	that	sometimes
we	have	to	observe	many	breakpoints	before	the	error	occurs.	One	way	to	deal	with
this	problem	is	the	conditional	breakpoint.	Add	a	global	variable	called count 	and
initialize	 it	 to	 zero	 in	 the	 ritual.	 Add	 the	 following	 conditional	 breakpoint	 to	 the
appropriate	 location,	and	run	 the	system	again	 (you	can	change	 the	32	 to	match	 the
situation	that	causes	the	error).

		if(++count==32){
				breakpoint();					//	<=	place	breakpoint	here
		}

Notice	that	the	breakpoint	occurs	only	on	the	32nd	time	the	break	is	encountered.	Any
appropriate	condition	can	be	substituted.

4.	 Instrumentation:	print	 statements.	The	use	of	 print	 statements	 is	 a	 popular	 and
effective	 means	 for	 functional	 debugging.	 The	 difficulty	 with	 print	 statements	 in
embedded	systems	is	that	a	standard	“printer”	may	not	be	available.	Another	problem
with	 printing	 is	 that	 most	 embedded	 systems	 involve	 time-dependent	 interactions
with	 its	 external	 environment.	 The	 print	 statement	 itself	 may	 so	 slow	 that	 the
debugging	instrument	itself	causes	the	system	to	fail.	Therefore,	the	print	statement	is

usually	 intrusive.	One	exception	 to	 this	 rule	 is	 if	 the	printing	channel	occurs	 in	 the
background	 using	 interrupts,	 and	 the	 time	 between	 print	 statements	 (t2)	 is	 large
compared	 to	 the	 time	 to	 execution	 one	 print	 (t1),	 then	 the	 print	 statements	will	 be
minimally	intrusive.	Nevertheless,	this	book	will	focus	on	debugging	methods	that	do
not	rely	on	the	availability	of	a	printer.

5.	Instrumentation:	dump	into	array	without	 filtering.	One	of	 the	difficulties	with
print	statements	is	that	they	can	significantly	slow	down	the	execution	speed	in	real-
time	systems.	Many	times	the	bandwidth	of	the	print	functions	cannot	keep	pace	with
data	being	generated	by	the	debugging	process.	For	example,	our	system	may	wish	to
call	a	function	1000	times	a	second	(or	every	1	ms).	If	we	add	print	statements	to	it
that	require	50	ms	to	perform,	the	presence	of	the	print	statements	will	significantly
affect	the	system	operation.	In	this	situation,	the	print	statements	would	be	considered
extremely	intrusive.	Another	problem	with	print	statements	occurs	when	the	system	is
using	the	same	output	hardware	for	its	normal	operation,	as	is	required	to	perform	the
print	 function.	 In	 this	 situation,	 debugger	 output	 and	 normal	 system	 output	 are
intertwined.	To	 solve	 both	 these	 situations,	we	 can	 add	 a	 debugger	 instrument	 that
dumps	strategic	information	into	arrays	at	run	time.	Assume P1 is	an	input	and P2 is
an	 output	 port	 that	 are	 strategic	 to	 the	 system.	 The	 first	 step	when	 instrumenting	 a
dump	 is	 to	 define	 a	 buffer	 in	 RAM	 to	 save	 the	 debugging	 measurements.	
The Debug_Cnt will	 be	 used	 to	 index	 into	 the	 buffers. Debug_Cnt 	 must	 be
initialized	to	zero,	before	the	debugging	begins.	The	debugging	instrument,	shown	in
Program	 2.25,	 saves	 the	 strategic	 data	 into	 the	 buffer.	 We	 can	 then	 observe	 the
contents	 of	 the	 array	 at	 a	 later	 time.	One	 of	 the	 advantages	 of	 dumping	 is	 that	 the
JTAG	debugging	allows	you	to	visualize	memory	while	running.

#define	SIZE	100
uint8_t	Debug_Buffer[SIZE][2];
unsigned	int	Debug_Cnt=0;
void	Debug_Dump(void){	//	dump	P1IN	and	P2OUT
		if(Debug_Cnt	<	SIZE){
				Debug_Buffer[Debug_Cnt][0]	=	P1IN;
				Debug_Buffer[Debug_Cnt][1]	=	P2OUT;
				Debug_Cnt++;
		}
}
Program	2.25.	Instrumentation	dump	without	filtering.

Next,	you	add Debug_Dump(); 	statements	at	strategic	places	within	the	system.	You
can	 either	 use	 the	 debugger	 to	 display	 the	 results	 or	 add	 software	 that	 prints	 the
results	after	the	program	has	run	and	stopped.	In	this	way,	you	can	collect	information
in	the	exact	same	manner	you	would	if	you	were	using	print	statements.

6.	Instrumentation:	dump	into	array	with	filtering.	One	problem	with	dumps	is	that
they	 can	 generate	 a	 tremendous	 amount	 of	 information.	 If	 you	 suspect	 a	 certain

situation	 is	 causing	 the	 error,	 you	 can	 add	 a	 filter	 to	 the	 instrument.	 A	 filter	 is	 a
software/hardware	condition	that	must	be	true	in	order	to	place	data	into	the	array.	In
this	 situation,	 if	we	 suspect	 the	 error	 occurs	when	 the	pointer	 nears	 the	 end	of	 the
buffer,	we	could	add	a	filter	that	saves	in	the	array	only	when	data	matches	a	certain
condition.	In	the	example	shown	in	Program	2.26,	the	instrument	saves	the	strategic
variables	into	the	buffer	only	when P1.7 	is	high.

#define	SIZE	100
uint8_t	Debug_Buffer[SIZE][2];
unsigned	int	Debug_Cnt=0;
void	Debug_FilteredDump(void){	//	dump	P1IN	and	P2OUT
		if((P1IN&0x80)&&(Debug_Cnt	<	SIZE)){
				Debug_Buffer[Debug_Cnt][0]	=	P1IN;
				Debug_Buffer[Debug_Cnt][1]	=	P2OUT;
				Debug_Cnt	++;
}
}
Program	2.26.	Instrumentation	dump	with	filter.

7.	Monitor	 using	 the	 LED	 heartbeat.	Another	 tool	 that	 works	 well	 for	 real-time
applications	 is	 the	monitor.	A	monitor	 is	an	 independent	output	process,	somewhat
similar	to	the	print	statement,	but	one	that	executes	much	faster	and	thus	is	much	less
intrusive.	An	LCD	can	be	an	effective	monitor	for	small	amounts	of	information	if	the
time	between	outputs	is	much	larger	than	the	time	to	output.	Another	popular	monitor
is	the	LED.	You	can	place	one	or	more	LEDs	on	individual	otherwise	unused	output
bits.	 Software	 toggles	 these	 LEDs	 to	 let	 you	 know	what	 parts	 of	 the	 program	 are
running.	An	LED	is	an	example	of	a	Boolean	monitor	or	heartbeat.		Assume	an	LED
is	attached	to	MSP432	Port	1	bit	0.	Program	2.27	will	toggle	the	LED.

#define	LEDOUT	(*((volatile	uint8_t	*)(0x42000000+32*0x4C02+4*0)))
#define	Debug_HeartBeat()	(LEDOUT	^=	0x01)
Program	2.27.	An	LED	monitor,	written	as	a	C	macro.

Next,	you	add Debug_HeartBeat(); 	statements	at	strategic	places	within	the	system.
Port	1	must	be	initialized	so	that	bit	0	is	an	output	before	the	debugging	begins.		You
can	either	observe	the	LED	directly	or	look	at	the	LED	control	signals	with	a	high-
speed	 oscilloscope	 or	 logic	 analyzer.	 When	 using	 LED	 monitors,	 it	 is	 better	 to
modify	just	the	one	bit,	leaving	the	other	7	as	is.	In	this	way,	you	can	have	multiple
monitors	on	one	port.

Checkpoint	2.14:	Write	a	debugging	instrument	that	toggles	Port	1	bit	3
(MSP432)	or	toggles	Port	A	bit	3	(TM4C123).	

Observation:	For	safety-critical	systems	we	place	debugging	instruments	into	the
system	during	testing.	Once	the	system	is	certified	functional,	we	deliver	the
system	with	the	instruments	still	included.	If	we	were	to	remove	the	debugging

instruments	we	would	be	obligated	to	retest	the	changed	system.

2.12.2.	Performance	Debugging	(FFT	analysis)
Performance	debugging	involves	the	verification	of	timing	behavior	of	our	system.	It
is	a	dynamic	process	where	the	system	is	run,	and	the	dynamic	behavior	of	the	system
is	 compared	 against	 the	 expected	 results.	 We	 will	 present	 three	 methods	 of
performance	debugging,	then	apply	the	techniques	to	measure	execution	speed.

1.	Counting	bus	 cycles.	For	 simple	 programs	with	 little	 and	 no	 branching	 and	 for
simple	 microcontrollers,	 we	 can	 estimate	 the	 execution	 speed	 by	 looking	 at	 the
assembly	code	and	adding	up	the	time	to	execute	each	instruction.

2.	 Instrumentation	 measuring	 with	 an	 independent	 counter.	 SysTick	 is	 a	 24-bit
counter	decremented	every	bus	clock.	It	automatically	rolls	over	when	it	gets	to	0.	If
we	are	sure	the	execution	speed	of	our	function	is	less	than	224	bus	cycles,	we	can	use
this	timer	to	collect	timing	information	with	only	a	minimal	amount	of	intrusiveness.

3.	 Instrumentation	 Output	 Port.	 Another	 method	 to	 measure	 real-time	 execution
involves	an	output	port	and	an	oscilloscope.	Connect	a	microcontroller	output	bit	to
your	 scope.	 Add	 debugging	 instruments	 that	 set/clear	 these	 output	 bits	 at	 strategic
places.	Remember	to	set	the	port’s	direction	register	to	1.		Assume	an	oscilloscope	is
attached	to	TM4C123	Port	F	bit	2.	Program	2.28	can	be	used	to	set	and	clear	the	bit.

#define	PF2			(*((volatile	uint32_t	*)0x40025010))
#define	Debug_Set()			(PF2	=	0x04)
#define	Debug_Clear()	(PF2	=	0x00)
Program	2.28.	Instrumentation	output	port,	written	as	C	macros.

Next,	 you	 add Debug_Set(); and Debug_Clear(); 	 statements	 before	 and	 after	 the
code	you	wish	to	measure.	Port	F	must	be	initialized	so	that	bit	2	is	an	output	before
the	debugging	begins.		You	can	observe	the	signal	with	a	high-speed	oscilloscope	or
logic	analyzer.

Debug_Set();
Stuff();		//	User	code	to	be	measured
Debug_Clear();
	

To	 illustrate	 these	 methods,	 we	 will	 consider	 measuring	 the	 execution	 time	 of	 a
1024-element	integer	FFT	function	written	by	STMicroelectronics.	For	details	on	the
FFT,	see	Section	6.5.

grouploop		ADD								butternbr,butternbr,index,LSL#(16-
2)
butterloop	BUTFLY4_V7		pssX,index,pssX,14,pssK
											SUBS								butternbr,butternbr,	#1<<16
											BGE									butterloop

85
1024
1024
1024
85

											ADD									tmp,	index,	index,	LSL#1
											ADD									pssX,	pssX,	tmp
											DEC									butternbr
										MOVS								tmp2,	butternbr,	LSL#16
											IT										NE
											SUBNE							pssK,	pssK,	tmp
											BNE									grouploop

85
85
85
85
85
85

Program	2.29.	A	section	of	the	FFT	assembly	listing	and	the	number	of	times
each	instruction	was	executed.

The	first	method	is	to	count	bus	cycles	using	the	assembly	listing.	This	approach	is
only	appropriate	for	very	short	programs.	Counting	cycles	becomes	difficult	for	long
programs	with	many	conditional	branch	instructions	and	macro	expansions.	The	time
to	 execute	 each	 assembly	 instruction	 can	 be	 found	 in	 the	 Cortex-M	 Technical
Reference	Manuals.	Because	of	the	complexity	of	the	ARM	Cortex-M	processor,	this
method	 is	only	approximate.	For	example,	 the	 time	 to	execute	a	divide	depends	on
the	data,	and	the	time	to	execute	a	branch	depends	on	the	alignment	of	the	instruction
pipeline.	 A	 portion	 of	 the	 assembly	 output	 generated	 by	 the	 ARM	 Keil	 uVision
compiler	is	presented	on	the	left	side	of	Program	2.29,	and	on	the	right	is	the	number
of	times	each	instruction	is	executed.	For	most	programs	it	is	actually	very	difficult	to
get	an	accurate	time	measurement	using	this	technique.

The	second	method	uses	an	internal	timer	called	SysTick.	The	24-bit	SysTick	register
(STCURRENT)	 that	 is	automatically	decremented	at	 the	bus	frequency.	When	the
counter	hits	zero,	it	is	reloaded	to	0xFFFFFF	and	continues	to	count	down.	If	we	are
sure	 the	 function	will	 complete	 in	a	 time	 less	 than	224	 bus	 cycles,	 then	 the	 internal
timer	can	be	used	to	measure	execution	speed	empirically.	The	code	in	Program	2.30
first	 reads	 the	 SysTick	 counter,	 executes	 the	 function,	 and	 then	 reads	 the	 SysTick
counter	 again.	 The	 elapsed	 time	 is	 the	 difference	 in	 the	 counter	 before	 and	 after.
Since	 the	 execution	 speed	may	 be	 dependent	 on	 the	 input	 data,	 it	 is	 often	wise	 to
measure	the	execution	speed	for	a	wide	range	of	input	parameters.	There	is	a	slight
overhead	in	the	measurement	process	itself.	To	be	accurate,	you	could	measure	this
overhead	 and	 subtract	 it	 off	 your	 measurements.	 In	 this	 case,	 a	 constant	 6	 is
subtracted	 so	 that	 if	 the	 call	 to	 the	 function	were	 completely	 removed	 the	 elapsed
time	would	return	0.		Notice	that	in	this	example,	the	total	time	including	parameter
passing	 is	measured.	Results	 show	 that	 this	 1024-element	 FFT	 executes	 in	 97,872
bus	cycles.	

uint32_t	Before,	Elapsed;		//	assume	SysTick	is	initialized
int32_t	x[1024],	y[1024];		//	assume	x	is	filled	with	data
void	FFT(void){
		Before	=	STCURRENT;
		cr4_fft_1024_stm32(y,	x,	1024);	//	complex	FFT	of	1024	values
		Elapsed	=	(Before	-	STCURRENT	–	6)&0x00FFFFFF;
}

Program	2.30.	Empirical	measurement	of	dynamic	efficiency
(ProfileFFTxxx).

The	third	technique	can	be	used	in	situations	where	a	timer	is	unavailable	or	where
the	 execution	 time	might	 be	 larger	 than	 224	 counts.	 In	 this	 empirical	 technique	we
attach	an	unused	output	pin	to	an	oscilloscope	or	to	a	logic	analyzer.	We	will	set	the
pin	high	before	the	call	to	the	function	and	set	the	pin	low	after	the	function	call.	In
this	way	a	pulse	is	created	on	the	digital	output	with	duration	equal	to	the	execution
time	 of	 the	 function.	We	 assume	Port	 F	 is	 available,	 and	 bit	 2	 is	 connected	 to	 the
scope.	 By	 placing	 the	 function	 call	 in	 a	 loop,	 the	 scope	 can	 be	 triggered.	With	 a
storage	scope	or	logic	analyzer,	the	function	need	be	called	only	once.	Together	with
an	oscilloscope	or	 logic	 analyzer,	Program	2.31measures	 the	 execution	 time	of	 the
function cr4_fft_1024_stm32 	 (Figure	 2.33).	We	 stabilize	 the	 system	 by	 calling	 it
over	and	over.	Using	the	scope,	we	can	measure	the	width	of	the	pulse	on	PF2,	which
will	 be	 execution	 time	 of	 the	 FFT.	 Running	 at	 16	MHz,	 it	 takes	 about	 6.08	ms	 to
execute cr4_fft_1024_stm32(y,	x,	1024) ,	which	is	about	97,300	bus	cycles.

int	main(void){	int32_t	x[1024],	y[1024];	
		PortF_Init();							//	Make	PF2	output
		while(1){
				Debug_Set();						//	set	PF2	high
				cr4_fft_1024_stm32(y,	x,	1024);	//	1024	length	FFT
				Debug_Clear();				//	clear	PF2	low
		}
}

Program	2.31.	Another	empirical	measurement	of	dynamic	efficiency
(ProfileFFTxxx).

Figure	2.33.	Oscilloscope	output	measured	from	Program	2.31	using	a
PicoScope	2104,	running	at	16	MHz.

2.12.3.	Debugging	heartbeat
A	debugging	heartbeat	would	allow	us	to	see	if	and	when	the	ISR	runs.	If	we	toggle	a
pin	once,	we	can	measure	when	 the	 interrupt	occurred.	 If	we	 toggle	 it	 three	 times,

like	Program	2.5,	we	can	also	measure	the	execution	time	of	 the	ISR.	The	first	and
second	edges	of	PC5	signify	the	start	of	the	ISR.	The	third	edgeoccurs	at	the	end	of
the	ISR.	The PC5^=0x20; 	takes	4	instructions	or	7	cycles

480D						LDR		r0,[pc,#52]		;	pointer	to	PC5
6BC0						LDR		r1,[r0]						;	read	PC5
F0800020		EOR		r1,r1,#0x20		;	toggle
63C8						STR		r1,[r0]						;	write	PC5
	

These	three	debugging	instruments	add	21	bus	cycles	to	each	ISR.	Thus,	 if	 the	time
between	 interrupts	 is	 large	 compared	 to	 these	 21	 cycles,	 this	 heartbeat	 will	 be
minimally	intrusive.

Figure	 2.34	 shows	 a	 zoomed	 in	 view	 of	 the	 profile	 pin	 measured	 during	 one
execution	of	the	SysTick	ISR.	The	first	 two	toggles	signify	the	ISR	has	started.	The
time	 from	 second	 to	 third	 toggle	 illustrates	 the	 body	 of	 the	 ISR	 takes	 1.2	 µs	 of
execution	time.

Figure	2.34.	Profile	of	a	single	execution	of	the	SysTick	ISR	measured	on	a
TM4C123	running	at	16	MHz.

Figure	2.35	 shows	a	 zoomed	out	view	of	 the	profile	pin	measured	during	multiple
executions	of	the	SysTick	ISR.	This	measurement	verifies	the	ISR	runs	every	100	ms.
Because	of	 the	 time	 scale,	 the	 three	 toggles	 appear	 as	 a	 single	 toggle.	This	 triple-
toggle	 technique	 (TTT)	 allows	 us	 to	 measure	 both	 the	 time	 to	 execution	 of	 one
instance	of	the	ISR	and	to	measure	the	time	between	ISR	executions.

Figure	2.35.	Profile	of	multiple	executions	of	the	SysTick	ISR	on	a	TM4C123
running	at	16	MHz.

2.12.4.	Profiling
Profiling	is	a	type	of	performance	debugging	that	collects	the	time	history	of	program
execution.	Profiling	measures	where	and	when	our	software	executes.	 It	could	also
include	what	 data	 is	 being	 processed.	 For	 example,	 if	 we	 could	 collect	 the	 time-
dependent	behavior	of	the	program	counter,	then	we	could	see	the	execution	patterns
of	our	software.

Profiling	using	a	software	dump	to	study	execution	pattern.	In	this	section,	we	will
discuss	software	instruments	that	study	the	execution	pattern	of	our	software.	In	order
to	collect	 information	concerning	execution	we	will	add	debugging	 instruments	 that
save	the	time	and	location	in	arrays	(Program	2.32).	By	observing	these	data,	we	can
determine	 both	 a	 time	 profile	 (when)	 and	 an	 execution	 profile	 (where)	 of	 the
software	execution.	Running	this	profile	revealed	the	sequence	of	places	as	0,	1,	2,	2,
2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	2,	and	3.	Each	call	to Debug_Profile	requires	32
cycles	 to	 execute.	 Therefore,	 this	 instrument	 is	 a	 lot	 less	 intrusive	 than	 a	 print
statement.

uint32_t	Debug_time[20];
uint8_t	Debug_place[20];
uint32_t	n;
void	Debug_Profile(uint8_t	p){
		if(n	<	20){
				Debug_time[n]	=	STCURRENT;	//	record	current	time
				Debug_place[n]	=	p;
				n++;
		}
}
uint32_t	sqrt(uint32_t	s){

uint32_t	t;							//	t*t	becomes	s
int	n;												//	loop	counter
		Debug_Profile(0);
		t	=	s/10+1;				//	initial	guess
		Debug_Profile(1);
		for(n	=	16;	n;	--n){		//	will	finish
				Debug_Profile(2);
				t	=	((t*t+s)/t)/2;	
		}
		Debug_Profile(3);
		return	t;
}	
Program	2.32.	A	time/position	profile	dumping	into	a	data	array.

2.13.	Exercises
	

2.1	Draw	a	 flowchart	 for	 a	 line-tracking	 robot.	There	are	 two	 inputs	 from	 the	 line
sensors	on	the	bottom,	labeled	Right	and	Left.	If	both	sensors	are	true,	then	the	robot
is	on	 the	 line.	 If	Right	 is	 true	and	Left	 is	 false,	 the	robot	 is	veering	off	 the	 left.	 If
Right	is	false	and	Left	is	true,	the	robot	is	veering	off	the	right.	If	both	are	false,	the
robot	 is	 off	 the	 line.	 There	 are	 two	 outputs	 to	 the	 motors	 labeled	GoRight	 and
GoLeft.	 If	both	outputs	are	 true,	 the	 robot	will	go	straight.	 If	GoRight	 is	 true	 and
GoLeft	is	false,	the	robot	will	turn	left.	If	GoRight	is	false	and	GoLeft	is	true,	the
robot	will	turn	left.	If	both	outputs	are	false,	then	the	robot	will	stop.

2.2	A	digital	output	of	one	microcontroller	is	connected	to	a	digital	input	of	another
microcontroller.	The	output	is	configured	with	2mA	drive.	The	two	microcontrollers
share	a	common	ground.
a)	When	the	output	is	high,	which	way	does	current	flow	along	the	wire	between	the
pins?
b)	When	the	output	is	high,	which	way	does	current	flow	along	the	wire	between	the
pins?
c)	When	 the	 output	 is	 high	how	much	 current	 flows?	 (less	 than	2µA,	 exactly	 2µA,
between	exactly	2µA	and	2mA,	exactly	2mA,	or	more	than	2mA).
d)	When	 the	 output	 is	 low	how	much	 current	 flows?	 (less	 than	 2µA,	 exactly	 2µA,
between	exactly	2µA	and	2mA,	exactly	2mA,	or	more	than	2mA).

2.3	Consider	the	situation	in	which	the	output	of	one	digital	circuit	is	connected	to	the
inputs	of	two	other	digital	circuits.	There	are	no	other	connections	on	this	signal,	i.e.,
one	output	is	tied	to	two	inputs.	The	output	specifications	of	the	first	circuit	are	VOH,
VOL,	 IOH,	and	IOL.	The	 input	 specifications	of	 the	 second	 and	 third	 circuits	 are	VIH,
VIL,	IIH,	and	IIL.	These	are	the	specifications,	like	you	would	find	in	a	data	sheet,	not
actual	measurements	 of	 voltage	 and	 current	 like	 you	would	measure	 in	 lab	with	 a
DVM.	Give	the	four	inequalities	relating	these	eight	parameters	(VOH,	VOL,	 IOH,	 IOL,
VIH,	VIL,	IIH,	and	IIL.)	that	must	be	true	in	order	for	the	interface	to	operate	properly.	It
may	be	necessary	to	also	add	numbers	to	these	inequalities.

2.4	 Interface	 an	 LED	 to	 the	 microcontroller.	 Show	 the	 interface	 circuit,	 the
initialization	 software,	 and	 two	 functions:	 one	 to	 turn	 it	 on	 and	 one	 to	 turn	 it	 off.
Make	the	initialization	friendly	and	use	bit-specific	addressing	on	the	two	functions.
a)	The	LED	parameters	are	Id=1.5mA	and	Vd	=	1.6V

b)	The	LED	parameters	are	Id=2.5mA	and	Vd	=	1.7V
c)	The	LED	parameters	are	Id=25mA	and	Vd	=	1.8V

2.5	Write	software	that	maintains	hours	(0	to	23),	minutes	(0	to	59)	and	seconds	(0	to
59).

2.6	Rewrite	 the	 code	 in	 Program	 2.5,	 so Counts 	 is	 incremented	 every	 1	 second.
Assume	the	bus	clock	is	50	MHz.

2.7	Rewrite	the	code	in	Program	2.5,	so SysTick_Init 	takes	another	input	parameter,
a	call-by-reference	to	a	function.	This	user	defined	function	will	be	called	in	the	ISR.

2.8	Write	a	formula	relating	baud	rate	(in	bits/sec)	to	bandwidth	(in	bytes/sec)	for	a
UART.

2.9	Sketch	 the	 step	 response	of	 the	 following	circuit.	 In	particular	draw	 the	output
wave	as	the	input	signal	goes	from	0	to	3.3	V.	1nF*10kΩ	is	10	µsec.

	
2.10	Consider	 the	 situation	 in	which	a	 software	FIFO	queue	 is	used	 to	buffer	data
between	a	main	program	and	an	output	UART	interrupt	service	routine	(like	Section
2.4).	The	main	program	calls UART_OutChar ,	which	 in	 turn	puts	one	byte	 into	a
software	FIFO.	The	ISR	is	triggered	when	the	UART	hardware	FIFO	is	not	full.	The
UART	 ISR	 gets	 data	 from	 the	 software	 FIFO	 and	 puts	 it	 to	 the	 hardware	 FIFO.
Experimental	measurements	show	that	 the	rate	at	whichUART_OutChar 	 is	called
varies	over	time	with	an	average	rate	of	1,000	times/sec.	What	does	it	mean?	Choose
A-F	and	briefly	justify	your	selection.
A)	The	system	could	work,	but	the	system	is	CPU	bound

	 B)	The	system	does	not	work,	but	could	be	corrected	by	increasing	software	FIFO
size
C)	The	system	could	work,	but	the	system	is	I/O	bound
D)	The	system	does	not	work,	but	could	be	corrected	by	increasing	baud	rate

E)	 The	 system	 works,	 but	 the	 software	 FIFO	 is	 not	 needed	 and	 could	 be
replaced	by	a	global	variable

F)	The	system	could	work,	but	interrupts	are	not	needed	in	this	system
a)	The	UART	baud	rate	is	5,000	bits/sec.
b)	The	UART	baud	rate	is	100,000	bits/sec.

2.11	UART	interrupts	are	armed	so	that	interrupts	occur	when	new	data	arrives	into
the	microcontroller	(like	Section	2.4).	Consider	the	situation	in	which	a	FIFO	queue
is	 used	 to	 buffer	 data	 between	 the	 receiverISR	 and	 the	 main	 program.
The UART0_Handler 	 reads UART0_DR_R 	 and	 saves	 the	 data	 by
callingRxFifo_Put .	When	 the	main	 program	wants	 input	 it	 calls UART_InChar ,
which	in	turn	calls RxFifo_Get .	Experimental	observations	show	the	software	FIFO

is	usually	empty,	and	has	at	most	3	elements.	What	does	 it	mean?	Choose	A-F	and
briefly	justify	your	selection.
A)	The	system	is	CPU	bound

	 B)	Bandwidth	could	be	increased	by	increasing	the	software	FIFO	size
C)	The	system	is	I/O	bound
D)	The	software	FIFO	could	be	replaced	by	a	global	variable
E)	The	latency	is	small	and	bounded
F)	Interrupts	are	not	needed	in	this	system

2.12	The	main	program	synthesizes	a	waveform	(defines	a	sequence	of	DAC	output
values)	 and	 a	 periodic	 output	 compare	 interrupt	 will	 output	 the	 data	 to	 the	 DAC
separated	by	a	fixed	time.	A	software	FIFO	queue	is	used	to	buffer	data	between	a
main	program	(e.g.,	main	program	calls DAC_Out ,	which	in	turn	calls Fifo_Put).	A
timer	interrupt	service	routine	calls Fifo_Get 	and	actually	writes	to	the	DAC.	At	the
beginning	of	the	ISR,	experimental	observations	show	this	software	FIFO	is	usually
empty,	and	has	at	most	3	elements.	What	does	it	mean?	Choose	A-F.

					A)	The	system	not	operating	properly	because	it	is	CPU	bound
		 	 	 	B)	The	system	not	operating	properly	but	could	be	fixed	by	increasing
software	FIFO	size
					C)	The	system	is	not	operating	properly	because	it	is	I/O	bound
	 	 	 	 	D)	The	 system	 is	 operating	 properly,	 but	 the	 software	FIFO	could	 be
replaced	by	a	global	variable
					E)	The	system	is	operating	properly,	but	bandwidth	could	be	increased
by	increasing	the	timer	interrupt	rate																																									
					F)	The	system	is	operating	properly,	but	interrupts	are	not	needed	in	this
system

2.13	Assume	you	are	outputting	a	sin	wave	using	an	n-bit	DAC.	What	is	the	maximum
table	size	you	could	use,	such	that	if	you	increased	the	size	of	the	table	beyond	that
size,	there	would	be	no	more	improvements	in	waveform	quality?

2.14	You	wish	to	record	sound.	The	frequency	components	you	wish	to	analyze	are
200	to	2000	Hz.	The	signal	to	noise	ratio	of	your	microphone	is	50	dB.	What	ADC
precision	and	sampling	rate	would	you	choose?	Justify	your	answer.

2.15	You	wish	 to	measure	 pressure	 from	0	 to	 300	mmHg	with	 a	 resolution	 of	 0.1
mmHg.	The	frequency	components	you	wish	to	analyze	are	0	to	200	Hz.	What	ADC
precision	and	sampling	rate	would	you	choose?	Justify	your	answer.

2.16	 You	 wish	 to	 measure	 distance	 (0	 to	 1	 cm)	 using	 the	 10-bit	 ADC	 on	 the
microcontroller.	The	sampling	rate	 is	1000	Hz.	The	frequencies	of	 interest	are	0	 to
100	Hz.	The	ADC	range	is	0	to	3V.	The	sensitivity	of	the	transducer	and	amplifier	is
3V/cm.	 The	 signal	 to	 noise	 ratio	 of	 your	 analog	 circuit	 is	 45	 dB.	 Which	 of	 the
following	 changes	 will	 improve	 the	 quality	 of	 the	 system	 the	 most?	 Justify	 your
answer.
A)	increasing	the	ADC	precision
B)	increasing	the	ADC	sampling	rate

C)	increasing	the	gain	of	the	amplifier
D)	changing	the	transducer	to	one	with	less	noise

2.17	Most	ADC	codes	are	linear	(Figure	2.26).	Under	what	conditions	would	it	be
better	to	design	a	nonlinear	ADC?	Give	an	example	application	needing	a	nonlinear
ADC.

2.18	Define	ADC	sampling	jitter.	Estimate	the	sampling	jitter	of	sampling	in	Program
2.20.

2.19	Write	 a	busy-wait	 function	 that	 samples	ADC	channels	1,	 2,	 and	3.	Show	 the
initialization	 routine	and	 the	 input	 function	 that	 returns	all	 three	samples.	Design	 in
such	a	way	that	it	could	operate	concurrently	with	Program	2.20	sampling	channel	0
in	the	background.

2.20	Write	an	interrupting	system	that	samples	ADC	channel	1	at	200	Hz.	Show	the
initialization	 routine	 and	 the	 ISR.	 Data	 should	 be	 spooled	 into	 a	 software	 FIFO.
Design	in	such	a	way	that	it	could	operate	concurrently	with	Program	2.20	sampling
channel	0	in	the	background.	Channel	0	is	not	being	sampled	at	200	Hz.

2.21	Write	a	busy-wait	function	that	collects	1000	samples	of	ADC	channel	0	at	500
kHz.	 	 Show	 the	 initialization	 routine	 and	 the	 input	 function	 that	 collects	 the	 1000
samples.	Assume	there	are	no	interrupts	active	and	this	is	the	only	ADC	task.	Assume
the	bus	clock	is	50	MHz.

2.22	Consider	the	following	BSP	function	that	outputs	an	8-bit	number	to	a	port.	Add
debugging	dumps	that	record	the	last	32	data	values	to	the	port.

//	MSP432	version
void	BSP_Out(uint8_t	data){
		P2OUT	=	data;
}

//	TM4C	version
void	BSP_Out(uint8_t	data){
		GPIO_PORTB_DATA_R	=
data;
}

Write	 the	 debugging	 instruments	 in	 such	 a	 way	 that	 data	 need	 not	 be	 shifted.	 For
example,if I is	the	index	at	which	the	last	value	was	written	(I ranges	from	0	to	31),
then (I-n)&0x1F 	will	be	the	index	of	the	nth	previous	data.

3.	Thread	Management
Chapter	3	objectives	are	to:
•	Introduce	real-time	operating	systems

•	Discuss	memory	management	and	show	solution	to	manage	a	heap

•	Define	threads	and	discuss	multithreading

•	Use	spinlock	semaphores	to	implement	thread	synchronization

•	Present	debugging	techniques	applicable	for	real-time	systems
	

	

This	chapter	introduces	real-time	operating	systems.	The	operating	system	must
manage	system	resources	and	in	 this	chapter	we	will	begin	with	memory	and
the	processor.	We	will	develop	a	heap	to	provide	dynamic	memory	allocation.
Our	first	simple	OS	will	employ	a	round	robin	preemptive	scheduler.

3.1.	Introduction	to	RTOS

3.1.1.	Motivation
Consider	 a	 system	with	 one	 input	 task,	 one	 output	 tasks	 and	 two	non	 I/O	 tasks,	 as
shown	in	Figure	3.1.	The	non-I/O	tasks	are	called	function3	and	function4.		Here	are
two	possible	ways	of	structuring	a	solution	to	the	problem.	The	left	side	of	the	figure
shows	a	busy-wait	solution,	where	a	single	main	program	runs	through	the	tasks	by
checking	 to	 see	 if	 the	 conditions	 for	 running	 the	 task	 have	 occurred.	 Busy-wait
solution	is	appropriate	for	problems	where	the	execution	patterns	for	tasks	are	fixed
and	well-known,	and	the	tasks	are	tightly	coupled.	An	alternative	to	busy-wait	is	to
assign	one	thread	per	task.	Interrupt	synchronization	is	appropriate	for	I/O	even	if	the
execution	 pattern	 for	 I/O	 is	 unknown	 or	 can	 dynamically	 change	 at	 run	 time.	 The
difficultly	 with	 the	 single-foreground	 multiple-background	 threaded	 solutions
developed	 without	 an	 operating	 system	 stems	 from	 answering,	 “How	 to	 handle
complex	systems	with	multiple	foreground	tasks	 that	are	 loosely	coupled?”	A	real-
time	operating	 system	 (RTOS)	with	 a	 thread	 scheduler	 allows	 us	 to	 run	multiple
foreground	 threads,	 as	 shown	on	 the	 right	 side	 of	 the	 figure.	As	 a	 programmer	we
simply	write	multiple	programs	that	all	“look”	like	main	programs.	Once	we	have	an
operating	system,	we	write	Task1,	Task2,	Task3,	and	Task4	such	that	each	behaves
like	 a	 main	 program.	 One	 of	 the	 features	 implemented	 in	 an	 RTOS	 is	 a	 thread
scheduler,	which	will	run	all	threads	in	a	manner	that	satisfies	the	constraints	of	the
system.

Figure	3.1.	Flowcharts	of	a	system	with	four	loosely	coupled	tasks.

3.1.2.	Parallel,	distributed	and	concurrent	programming
Many	problems	cannot	be	 implemented	using	 the	 single-threaded	execution	pattern.
Parallel	programming	allows	the	computer	 to	execute	multiple	 threads	at	 the	same
time.	State-of-the	art	multi-core	processors	can	execute	a	separate	program	in	each	of
its	cores.	Fork	and	join	are	the	fundamental	building	blocks	of	parallel	programming.
After	a	 fork,	 two	or	more	software	 threads	will	be	 run	 in	parallel.	 I.e.,	 the	 threads
will	run	simultaneously	on	separate	processors.	Two	or	more	simultaneous	software
threads	 can	be	 combined	 into	one	using	a	 join,	 see	Figure	3.2.	Software	 execution
after	the	join	will	wait	until	all	threads	above	the	join	are	complete.

As	an	analogy,	if	I	want	to	dig	a	big	hole	in	my	back	yard,	I	will	invite	three	friends
over	and	give	everyone	a	shovel.	The	fork	operation	changes	the	situation	from	me
working	alone	to	four	of	us	ready	to	dig.	The	four	digging	tasks	are	run	in	parallel.
When	the	overall	task	is	complete,	the	join	operation	causes	the	friends	to	go	away,
and	 I	 am	working	alone	again.	A	complex	 system	may	employ	multiple	 computers,
each	 running	 its	 own	 software.	 We	 classify	 this	 configuration	 as	 distributed
programming.

	
Figure	3.2.	Flowchart	symbols	to	describe	parallel,	distributed,	and
concurrent	programming.

Concurrent	programming	allows	the	computer	to	execute	multiple	threads,	but	only
one	at	a	 time.	 Interrupts	are	one	mechanism	to	 implement	concurrency	on	 real-time
systems.	Interrupts	have	a	hardware	trigger	and	a	software	action.	An	interrupt	is	a
parameter-less	 subroutine	 call,	 triggered	 by	 a	 hardware	 event.	 The	 flowchart
symbols	for	interrupts	are	also	shown	in	Figure	3.2.	The	trigger	is	a	hardware	event
signaling	it	is	time	to	do	something.	Examples	of	interrupt	triggers	we	will	see	in	this
book	include	new	input	data	has	arrived,	output	device	 is	 idle,	and	periodic	event.
The	second	component	of	an	interrupt-driven	system	is	the	software	action	called	an
interrupt	service	routine	(ISR).	The	foreground	thread	is	defined	as	the	execution	of
the	main	program,	and	the	background	threads	are	executions	of	the	ISRs.

Consider	the	analogy	of	a	farmer	plowing	a	field.	Plowing	the	field	is	like	executing
the	main	 program	 in	 the	 foreground.	You	 start	 plowing	 at	 one	 end	 of	 the	 field	 and
travel	back	and	forth	across	 the	land	and	basically	plowing	one	parcel	of	 land	at	a
time	in	a	sequential	 fashion.	You	might	drive	 the	 tractor	back	 to	 the	barn,	get	some
gas,	 then	drive	back	 to	 the	 field	and	continue	plowing	where	you	 left	off,	which	 is
analogous	to	a	function	call.	Similarly,	because	of	rocks	or	stumps	you	might	have	to
plow	a	section	over	and	over	to	get	it	right,	which	is	analogous	to	a	program	loop.
Even	 though	 you	 don’t	 always	 drive	 in	 a	 straight	 line,	 you	 drive	 the	 tractor	 in	 a
logical	 and	 well-defined	 sequence.	 How	 you	 drive	 the	 tractor	 while	 plowing	 the
field	 is	 one	 process,	 defined	 by	 one	 algorithm.	Conversely,	 if	 the	 chickens	 escape
from	their	coop,	you	shut	off	the	tractor,	and	race	over	to	the	coop.	This	is	a	real-time
event,	because	you	have	a	limited	time	to	collect	the	chickens	before	they	are	lost	or
injured.	When	you	are	finished	putting	all	the	chickens	back	in	the	pen	and	fixing	their
fence,	you	get	back	on	the	tractor	and	continue	plowing	the	field	where	you	left	off.
The	 squawking	 of	 the	 chickens	 is	 analogous	 to	 hardware	 trigger	 and	 the	 chicken
collection	 is	 like	 executing	 the	 ISR.	 Interrupts	 are	 hardware	 events	 that	 require
software	 action.	Understanding	 interrupts	 is	 critical	 for	 both	 designing	 a	 real-time
operating	system,	as	well	as	using	one.

Continuing	 the	 farmer	analogy,	 the	 farmer	must	perform	many	 tasks,	 such	as	buying
seed,	plowing	the	field,	planting	the	seed,	harvesting	the	grain,	and	selling	the	grain.
There	may	be	many	fields	 to	manage,	and	each	field	may	be	 in	a	different	stage.	 If
there	is	one	farmer,	he	or	she	can	only	do	one	task	at	a	time.	He	or	she	must	develop
a	schedule	so	all	tasks	are	completed	in	an	effective	manner.	This	scheduling	is	like

the	one	in	a	real-time	operating	system	(RTOS).	The	RTOS	is	given	many	foreground
tasks	to	perform	and	the	rate	to	execute	them.	To	be	effective	and	efficient,	just	like
the	farmer,	the	RTOS	needs	to	know	how	long	each	task	requires	to	run,	and	what	the
relative	priority	 is	between	 tasks.	The	 farm	with	many	workers	 is	 analogous	 to	 an
RTOS	 running	 on	 multiple	 processors.	 In	 this	 case,	 synchronization	 and
communication	are	critical	parts	of	the	solution.

3.1.3.	Introduction	to	threads
A	 program	 is	 a	 sequence	 of	 software	 commands	 connected	 together	 to	 affect	 a
desired	outcome.	Programs	perform	 input,	make	decisions,	 record	 information,	and
generate	outputs.	Programmers	generate	software	using	an	editor	with	a	keyboard	and
display.	 Programs	 are	 compiled	 and	 downloaded	 into	 the	 flash	 ROM	 of	 our
microcontroller.	Programs	themselves	are	static	and	lifeless	entities.	However,	when
we	apply	power	to	the	microcontroller,	the	processor	executes	the	machine	code	of
the	programs	in	the	ROM.	A	thread	is	defined	as	either	execution	itself	or	the	action
caused	by	the	execution.	Either	way	we	see	that	 threads	are	dynamic,	and	thus	it	 is
threads	that	breathe	life	into	our	systems.	A	thread	therefore	is	a	program	in	action,
accordingly,	in	addition	to	the	program	(instructions)	to	execute	it	also	has	the	state
of	 the	program.	The	 thread	state	 is	captured	by	 the	current	contents	of	 the	 registers
and	the	local	variables,	both	of	which	are	stored	on	the	thread’s	stack.

For	example,	Figure	3.3	shows	a	system	with	four	programs.	We	define	Thread1	as
the	 execution	of	Task1.	Another	name	 for	 thread	 is	 light-weight	process.	Multiple
threads	typically	cooperate	to	implement	the	desired	functionality	of	the	system.	We
could	use	hardware-triggered	interrupts	to	create	multiple	threads.	However,	in	this
class	the	RTOS	will	create	the	multiple	threads	that	make	up	our	system.	Figure	3.3
shows	 the	 threads	 having	 separate	 programs.	 All	 threads	 do	 have	 a	 program	 to
execute,	but	it	is	acceptable	for	multiple	threads	to	run	the	same	program.	Since	each
thread	has	a	separate	stack,	its	local	variables	are	private,	which	means	it	alone	has
access	to	its	own	local	variables.

	

Figure	3.3.	Each	thread	has	its	own	registers	and	stack.

It	looks	like	in	Figure	3.3	that	threads	have	physically	separate	registers.	The	stacks

will	 be	 physically	 separate,	 but	 in	 reality	 there	 is	 just	 one	 set	 of	 registers	 that	 is
switched	between	the	threads	as	the	thread	scheduler	operates.	The	thread	switcher
will	 suspend	 one	 thread	 by	 pushing	 all	 the	 registers	 on	 its	 stack,	 saving	 the	 SP,
changing	 the	 SP	 to	 point	 to	 the	 stack	 of	 the	 next	 thread	 to	 run,	 then	 pulling	 all	 the
registers	off	the	new	stack.

Since	 threads	 interact	 for	 a	 common	 goal,	 they	 do	 share	 resources	 such	 as	 global
memory,	and	I/O	devices	(Figure	3.4).		However,	to	reduce	complexity	it	is	the	best
to	limit	the	amount	of	sharing.	It	is	better	to	use	a	well-controlled	means	to	pass	data
and	synchronize	threads.

Figure	3.4.	Threads	share	global	memory	and	I/O	ports.

Some	 simple	 examples	 of	multiple	 threads	 are	 the	 interrupt-driven	 I/O.	 In	 each	 of
these	examples,	the	background	thread	(interrupt	service	routine)	executes	when	the
I/O	device	is	done	performing	the	required	I/O	operation.	A	single	foreground	thread
(main	program)	 executes	during	 the	 times	when	no	 interrupts	 are	needed.	A	global
data	structure	is	used	to	communicate	between	threads.	Notice	that	data	stored	on	the
stack	or	in	registers	by	one	thread	are	not	accessible	by	another	thread.

Checkpoint	3.1:	What	is	the	difference	between	a	program	and	a	thread?	

Checkpoint	3.2:	Why	can’t	threads	pass	parameters	to	each	other	on	the	stack
like	regular	functions	do?		How	do	threads	communicate	with	each	other?

One	 way	 to	 classify	 threads	 is	 according	 to	 how	 often	 they	 are	 run.	 A	 periodic
thread	 is	 one	 that	 runs	 at	 a	 fixed	 time	 interval.	ADC	 sampling,	DAC	outputs,	 and
digital	 control	 are	 examples	 of	 periodic	 tasks.	 The	 RTOS	 is	 responsible	 for
scheduling	periodic	threads.	An	aperiodic	thread	is	one	that	runs	often,	but	the	times
when	it	needs	run	cannot	be	anticipated.	Threads	that	are	attached	to	human	input	will
fall	into	this	category.	A	sporadic	thread	is	one	that	runs	infrequently	or	maybe	never
at	all,	but	is	often	of	great	importance.	Examples	of	sporadic	threads	that	have	real-
time	requirements	include	power	failure,	CO	warning,	temperature	overheating,	and
computer	hardware	faults.

A	second	way	to	classify	threads	is	according	to	the	activity	that	triggers	the	thread’s
execution.	An	event	thread	is	triggered	by	an	external	event	like	the	hardware	timer,
input	 device	 or	 output	 device.	 	 The	 external	 event	 creates	 the	 thread,	 the	 thread
services	 that	 need,	 and	 then	 the	 thread	 is	 dismissed.	 A	 typical	 event	 thread	 is	 the
execution	of	an	 interrupt	 service	 routine.	A	periodic	 thread	can	be	classified	as	an
event	 thread	 triggered	by	 a	 timer.	A	main	thread	 on	 the	 other	 hand	 is	 like	 a	main

program,	it	 runs	for	a	 long	time	performing	tasks	 like	 input,	storage,	decisions,	and
output.	Main	 threads	 can	 be	 thought	 of	 as	 cycle-stealing	 threads	 because	 they	 run
when	there	are	no	events	to	service.

3.1.4.	States	of	a	main	thread
A	main	 thread	can	be	 in	one	of	 four	 states,	 as	 shown	 in	Figure	3.5.	The	arrows	 in
Figure	3.5	describe	the	condition	causing	the	thread	to	change	states.	In	this	chapter,
threads	 oscillate	 between	 the	 active	 and	 run	 states.	 To	 simplify	 the	 OS,	 we	 will
create	 all	 main	 threads	 at	 initialization	 and	 these	 main	 threads	 will	 never	 block,
sleep,	or	die.

A	main	thread	is	in	the	run	state	if	it	currently	executing.	On	a	microcontroller	with	a
single	processor	like	the	Cortex	M,	there	can	be	at	most	one	thread	running	at	a	time.
As	 computational	 requirements	 for	 an	 embedded	 system	 rise,	 we	 can	 expect
microcontrollers	in	the	future	to	have	multicore	processors,	like	the	ones	seen	now	in
our	desktop	PC.	For	a	multicore	processor,	 there	can	be	multiple	threads	in	the	run
state.	

A	main	thread	is	in	the	active	state	if	it	ready	to	run	but	waiting	for	its	turn.	A	simple
OS	does	not	have	sleeping	or	blocking;	there	will	be	one	running	thread	and	the	other
threads	are	active.

Sometimes	a	main	thread	needs	to	wait	for	a	fixed	amount	of	time.	The	OS	will	not
run	a	main	thread	if	it	is	in	the	sleep	state.	After	the	prescribed	amount	of	time,	the
OS	will	make	the	thread	active	again.	Sleeping	would	be	used	for	tasks	that	are	not
real-time.	Sleeping	will	be	presented	later	in	Section	4.4.

A	main	thread	is	in	the	blocked	state	when	it	is	waiting	for	some	external	event	like
input/output	(keyboard	input	available,	printer	ready,	I/O	device	available.)	We	will
implement	blocking	in	the	next	chapter.

Figure	3.5.	A	main	thread	can	be	in	one	of	four	states.

The	OS	manages	the	execution	of	threads.	An	important	situation	to	manage	is	when	a
thread	is	stuck	and	cannot	make	progress.	For	example,	a	thread	may	need	data	from
another	 thread,	a	 thread	may	be	waiting	on	I/O,	or	a	 thread	may	need	 to	wait	 for	a
specified	amount	of	time.	To	be	more	efficient,	when	a	thread	is	waiting	because	it

cannot	make	progress	it	will	block,	meaning	it	will	not	run	until	the	time	at	which	it
can	make	progress.	Similarly,	to	improve	efficiency,	when	a	thread	needs	to	wait	for
a	prescribed	amount	of	time,	it	will	sleep,	meaning	it	will	not	run	until	 the	elapsed
wait	 time	has	passed.	Blocking	and	sleeping	will	 free	up	 the	processor	 to	perform
actual	work.	A	simple	OS	without	blocking	and	sleeping	must	simply	spin	while	the
thread	is	waiting	on	an	event.	A	thread	that	is	spinning	remains	in	the	active	state,	and
wastes	its	entire	time	slice	checking	the	condition	over	and	over.

3.1.5.	Real-time	systems
Designing	a	RTOS	requires	many	decisions	to	be	made.	Therefore,	it	is	important	to
have	 performance	 criteria	 with	 which	 to	 evaluate	 one	 alternative	 to	 another.	 A
common	 performance	 criterion	 used	 in	 Real-Time	 Systems	 is	Deadline,	 a	 timing
constraint	with	many	definitions	in	the	literature.	In	this	class	we	will	define	specific
timing	constraints	that	apply	to	design	of	embedded	systems.	Bandwidth	is	defined	as
the	information	rate.	It	specifies	the	amount	of	actual	data	per	unit	time	that	are	input,
processed,	or	output.

In	a	real-time	system	operations	performed	must	meet	logical	correctness	and	also	be
completed	 on	 time	 (i.e.,	 meet	 timing	 constraints).	 Non	 real-time	 systems	 require
logical	 correctness	 but	 have	 no	 timing	 requirements.	 The	 tolerance	 of	 a	 real-time
system	 towards	 failure	 to	 meet	 the	 timing	 requirements	 determines	 whether	 we
classify	it	as	hard	real	time,	firm	real	time,	or	soft	real	 time.	 If	missing	a	 timing
constraint	 is	 unacceptable,	 we	 call	 it	 a	 hard	 real-time	 system.	 In	 a	 firm	 real-time
system,	the	value	of	an	operation	completed	past	 its	 timing	constraint	 is	considered
zero	but	not	harmful.	In	a	soft	real-time	system,	the	value	of	an	operation	diminishes
the	further	it	completes	after	the	timing	constraint.

Hard	 real	 time:	 For	 example,	 if	 the	 pressure	 inside	 a	module	 in	 a	 chemical	 plant
rises	above	a	threshold,	failure	to	respond	through	an	automated	corrective	operation
of	 opening	 a	 pressure	 valve	 within	 a	 timing	 constraint	 can	 be	 catastrophic.	 The
system	 managing	 the	 operations	 in	 such	 a	 scenario	 is	 a	 hard	 real-time	 operating
system.

Firm	 real	 time:	An	 example	 of	 a	 firm	 real-time	 system	 is	 a	 streaming	multimedia
communication	 system	 where	 failure	 to	 render	 one	 video	 frame	 on	 time	 in	 a	 30
frames	per	second	stream	can	be	perceived	as	a	loss	of	quality	but	does	not	affect	the
user	experience	significantly.

Soft	real	time:	An	example	of	a	soft	real-time	system	is	an	automated	stock	trading
system	where	excessive	delay	in	formulating	an	automated	response	to	buy/sell	may
diminish	 the	monetary	value	one	 can	gain	 from	 the	 trade.	The	delivery	of	 email	 is
usually	 soft	 real	 time,	 because	 the	 value	 of	 the	 information	 reduces	 the	 longer	 it
takes.				

Observation:	Please	understand	that	the	world	has	not	reached	consensus	of	the

definitions	of	hard,	firm	and	soft.	Rather	than	classify	names	to	the	real-time
system,	think	of	this	issue	is	as	a	continuum.	There	is	a	continuous	progression	of
the	consequence	of	missing	a	deadline:	catastrophic	(hard)	→	zero	effect	and	no
harm	(firm)	→	still	some	good	can	come	from	finishing	after	deadline	(soft).
Similarly:	there	is	a	continuous	progression	for	the	value	of	missing	a	deadline:
negative	value	(hard),	zero	value	(firm)	and	some	but	diminishing	positive	value
(soft).

To	better	understand	real-time	systems,	timing	constraints	can	be	classified	into	two
types.	The	first	type	is	event-response.	The	event	is	a	software	or	hardware	trigger
that	signifies	something	important	has	occurred	and	must	be	handled.	The	response	is
the	system’s	reaction	to	that	event.	Examples	of	event-response	tasks	include:

Operator	pushes	a	button -> Software	performs	action
Temperature	is	too	hot -> Turn	on	cooling	fan
Supply	voltage	is	too	low -> Activate	back	up	battery
Input	device	has	new	data -> Read	and	process	input	data
Output	device	is	idle	 -> Perform	another	output
	

The	specific	timing	constraint	for	this	type	of	system	is	called	latency,	which	is	the
time	between	the	event	and	the	completion	of	 the	response.	Let	Ei	be	 the	 times	 that
events	occur	in	our	system,	and	Ti	be	the	times	these	events	are	serviced.	Latency	is
defined	as

Δi	=	Ti	–	Eifor	i	=	0,	1,	2,	…,	n-1

where	 n	 is	 the	 number	 of	 measurements	 collected.	 The	 timing	 constraint	 is	 the
maximum	value	for	latency,	Δi,	that	is	acceptable.	In	most	cases,	the	system	will	not
be	 able	 to	 anticipate	 the	 event,	 so	 latency	 for	 this	 type	 of	 system	will	 always	 be
positive.

A	second	type	of	timing	constraint	occurs	with	prescheduled	tasks.	For	example,	we
could	schedule	a	task	to	run	periodically.	If	we	define	fs	as	the	desired	frequency	of	a
periodic	 task,	 then	 the	desired	period	 is	Δt	=	1/fs.	Examples	 of	 prescheduled	 tasks
include:

Every	30	seconds -> Software	checks	for	smoke
At	22	kHz -> Output	new	data	to	DACs	creating	sound
At	1	week,	1	month,	1	year-> Perform	system	maintenance
At	300	Hz -> Input	new	data	from	ADC	measuring	EKG
At	6	months	of	service	 -> Deactivate	system	because	it	is	at
end	of	life
	

For	periodic,	the	desired	time	to	run	the	i’th	periodic	instance	of	the	task	is	given	as

Di	=	T0	+i*Δt for	i	=	0,	1,	2,	…,	n-1

where	T0	is	the	starting	time	for	the	system.	For	prescheduled	tasks,	we	define	jitter
as	the	difference	between	desired	time	a	task	is	supposed	to	run	and	the	actual	time	it
is	run.	Let	Ti	be	the	actual	times	the	task	is	run,	so	in	this	case	jitter	is

δti	=	Ti	–	Di for	i	=	0,	1,	2,	…,	n-1

Notice	for	prescheduled	tasks	the	jitter	can	be	positive	(late)	or	negative	(early),	see
Figure	3.6.	For	some	situations	running	the	task	early	is	acceptable	but	being	late	is
unacceptable.	If	 I	have	the	newspaper	delivered	to	my	door	each	morning,	I	do	not
care	how	early	the	paper	comes,	as	long	as	it	arrives	before	I	wake	up.	In	this	case,
the	timing	constraint	is	the	maximum	value	for	jitter	δti	that	is	acceptable.

Figure	3.6.	Effect	of	jitter	on	sampled	data.	True	input	is	a	sinusoidal.	Blue
lines	depict	when	the	voltage	should	be	sampled.	Red	lines	depict	when	the
voltage	was	actually	sampled.	There	is	time	jitter	such	that	every	other
sample	is	early	and	every	other	sample	is	late.	In	the	zoomed	in	portion	this
sample	is	late;	the	consequence	of	being	late	is	the	actual	sampled	data	is
lowered	than	the	correct	value.	Sampling	jitter	causes	noise	in	the	data.

On	 the	 other	 hand,	 for	 some	 situations,	 it	 is	 unacceptable	 to	 be	 early	 and	 it	 is
acceptable	to	be	late.	For	example,	with	tasks	involving	DACs	and	ADCs,	as	shown
in	Figure	3.6,	we	can	correlate	voltage	error	in	the	signal	to	time	jitter.	If	dV/dt	is	the
slew	rate	(slope)	of	the	voltage	signal,	then	the	voltage	error	(noise)	caused	by	jitter
is

δVi	=	δti		*	dV/dt for	i	=	0,	1,	2,	…,	n-1

The	 error	 occurs	 because	 we	 typically	 store	 sampled	 data	 in	 a	 simple	 array	 and
assume	it	was	sampled	at	fs	=	1/Δt.	I.e.,	we	do	not	record	exactly	when	the	sample
was	actually	performed.
	

For	cases	where	the	starting	time,	T0,	does	not	matter,	we	can	simplify	the	analysis	by
looking	at	 time	differences	between	when	 the	 task	 is	 run,	ΔTi	=	 	 (Ti	 –	Ti-1).	 In	 this
case,	jitter	is	simply

δti	=	ΔTi	-	Δt for	i	=	0,	1,	2,	…,	n-1

We	will	classify	a	system	with	periodic	tasks	as	real-time	if	the	jitter	is	always	less
than	a	small	but	acceptable	value.	In	other	words,	the	software	task	always	meets	its
timing	constraint.		More	specifically,	we	must	be	able	to	place	an	upper	bound,	k,	on
the	time	jitter.

-k	≤	δti	≤	+k		for	all	i

For	a	hard	real-time	system,	we	are	interested	in	the	worst	case.	So	we	measure

Min	=	minimum	δti	for	all	measurements	i
Max	=	maximum	δti	for	all	measurements	i
Jitter	=	Max	-	Min	=	(maximum	δti	–	minimum	δti)

	
In	most	situations,	 the	 time	jitter	will	be	dominated	by	 the	 time	the	microcontroller
runs	with	interrupts	disabled.	For	lower	priority	interrupts,	it	is	also	affected	by	the
length	and	frequency	of	higher	priority	interrupt	requests.

To	 further	 clarify	 this	 situation,	we	must	 clearly	 identify	 the	 times	 at	which	 the	Ti
measurements	are	collected.	We	could	define	this	time	as	when	the	task	is	started	or
when	the	task	is	completed.	When	sampling	an	ADC,	the	important	time	is	when	the
ADC	 sampling	 is	 started.	 More	 specifically,	 it	 is	 the	 time	 the	 ADC	 sample/hold
module	is	changed	from	sample	to	hold	mode.	This	is	because	the	ADC	captures	or
latches	the	analog	input	at	the	moment	the	sample/hold	is	set	to	hold.	For	tasks	with	a
DAC,	 the	 important	 time	 is	when	 the	DAC	 is	 updated.	More	 specifically,	 it	 is	 the
time	the	DAC	is	told	to	update	its	output	voltage.

In	this	class,	we	use	the	term	real-time	and	hard	real-time	 to	mean	the	same	thing.
Real-time	for	event-response	tasks	means	the	system	has	small	and	bounded	latency.
Real-time	for	periodic	tasks	means	the	system	has	small	and	bounded	jitter.		In	other
words,	a	real-time	operating	system	(RTOS)	is	one	that	guarantees	that	the	difference
between	when	tasks	are	supposed	to	run	and	when	they	actually	are	run	is	short	and
bounded.

Checkpoint	3.3:	Consider	a	task	that	inputs	data	from	the	serial	port.	When	new
data	arrives	the	serial	port	triggers	an	event.	When	the	software	services	that
event,	it	reads	and	processes	the	new	data.	The	serial	port	has	hardware	to	store
incoming	data	(2	on	the	MSP432,	16	on	the	TM4C123)	such	that	if	the	buffer	is
full	and	more	data	arrives,	the	new	data	is	lost.	Is	this	system	hard,	firm,	or	soft
real	time?

Checkpoint	3.4:	Consider	a	hearing	aid	that	inputs	sounds	from	a	microphone,
manipulates	the	sound	data,	and	then	outputs	the	data	to	a	speaker.	The	system
usually	has	small	and	bounded	jitter,	but	occasionally	other	tasks	in	the	hearing
aid	cause	some	data	to	be	late,	causing	a	noise	pulse	on	the	speaker.	Is	this	system
hard,	firm	or	soft	real	time?

Checkpoint	3.5:	Consider	a	task	that	outputs	data	to	a	printer.	When	the	printer	is
idle	the	printer	triggers	an	event.	When	the	software	services	that	event,	it	sends
more	data	to	the	printer.	Is	this	system	hard,	firm	or	soft	real	time?

3.1.6.	Producer/Consumer	problem	using	a	mailbox
One	 of	 the	 classic	 problems	 our	 operating	 system	 must	 handle	 is	 communication
between	threads.	We	define	a	producer	thread	as	one	that	creates	or	produces	data.	A
consumer	 thread	is	a	thread	that	consumes	(and	removes)	data.	The	communication
mechanism	we	will	use	in	this	chapter	is	a	mailbox	(Figure	3.7).	The	mailbox	has	a
Data	 field	 and	 a	 Status	 field.	 Mailboxes	 will	 be	 statically	 allocated	 global
structures.	Because	 they	 are	 global	 variables,	 it	means	 they	will	 exist	 permanently
and	can	be	carefully	shared	by	more	than	one	task.	The	advantage	of	using	a	structure
like	 a	mailbox	 for	 a	 data	 flow	 problem	 is	 that	we	 can	 decouple	 the	 producer	 and
consumer	threads.	In	the	next	chapter,	we	will	replace	the	mailbox	with	a	first	in	first
one	(FIFO)	queue.	The	use	of	a	FIFO	can	significantly	improve	system	performance.	

Figure	3.7.	The	mailbox	is	used	to	send	data	from	the	producer	thread	to	the
consumer	thread.

There	are	many	producer/consumer	applications	in	the	field	of	embedded	systems.	In
Table	3.1	the	threads	on	the	left	are	producers	that	create	data,	while	the	threads	on
the	right	are	consumers	that	process	data.

Source/Producer Sink/Consumer
Keyboard	input Program	that	interprets
Software	that	has	data Printer	output
Software	 sends
message

Software	 receives
message

Microphone	and	ADC Software	 that	 saves
sound	data

Software	 that	 has
sound	data

DAC	and	speaker

Table	3.1.	Producer	consumer	examples.
	

Figure	 3.8	 shows	 how	 one	 could	 use	 a	 mailbox	 to	 pass	 data	 from	 a	 background
thread	(interrupt	service	routine)	to	a	foreground	thread	(main	program)	if	there	were

no	operating	system.

Figure	3.8.		Use	of	a	mailbox	without	an	operating	system.

Checkpoint	3.6:	What	happens	if	the	ISR	in	Figure	3.8	runs	twice	before	the	main
program	has	a	chance	to	read	and	process	the	Mail?

3.1.7.	Scheduler
A	 scheduler	 is	 an	 OS	 function	 that	 gives	 threads	 the	 notion	 of	 Concurrent
processing	where	multiple	threads	are	active.	If	we	look	from	a	distance	(zoom	out
in	 time)	 it	appears	 they	are	 running	simultaneously,	when	 in	 fact	only	one	 thread	 is
running	at	any	time.	On	the	Cortex-M	with	one	processor	only	a	single	thread	can	run
at	 any	given	 time	while	 other	 ready	 threads	 contend	 for	 processing.	The	 scheduler
therefore	 runs	 the	ready	 threads	one	by	one,	switching	between	 them	to	give	us	 the
illusion	that	all	are	running	simultaneously.

In	this	class,	the	OS	will	schedule	both	main	threads	and	event	threads.	However,	in
this	 section	we	will	 discuss	 scheduling	main	 threads.	To	 envision	 a	 scheduler,	we
first	 list	 the	 main	 threads	 that	 are	 ready	 to	 run.	 When	 the	 processor	 is	 free,	 the
scheduler	will	choose	one	main	 thread	 from	 the	 ready	 list	and	cause	 it	 to	 run.	 In	a
preemptive	 scheduler,	 main	 threads	 are	 suspended	 by	 a	 periodic	 interrupt,	 the
scheduler	chooses	a	new	main	thread	to	run,	and	the	return	from	interrupt	will	launch
this	new	thread.	In	this	situation,	the	OS	itself	decides	when	a	running	thread	will	be
suspended,	returning	it	to	the	active	state.	In	Program	3.1,	there	exist	four	threads	as
illustrated	 in	Figure	3.9.	The	preemptive	scheduler	 in	 the	RTOS	runs	 the	four	main
threads	concurrently.	In	reality,	the	threads	are	run	one	at	time	in	sequence.

void	Task1(void){
		Init1();
		while(1){
				if(Status1())
						Input1();
		}
}

void	Task2(void){
		Init2();
		while(1){
				if(Status2())
						Output2();
		}
}

void	Task3(void){
		Init3();
		while(1){
				function3();
		}
}

void	Task4(void){
		Init4();
		while(1){
				function4();
		}
}

Program	3.1.	Four	main	threads	run	concurrently	using	a	preemptive
scheduler.

Figure	3.9.	Four	main	threads.

In	a	cooperative	or	nonpreemptive	scheduler,	 the	main	threads	themselves	decide
when	to	stop	running.	This	is	typically	implemented	by	having	a	thread	call	a	function
like OS_Suspend .	 This	 function	 will	 suspend	 the	 running	 thread	 (putting	 the	 old
thread	 in	 the	Active	 state),	 run	 the	 scheduler	 (which	 chooses	 a	 new	 thread),	 and
launch	 the	 new	 thread.	 The	 new	 thread	 is	 now	 in	 the	Run	 state.	Although	 easy	 to
implement	 because	 it	 doesn’t	 require	 interrupts,	 a	 cooperative	 scheduler	 is	 not
appropriate	for	real-time	systems.	In	Program	3.2,	the	cooperative	scheduler	runs	the
four	main	threads	in	a	cyclic	manner.

void	Task1(void){
		Init1();
		while(1){
				if(Status1()){
						Input1();
				}
				OS_Suspend();
		}
}

void	Task2(void){
		Init2();
		while(1){
				if(Status2()){
						Output2();
				}
				OS_Suspend();
		}
}

void	Task3(void){
		Init3();
		while(1){
				function3();
				OS_Suspend();
		}
}

void	Task4(void){
		Init4();
		while(1){
				function4();
				OS_Suspend();
		}
}

Program	3.2.	Four	threads	run	in	a	cooperative	manner.

There	are	many	scheduling	algorithms	one	can	use	to	choose	the	next	thread	to	run.	A
round	robin	scheduler	simply	runs	the	ready	threads	in	circular	fashion,	giving	each
the	 same	 amount	 of	 time	 to	 execute.	 A	weighted	 round	 robin	 scheduler	 runs	 the
ready	 threads	 in	 circular	 fashion,	but	gives	 threads	unequal	weighting.	One	way	 to
implement	weighting	is	to	vary	the	time	each	thread	is	allowed	to	run	according	to	its
importance.	Another	way	 to	 implement	weighting	 is	 to	 run	 important	 threads	more
often.	E.g.,	assume	there	are	three	threads	1	2	3,	and	thread	1	is	more	important.	We
could	run	the	threads	in	this	repeating	pattern:	1,	2,	1,	3,	1,	2,	1,	3…	Notice	that	very
other	time	slice	is	given	to	thread	1.	In	this	simple	example,	Thread	1	receives	50%
of	the	processor	time,	and	threads	2	and	3	each	receive	25%.	A	priority	scheduler
assigns	each	 thread	a	priority	number	 (e.g.,	1	 is	 the	highest).	Two	or	more	 threads
can	have	the	same	priority.	A	priority-2	thread	is	run	only	if	no	priority-1	threads	are
ready	to	run.	Similarly,	we	run	a	priority-3	thread	only	if	no	priority-1	or	priority-2
threads	are	ready.	If	all	threads	have	the	same	priority,	then	the	scheduler	reverts	to	a
round-robin	 system.	 The	 advantage	 of	 priority	 is	 that	 we	 can	 reduce	 the	 latency

(response	 time)	 for	 important	 tasks	 by	 giving	 those	 tasks	 a	 high	 priority.	 The
disadvantage	 is	 that	on	a	busy	system,	 low	priority	 threads	may	never	be	 run.	This
situation	is	called	starvation.

Schedulers	 for	 real-time	 systems	 may	 use	 other	 metrics	 to	 decide	 thread
importance/priority.		A	deadline	is	when	a	task	should	complete	relative	to	when	it	is
ready	to	run.	The	time	to	deadline	is	the	time	between	now	and	the	deadline.	If	you
have	 a	 paper	 due	 on	 Friday,	 and	 it	 is	 Tuesday,	 the	 time-to-deadline	 is	 3	 days.
Furthermore,	we	define	slack	time	as	the	time-to-deadline	minus	the	how	long	it	will
take	to	complete	the	task.	If	you	have	a	paper	due	on	Friday,	it	is	Tuesday	and	it	will
take	you	one	day	to	write	the	paper,	your	slack	time	is	2	days.	Once	the	slack	time
becomes	negative,	you	will	miss	your	deadline.	There	are	many	other	ways	to	assign
priority:

Minimize	latency	for	real-time	tasks
Assign	a	dollar	cost	for	delayed	service	and	minimize	cost
Give	priority	to	I/O	bound	tasks	over	CPU	bound	tasks
Give	priority	to	tasks	that	need	to	run	more	frequently
Smallest	time-to-deadline	first
Least	slack	time	first

	
A	thread’s	priority	may	be	statically	assigned	or	can	be	changed	dynamically	as	the
system	progresses.	An	exponential	queue	 is	 a	 dynamic	 scheduling	 algorithm,	with
varying	priorities	and	time	slices.	If	a	thread	blocks	on	I/O,	its	priority	is	increased
and	 its	 time	 slice	 is	 halved.	 If	 it	 runs	 to	 completion	 of	 a	 time	 slice,	 its	 priority	 is
decreased	and	its	time	slice	is	doubled.

Another	dynamic	scheduling	algorithm	uses	the	notion	of	aging	to	solve	starvation.	In
this	 scheme,	 threads	 have	 a	 permanent	 fixed	 priority	 and	 a	 temporary	 working
priority.	 The	 permanent	 priority	 is	 assigned	 according	 the	 rules	 of	 the	 previous
paragraph,	 but	 the	 temporary	 priority	 is	 used	 to	 actually	 schedule	 threads.
Periodically	the	OS	increases	the	temporary	priority	of	threads	that	have	not	been	run
in	 a	 long	 time.	 Once	 a	 thread	 is	 run,	 its	 temporary	 priority	 is	 reset	 back	 to	 its
permanent	priority.

Assigning	 priority	 to	 tasks	 according	 to	 how	 often	 they	 are	 required	 to	 run	 (their
periodicity)	 is	called	a	Rate	Monotonic	Scheduler.	Assume	we	have	m	 tasks	 that
are	periodic,	running	with	periods	Tj	(0	≤	j	≤	m-1).	We	assign	priorities	according	to
these	periods	with	more	frequent	tasks	having	higher	priorities.	Furthermore,	let	Ej	be
the	maximum	time	to	execute	each	task.	Assuming	there	is	little	interaction	between
tasks,	the	Rate	Monotonic	Theorem	can	be	used	to	predict	if	a	scheduling	solution
exists.	Tasks	can	be	scheduled	if

and

				

What	this	means	is,	as	long	as	the	total	utilization	of	the	set	of	tasks	is	below	69.32%
(ln(2)	 ≈	 0.6932)	RMS	will	 guarantee	 to	meet	 all	 timing	 constraints.	 The	 practical
application	 of	 the	 Rate	 Monotonic	 Theorem	 is	 extremely	 limited	 because	 most
systems	 exhibit	 a	 high	 degree	 of	 coupling	 between	 tasks.	 Nevertheless,	 it	 does
motivate	a	consideration	that	applies	to	all	real-time	operating	systems.	Let	Ej	be	the
time	to	execute	each	task,	and	let	Tj	be	the	time	between	executions	of	each	task.	In
general,	Ej/Tj	will	be	 the	percentage	of	 time	Task	 j	 needs	 to	 run.	The	 sum	of	 these
percentages	across	all	tasks	yields	a	parameter	that	estimates	processor	utilization.

Average	Utilization	≡

Maximum	Utilization	≡

If	utilization	is	over	100%	there	will	be	no	solution.	If	utilization	is	below	5%,	the
processor	may	be	too	fast	for	your	problem.	The	solution	could	be	to	slow	down	the
clock	and	save	power.	As	the	sum	goes	over	50%	and	begins	to	approach	100%,	it
will	be	more	and	more	difficult	 to	schedule	all	 tasks.	The	solution	will	be	to	use	a
faster	processor	or	 simplify	 the	 tasks.	An	effective	 system	will	 operate	 in	 the	5	 to
50%	range.

Checkpoint	3.7:	What	happens	if	the	average	utilization	is	over	1?

Checkpoint	3.8:	What	happens	if	the	average	utilization	is	less	than	1,	but	the
maximum	utilization	is	over	1?

3.2.	Function	pointers
As	 we	 work	 our	 way	 towards	 constructing	 an	 OS	 there	 are	 some	 advanced
programming	concepts	we	require	the	reader	to	be	familiar	with.	One	such	concept	is
“function	pointers”.	Normally,	when	software	in	module	A	wishes	to	invoke	software
in	module	B,	module	A	simply	calls	a	function	in	module	B.	The	function	in	module
B	performs	 some	 action	 and	 returns	 to	A.	At	 this	 point,	 typically,	 this	 exchange	 is
complete.	A	callback	 is	 a	mechanism	 through	which	 the	 software	 in	module	B	can
call	back	a	preset	function	in	module	A	at	a	later	time.	Another	name	for	callback	is
hook.	To	illustrate	this	concept,	let	module	A	be	the	user	code	and	module	B	be	the
operating	system.	To	setup	a	callback,	we	first	write	a	user	function	(e.g., CallMe),
and	then	the	user	calls	the	OS	passing	this	function	as	a	parameter.

int	count;
void	CallMe(void){
		count++;
}
	

The	OS	immediately	returns	 to	 the	user,	but	at	some	agreed	upon	condition,	 the	OS
can	invoke	a	call	back	to	the	user	by	executing	this	function.

As	we	initialize	 the	operating	system,	 the	user	code	must	 tell	 the	OS	a	 list	of	 tasks
that	 should	 be	 run.	 More	 specifically,	 the	 user	 code	 will	 pass	 into	 the	 operating
system	 pointers	 to	 user	 functions.	 In	 C	 on	 the	 Cortex	 M,	 all	 pointers	 are	 32-bit
addresses	regardless	of	the	type	of	pointer.	A	function	pointer	is	simply	a	pointer	to
a	function.	In	this	book,	all	tasks	or	threads	will	be	defined	as	void-void	functions,
like	CallMe.	In	other	words,	threads	take	no	inputs	and	return	no	output.

There	are	three	operations	we	can	perform	on	function	pointers.	The	first	is	declaring
a	function	pointer	variable.	Just	like	other	pointers,	we	specify	the	type	and	add	*	in
front	of	the	name.	We	think	it	is	good	style	to	include p , pt ,	or ptr 	in	pointer	names.
The	syntax	looks	like	this

void	(*TaskPt)(void);			
	

Although	the	above	line	looks	a	little	bit	like	a	prototype,	it	is	not	a	prototype.	Rather
this	 line	 creates	 a	 variable	 of	 type	 function	 pointer.	We	 can	 read	 this	 declaration
as TaskPt 	is	a	pointer	to	a	function	that	takes	no	input	and	returns	no	output.

Just	 like	other	variables,	we	need	 to	set	 its	value	before	using	 it.	To	set	a	 function
pointer	we	assign	it	a	value	of	the	proper	type.	In	this	case, TaskPt 	is	a	pointer	to	a
void-void	function,	so	we	assign	it	the	address	of	a	void-void	function	by	executing
this	code	at	run	time.

		TaskPt	=	&CallMe;		//	TaskPt	points	to	CallMe

	
Just	 like	 other	 pointers	 (to	 variables),	 to	 access	what	 a	 pointer	 is	 pointing	 to,	we
dereference	it	using	*.	In	this	case,	to	run	the	function	we	execute

		*TaskPt();			//	call	the	function	to	which	it	points
	

As	 an	 example,	 let’s	 look	 at	 one	 of	 the	 features	 in	 the	 BSP	 package.	 The
functionBSP_PeriodicTask_Init 	will	 initialize	a	 timer	 so	a	user	 function	will	 run
periodically.	 Notice	 the	 user	 function	 is	 called	 from	 inside	 the	 interrupt	 service
routine.

void	(*PeriodicTask)(void);				//	user	function
void	BSP_PeriodicTask_Init(void(*task)(void),		//	user	function
																											uint32_t	freq,						//	frequency	in	Hz
																											uint8_t	priority){		//	priority
//	.	.	.
		PeriodicTask	=	task;													//	user	function
//	.	.	.
}
void	T32_INT1_IRQHandler(void){
		TIMER32_INTCLR1	=	0x00000001;				//	acknowledge	Timer	1	interrupt
		(*PeriodicTask)();															//	execute	user	task
}

The	 user	 code	 creates	 a	 void-void	 function	 and	 calls	 BSP_PeriodicTask_Init 	 to
attach	this	function	to	the	periodic	interrupt:

		BSP_PeriodicTask_Init(&checkbuttons,	10,	2);
Another	 application	 of	 function	 pointers	 is	 a	 hook.	 A	 hook	 is	 an	 OS	 feature	 that
allows	the	user	to	attach	functions	to	strategic	places	in	the	OS.	Examples	of	places
we	might	want	 to	place	hooks	include:	whenever	 the	OS	has	finished	initialization,
the	OS	is	running	the	scheduler,	or	whenever	a	new	thread	is	created.	To	use	a	hook,
the	user	writes	a	function,	calls	the	OS	and	passes	a	function	pointer.	When	that	event
occurs,	the	OS	calls	the	user	function.	Hooks	are	extremely	useful	for	debugging.

The	 compiler	 resolves	 addresses	 used	 in	 function	 calls	 during	 linking.	 Once	 you
download	 the	code,	you	cannot	change	 it	unless	you	 reedit	 source	code,	 recompile
and	 redownload.	Callbacks	 are	 a	mechanism	 to	 change	which	 function	 gets	 called
dynamically,	at	run	time.	In	a	more	complex	system,	the	OS	and	the	user	code	might
not	 be	 compiled	 at	 the	 same	 time.	 One	 could	 compile	 and	 load	 the	 OS	 onto	 the
system.	Later,	one	compiles	and	loads	the	user	code	onto	the	same	system.	The	two
modules	 are	 then	 linked	 together	 using	 function	 pointers.	 For	 an	 example	 of	 this
typeof	linking,	see OS_AddThreads 	later	in	the	chapter.

3.3.	Thread	Management

3.3.1.	Two	types	of	threads
A	 fundamental	 concept	 in	 operating	 systems	 is	 the	 notion	 of	 an	 execution	 context
referred	to	as	a	thread.	We	introduced	threads	and	their	components	in	Section	3.1.3,
we	will	now	look	at	the	types	of	threads	and	how	they	are	treated	differently	in	the
OS.	We	 define	 two	 types	 of	 threads	 in	 this	 book.	Event	 threads	 are	 attached	 to
hardware	 and	 should	 execute	 on	 changes	 in	 hardware	 status.	 Examples	 include
periodic	threads	that	should	be	executed	at	a	fixed	rate	(for	example,	data	acquisition
and	control),	input	threads	that	should	be	executed	when	new	data	are	available	at	the
input	 device	 (like	 the	 operator	 pushed	 a	 button),	 and	 output	 threads	 that	 should	 be
executed	when	the	output	device	is	idle	and	new	data	are	available	for	output.	They
are	 typically	 defined	 as void-void 	 functions.	 The	 time	 to	 execute	 an	 event	 thread
should	be	short	and	bounded.	In	other	words,	event	threads	must	execute	and	return.
The	 time	 to	 execute	 an	 event	 thread	must	 always	 be	 less	 than	 a	 small	 value	 (e.g.,
10µs).	In	an	embedded	system	without	an	OS,	event	threads	are	simply	the	interrupt
service	 routines	 (ISRs).	However,	with	 a	RTOS,	we	will	 have	 the	OS	manage	 the
processor	and	I/O,	and	therefore	the	OS	will	manage	the	ISRs.	The	user	will	write
the	software	executed	as	an	event	thread,	but	the	OS	will	manage	the	ISR	and	call	the
appropriate	 event	 thread.	Communication	 between	 threads	will	 be	managed	 by	 the
OS.	For	example,	threads	could	use	a	FIFO	to	pass	data.

void	periodicThread(void){	//	called	periodically
		PerformTask();
}
void	inputThread(void){	//	new	input	is	available
		data	=	ReadInput();	//	input	data	from	hardware
		Send(data);									//	pass	data	to	other	software
}
void	outputThread(void){	//	output	is	idle
		data	=	Recv();						//	get	data	from	other	software
		WriteOutput(data);		//	output	data	to	hardware
}

The	 second	 type	 of	 thread	 is	 a	main	 thread.	 Without	 an	 OS,	 embedded	 systems
typically	have	one	main	program	that	is	executed	on	start	up.	This	main	initializes	the
system	and	defines	the	high	level	behavior	of	the	system.	In	an	OS	however,	we	will
have	 multiple	 main	 threads.	 Main	 threads	 execute	 like	 main	 programs	 that	 never
return.	 These	 threads	 execute	 an	 initialization	 once	 and	 then	 repeatedly	 execute	 a
sequence	of	steps	within	a	while	loop.	Here	in	this	chapter,	we	will	specify	all	the
main	 threads	 at	 initialization	 and	 these	 threads	will	 exist	 indefinitely.	However,	 in
later	 chapters	we	will	 allow	main	 threads	 to	 be	 created	 during	 execution,	 and	we

will	allow	main	threads	to	be	destroyed	dynamically.

void	mainThread(void){
		Init();
		while(1){
				Body();
		}
}

Table	 3.2	 compares	 event	 and	 main	 threads.	 For	 now,	 main	 threads	 will	 run
indefinitely,	but	later	in	the	class	we	will	allow	main	threads	to	be	terminated	if	their
task	is	complete.	It	will	be	simpler	if	we	will	create	all	the	main	threads	statically	at
the	time	the	OS	launches.	To	be	more	dynamic	we	will	allow	the	user	to	create	main
threads	dynamically	at	run	time.

Event	Thread Main	Thread
Triggered	by	hardware
Must	return

Created	when	OS
launches

Runs	indefinitely
Short	execution	time Unbounded	execution

time
No	waiting Allowed	to	wait
Finite	number	of	loops

(definite)
Indefinite	or	infinite

loops
Table	3.2.	Comparison	of	event	and	main	threads.

3.3.2.	Thread	Control	Block	(TCB)
Figure	 3.10	 shows	 three	 threads.	 Each	 thread	 has	 a	 thread	 control	 block	 (TCB)
encapsulating	the	state	of	the	thread.	For	now,	a	thread’s	TCB	we	will	only	maintain
a	link	to	its	stack	and	a	link	to	the	TCB	of	the	next	thread.

Figure	3.10.	Three	threads	have	their	TCBs	in	a	circular	linked	list.

The RunPt 	points	to	the	TCB	of	the	thread	that	is	currently	running.	The	next	field	is
a	 pointer	 chaining	 all	 three	 TCBs	 into	 a	 circular	 linked	 list.	 Each	TCB	 has	 an	 sp
field.	If	the	thread	is	running	it	is	using	the	real	SP	for	its	stack	pointer.	However,	the
other	threads	have	their	stack	pointers	saved	in	this	field.	Other	fields	that	define	a
thread’s	 state	 such	 as,	 status,	 Id,	 sleeping,	 age,	 and	 priority	 will	 be	 added	 later.
However,	 for	 your	 first	 RTOS,	 the	 sp	 and	 next	 fields	 will	 be	 sufficient.	 The
scheduler	traverses	the	linked	list	of	TCBs	to	find	the	next	thread	to	run.

In	 Figure	 3.11we	 illustrate	 how	 a	 round	 robin	 thread	 scheduler	 works.	 In	 this
example	there	are	three	threads	in	a	circular	linked	list.	Each	thread	runs	for	a	fixed
amount	 of	 time,	 and	 a	 periodic	 interrupt	 suspends	 the	 running	 thread	 and
switches RunPt 	 to	 the	next	 thread	 in	 the	circular	 list.	The	 scheduler	 then	 launches
the	next	thread.

The	Thread	Control	Block	(TCB)	will	store	the	information	private	to	each	thread.
There	will	be	a	TCB	structure	and	a	stack	for	each	thread.	While	a	thread	is	running,
it	uses	 the	actual	Cortex	M	hardware	registers	 (Figure	3.11).	Program	3.3	shows	a
TCB	structure	with	the	necessary	components	for	three	threads:

1.	A	pointer	so	it	can	be	chained	into	a	linked	list
2.	The	value	of	its	stack	pointer

	
In	addition	to	these	necessary	components,	the	TCB	might	also	contain:

3.	Status,	showing	resources	that	this	thread	has	or	wants
4.	A	sleep	counter	used	to	implement	sleep	mode
5.	Thread	number,	type,	or	name
6.	Age,	or	how	long	this	thread	has	been	active
7.	Priority	(not	used	in	a	round	robin	scheduler)

	
#define	NUMTHREADS		3							//	maximum	number	of	threads
#define	STACKSIZE			100						//	number	of	32-bit	words	in	stack
struct	tcb{
		int32_t	*sp;							//	pointer	to	stack,	valid	for	threads	not	running
		struct	tcb	*next;		//	linked-list	pointer
};
typedef	struct	tcb	tcbType;
tcbType	tcbs[NUMTHREADS];
tcbType	*RunPt;
int32_t	Stacks[NUMTHREADS][STACKSIZE];
Program	3.3.	TCBs	for	up	to	3	threads,	each	stack	is	400	bytes.

Figure	3.11.	The	running	thread	uses	the	actual	registers,	while	the	other
threads	have	their	register	values	saved	on	the	stack.	For	the	running	thread
the	sp	field	is	not	valid,	while	the	sp	field	on	other	threads	points	to	the	top
of	its	stack.

3.3.3.	Creation	of	threads
Program	3.4	shows	how	to	create	three	TCBs	that	will	run	three	programs.	First,	the
three	 TCBs	 are	 linked	 in	 a	 circular	 list.	 Next	 the	 initial	 stack	 for	 each	 thread	 is
created	 in	 such	 a	way	 that	 it	 looks	 like	 it	 has	 been	 running	 already	 and	 has	 been
previously	 suspended.	 The	 PSR	 must	 have	 the	 T-bit	 equal	 to	 1	 because	 the	 Arm
Cortex	M	processor	always	runs	in	Thumb	mode.	The	PC	field	on	the	stack	contains
the	starting	address	of	each	 thread.	The	 initial	values	 for	 the	other	 registers	do	not
matter,	so	they	have	been	initialized	to	values	that	will	assist	in	debugging.	This	idea
came	 from	 the	 os_cpu_c.c	 file	 in	 Micrium	 µC/OS-II.	 The	 allocation	 of	 the	 stack
areas	must	be	done	such	that	the	addresses	are	double-word	aligned.

void	SetInitialStack(int	i){
		tcbs[i].sp	=	&Stacks[i][STACKSIZE-16];	//	thread	stack	pointer
		Stacks[i][STACKSIZE-1]	=	0x01000000;			//	Thumb	bit
		Stacks[i][STACKSIZE-3]	=	0x14141414;			//	R14
		Stacks[i][STACKSIZE-4]	=	0x12121212;			//	R12
		Stacks[i][STACKSIZE-5]	=	0x03030303;			//	R3
		Stacks[i][STACKSIZE-6]	=	0x02020202;			//	R2
		Stacks[i][STACKSIZE-7]	=	0x01010101;			//	R1
		Stacks[i][STACKSIZE-8]	=	0x00000000;			//	R0
		Stacks[i][STACKSIZE-9]	=	0x11111111;			//	R11
		Stacks[i][STACKSIZE-10]	=	0x10101010;		//	R10
		Stacks[i][STACKSIZE-11]	=	0x09090909;		//	R9
		Stacks[i][STACKSIZE-12]	=	0x08080808;		//	R8
		Stacks[i][STACKSIZE-13]	=	0x07070707;		//	R7
		Stacks[i][STACKSIZE-14]	=	0x06060606;		//	R6
		Stacks[i][STACKSIZE-15]	=	0x05050505;		//	R5

		Stacks[i][STACKSIZE-16]	=	0x04040404;		//	R4
}
int	OS_AddThreads(void(*task0)(void),	void(*task1)(void),
																	void(*task2)(void)){
int32_t	status;
		status	=	StartCritical();
		tcbs[0].next	=	&tcbs[1];	//	0	points	to	1
		tcbs[1].next	=	&tcbs[2];	//	1	points	to	2
		tcbs[2].next	=	&tcbs[0];	//	2	points	to	0
		SetInitialStack(0);	Stacks[0][STACKSIZE-2]	=	(int32_t)(task0);	//	PC
		SetInitialStack(1);	Stacks[1][STACKSIZE-2]	=	(int32_t)(task1);	//	PC
		SetInitialStack(2);	Stacks[2][STACKSIZE-2]	=	(int32_t)(task2);	//	PC
		RunPt	=	&tcbs[0];							//	thread	0	will	run	first
		EndCritical(status);
		return	1;															//	successful
}
Program	3.4.	OS	code	used	to	create	three	active	threads.

Even	 though	 the	 thread	has	 not	 yet	 been	 run,	 it	 is	 created	with	 an	 initial	 stack	 that
“looks	like”	it	had	been	previously	suspended	by	a	SysTick	interrupt.	Notice	that	the
initial	 value	 loaded	 into	 the	 PSR	when	 the	 thread	 runs	 for	 the	 first	 time	 has	 T=1.
Program	3.5	shows	simple	user	software	that	can	be	run	on	this	RTOS.	Each	thread
increments	 a	 counter	 and	 toggles	 an	 output	 pin.	 The	 three	 counters	 should	 be
approximately	equal.	Profile	bit	0	toggles	quickly	while	thread	0	is	running.	Profile
bits	1	and	2	toggle	when	running	threads	1	and	2	respectively.

void	Task0(void){
		Count0	=	0;
		while(1){
				Count0++;
				Profile_Toggle0();				//	toggle	bit
		}
}
void	Task1(void){
		Count1	=	0;
		while(1){
				Count1++;
				Profile_Toggle1();				//	toggle	bit
		}
}
void	Task2(void){
		Count2	=	0;
		while(1){
				Count2++;

				Profile_Toggle2();				//	toggle	bit
		}
}
#define	THREADFREQ	500		//	frequency	in	Hz
int	main(void){							
		OS_Init();												//	initialize,	disable	interrupts
		Profile_Init();							//	enable	digital	I/O	on	profile	pins
		OS_AddThreads(&Task0,	&Task1,	&Task2);
		OS_Launch(BSP_Clock_GetFreq()/THREADFREQ);	//	interrupts	enabled
		return	0;													//	this	never	executes
}
Program	3.5.	Example	user	code	with	three	threads.

3.3.4.	Launching	the	OS
SysTick	will	 be	 used	 to	 perform	 the	 preemptive	 thread	 switching.	We	will	 set	 the
SysTick	 to	 the	 lowest	 level	 so	 we	 know	 it	 will	 only	 suspend	 foreground	 threads
(Program	3.6).

void	OS_Init(void){	
		DisableInterrupts();
		BSP_Clock_InitFastest();//	set	processor	clock	to	desired	speed
}
Program	3.6.	RTOS	initialization.

To	start	 the	RTOS,	we	write	code	 that	arms	 the	SysTick	 interrupts	and	unloads	 the
stack	 as	 if	 it	 were	 returning	 from	 an	 interrupt	 (Program	 3.7).	 The	 units	 of
theTimeSlice	are	in	bus	cycles.	The	bus	cycle	time	on	the	TM4C123	is	12.5ns,	and
on	the	MSP432	the	bus	cycle	time	is	20.83ns.

void	OS_Launch(uint32_t	theTimeSlice){
		STCTRL	=	0;																//	disable	SysTick	during	setup
		STCURRENT	=	0;															//	any	write	to	current	clears	it
		SYSPRI3	=(SYSPRI3&0x00FFFFFF)|0xE0000000;	//	priority	7
		STRELOAD	=	theTimeSlice	-	1;	//	reload	value
		STCTRL	=	0x00000007;									//	enable,	core	clock	and	interrupt	arm
		StartOS();																		//	start	on	the	first	task
}
Program	3.7.	RTOS	launch.

The StartOS 	 is	written	 in	assembly	 (Program	3.8).	 In	 this	 simple	 implementation,
the	first	user	 thread	 is	 launched	by	setting	 the	stack	pointer	 to	 the	value	of	 the	first
thread,	then	pulling	all	the	registers	off	the	stack	explicitly.	The	stack	is	initially	set
up	like	it	had	been	running	previously,	was	interrupted	(8	registers	pushed),	and	then

suspended	(another	8	registers	pushed).	When	launch	the	first	thread	for	the	first	time
we	do	not	execute	a	return	from	interrupt	(we	just	pull	16	registers	from	its	stack).	
Thus,	the	state	of	the	thread	is	initialized	and	is	now	ready	to	run.

StartOS
				LDR					R0,	=RunPt		;	currently	running	thread
				LDR					R1,	[R0]					;	R1	=	value	of	RunPt
				LDR					SP,	[R1]					;	new	thread	SP;	SP	=	RunPt->sp;
				POP					{R4-R11}					;	restore	regs	r4-11
				POP					{R0-R3}					;	restore	regs	r0-3
				POP					{R12}
				ADD					SP,	SP,	#4		;	discard	LR	from	initial	stack
				POP					{LR}									;	start	location
				ADD					SP,	SP,	#4		;	discard	PSR
				CPSIE			I											;	Enable	interrupts	at	processor	level
				BX						LR										;	start	first	thread
Program	3.8.	Assembly	code	for	the	thread	switcher.

3.3.5.	Switching	threads
The	 SysTick	 ISR,	 written	 in	 assembly,	 performs	 the	 preemptive	 thread	 switch
(Program	3.9).	SysTick	interrupts	will	be	triggered	at	a	fixed	rate	(e.g.,	every	2	ms	in
this	 example.	 Because	 SysTick	 is	 priority	 7,	 it	 cannot	 preempt	 any	 background
threads.	This	means	SysTick	can	only	suspend	foreground	threads.	1)	The	processor
automatically	saves	eight	registers	(R0-R3,R12,	LR,PC	and	PSR)	on	the	stack	as	 it
suspends	 execution	of	 the	main	 program	and	 launches	 the	 ISR.	 2)	Since	 the	 thread
switcher	 has	 read-modify-write	 operations	 to	 the	 SP	 and	 to RunPt ,	 we	 need	 to
disable	interrupts	to	make	the	ISR	atomic.	3)	Here	we	explicitly	save	the	remaining
registers	(R4-R11).	Notice	the	16	registers	on	the	stack	match	exactly	the	order	of	the
16	registers	established	by	the 	OS_AddThreads function.	4)	Register	R1	is	loaded
withRunPt ,	 which	 points	 to	 the	 TCB	 of	 the	 thread	 in	 the	 process	 of	 being
suspended.	5)	By	storing	the	actual	SP	into	the	sp	field	of	the	TCB,	we	have	finished
suspending	the	thread.	To	repeat,	to	suspend	a	thread	we	push	all	its	registers	on	its
stack	and	save	its	stack	pointer	in	its	TCB.	6)	To	implement	round	robin,	we	simply
choose	 the	 next	 thread	 in	 the	 circular	 linked	 list	 and	 update RunPt 	 with	 the	 new
value.	The	#4	is	used	because	the	next	field	is	the	second	entry	in	the	TCB.	We	will
change	 this	 step	 later	 to	 implement	 sleeping,	 blocking,	 and	 priority	 scheduling.	 7)
The	 first	 step	 of	 launching	 the	 new	 thread	 is	 to	 establish	 its	 stack	 pointer.	 8)	We
explicitly	 pull	 eight	 registers	 from	 the	 stack.	 9)	 We	 enable	 interrupts	 so	 the	 new
thread	 runs	 with	 interrupts	 enabled.	 10)	 The	 LR	 contains	 0xFFFFFFF9	 because	 a
main	 program	using	MSP	was	 suspended	 by	 SysTick.	 The	BX	LR	 instruction	will
automatically	pull	the	remaining	eight	registers	from	the	stack,	and	now	the	processor
will	be	running	the	new	thread.

The	first	time	a	thread	runs,	the	only	registers	that	must	be	set	are	PC,	SP,	the	T-bit	in
the	 PSR	 (T=1),	 and	 the	 I-bit	 in	 the	 PSR	 (I=0).	 For	 debugging	 purposes,	 we	 do
initialize	 the	other	 registers	 the	 first	 time	each	 thread	 is	 run,	 but	 these	other	 initial
values	do	not	matter.	We	learned	this	trick	of	setting	the	initial	register	value	to	the
register	number	(e.g.,	R5	is	initially	0x05050505)	from	Micrium	uC/OS-II.	Notice	in
this	 simple	 example,	 the	 first	 time	Task0	 runs	 it	 will	 be	 executed	 as	 a	 result	 of
StartOS.	However,	the	first	time	Task1	and	Task2	are	run,	it	will	be	executed	as	a
result	 of	 running	 the	 SysTick_Handler.	 In	 particular,	 the	 initial	 LR	 and	 PSR	 for
Task0	 are	 set	 explicitly	 in	StartOS,	 while	 the	 initial	 LR	 and	 PSR	 for	 Task1	 and
Task2	are	defined	in	the	initial	stack	set	in	SetInitialStack.	An	alternative	approach
to	launching	would	have	been	to	set	the	SP	to	the	R4	field	of	its	stack,	set	the	LR	to
0xFFFFFFF9	and	 jump	to	 line	8	of	 the	scheduler.	Most	commercial	RTOS	use	 this
alternative	approach	because	it	makes	it	easier	to	change.	But	we	decided	to	present
this	StartOS	because	we	 feel	 it	 is	 easier	 to	understand	 the	 steps	needed	 to	 launch.
Figure	3.12	shows	three	threads	running	in	a	round	robin	fashion.

Figure	3.12.	Three	threads	have	their	TCBs	in	a	circular	linked	list.
“**sp**”	means	this	field	is	invalid	for	the	one	thread	that	is	actually
running.

SysTick_Handler																;	1)	Saves	R0-R3,R12,LR,PC,PSR
				CPSID			I																		;	2)	Prevent	interrupt	during	switch
				PUSH				{R4-R11}											;	3)	Save	remaining	regs	r4-11
				LDR					R0,	=RunPt									;	4)	R0=pointer	to	RunPt,	old	thread
				LDR					R1,	[R0]											;				R1	=	RunPt
				STR					SP,	[R1]											;	5)	Save	SP	into	TCB
				LDR					R1,	[R1,#4]								;	6)	R1	=	RunPt->next
				STR					R1,	[R0]											;				RunPt	=	R1
				LDR					SP,	[R1]											;	7)	new	thread	SP;	SP	=	RunPt->sp;
				POP					{R4-R11}											;	8)	restore	regs	r4-11
				CPSIE			I																		;	9)	tasks	run	with	interrupts	enabled

				BX						LR																;	10)	restore	R0-R3,R12,LR,PC,PSR
Program	3.9.	Assembly	code	for	the	thread	switcher.

3.3.6.	Profiling	the	OS
You	 can	 find	 this	 simple	 RTOS	 in	 the	 starter	 projects	 as	RTOS_xxx,	 where	 xxx
refers	to	the	specific	microcontroller	on	which	the	example	was	tested.	Figures	3.13
and	3.14	 show	profiles	 of	 this	RTOS	at	 different	 time	 scales.	We	can	 estimate	 the
thread	switch	time	to	be	about	0.8	µs,	because	of	 the	gap	between	the	 last	edge	on
one	pin	to	the	first	edge	on	the	next	pin.	In	this	case	because	the	thread	switch	occurs
every	2	ms,	the	0.8-µs	thread-switch	overhead	is	not	significant.

Figure	3.13.	The	RTOS	runs	three	threads	by	giving	each	a	2ms,	measured	in
simulator	for	the	TM4C123.

Figure	3.14.	Profile	showing	the	thread	switch	time	is	about	0.8	µs,
measured	in	simulator	for	the	TM4C123.

3.3.7.	Linking	assembly	to	C
One	 of	 the	 limitations	 of	 the	 previous	 scheduler	 is	 that	 it’s	 written	 entirely	 in
assembly.	Although	fast,	assembly	programming	is	hard	to	extend	and	hard	to	debug.
One	simple	way	to	extend	this	round	robin	scheduler	is	to	have	the	assembly	SysTick
ISR	call	a	C	function,	as	shown	in	Program	3.10.	The	purpose	of	the	C	function	is	to
run	the	scheduler	and	update	the	RunPt	with	the	thread	to	run	next.	You	can	find	this
simple	RTOS	as	RoundRobin_xxx,	where	xxx	refers	to	the	specific	microcontroller
on	which	the	example	was	tested.

void	Scheduler(void){
		RunPt	=	RunPt->next;				//	Round	Robin
}

Program	3.10.	Round	robin	scheduler	written	in	C.

The	 new	 SysTick	 ISR	 calls	 the	C	 function	 in	 order	 to	 find	 the	 next	 thread	 to	 run,
Program	3.11.	We	must	save	R0	and	LR	because	these	registers	will	not	be	preserved
by	the	C	function. IMPORT 	is	an	assembly	pseudo-op	to	tell	the	assembler	to	find
the	 address	 of	 Scheduler	 from	 the	 linker	 when	 all	 the	 files	 are	 being	 stitched
together.	Since	this	is	an	ISR,	recall	that	LR	contains	0xFFFFFFF9,	signifying	we	are
running	an	 ISR.	We	had	 to	 save	 the	LR	before	 calling	 the	 function	because	 the	BL
instruction	 uses	LR	 to	 save	 its	 return	 address.	 The	 POP	 instruction	 restores	LR	 to
0xFFFFFFF9.	 According	 to	 AAPCS,	 we	 need	 to	 push/pop	 an	 even	 number	 of
registers	(8-byte	alignment)	and	functions	are	allowed	to	freely	modify	R0-R3,	R12.
For	these	two	reasons,	we	also	pushed	and	popped	R0.	Note	that	the	other	registers,
R1,R2,R3	and	R12	are	of	no	consequence	to	us,	so	we	don’t	bother	saving	them.

				IMPORT	Scheduler
SysTick_Handler																;	1)	Saves	R0-R3,R12,LR,PC,PSR
				CPSID			I																		;	2)	Prevent	interrupt	during	switch
				PUSH				{R4-R11}											;	3)	Save	remaining	regs	r4-11
				LDR					R0,	=RunPt									;	4)	R0=pointer	to	RunPt,	old	thread
				LDR					R1,	[R0]											;				R1	=	RunPt
				STR					SP,	[R1]											;	5)	Save	SP	into	TCB
;				LDR					R1,	[R1,#4]								;	6)	R1	=	RunPt->next
;				STR					R1,	[R0]											;				RunPt	=	R1
				PUSH				{R0,LR}
				BL						Scheduler
				POP					{R0,LR}
				LDR					R1,	[R0]											;	6)	R1	=	RunPt,	new	thread
				LDR					SP,	[R1]											;	7)	new	thread	SP;	SP	=	RunPt->sp;
				POP					{R4-R11}											;	8)	restore	regs	r4-11
				CPSIE			I																		;	9)	tasks	run	with	interrupts	enabled
				BX						LR																;	10)	restore	R0-R3,R12,LR,PC,PSR
Program	3.11.	Assembly	code	for	the	thread	switcher	with	call	to	the

scheduler	written	in	C.

In	 this	 implementation,	 we	 are	 running	 the	 C	 function	 Scheduler	 with	 interrupts
disabled.	 On	 one	 hand	 this	 is	 good	 because	 all	 read-modify-write	 operations	 to
shared	globals	will	execute	atomically,	and	not	create	critical	sections.	On	the	other
hand,	 since	 interrupts	 are	 disabled,	 it	 will	 delay	 other	 possibly	 more	 important
interrupts	from	being	served.	Running	with	interrupts	disabled	will	cause	time	jitter
for	periodic	threads	and	latency	for	event-response	threads.	A	way	to	minimize	jitter
is	to	run	the	periodic	tasks	inside	this	Scheduler	function	itself.

3.3.8.	Periodic	tasks
A	very	appropriate	feature	of	a	RTOS	is	scheduling	periodic	tasks.	If	the	number	of
periodic	tasks	is	small,	the	OS	can	assign	a	unique	periodic	hardware	timer	for	each
task.	 Another	 simple	 solution	 is	 to	 run	 the	 periodic	 tasks	 in	 the	 scheduler.	 For
example,	assume	the	thread	switch	is	occurring	every	1	ms,	and	we	wish	to	run	the
function PeriodicUserTask() 	 every	 10	ms,	 then	we	 could	modify	 the	 scheduler	 as
shown	in	Figure	3.15	and	Program	3.12.	Assume	the	OS	initialized	the	counter	to	0.
In	order	for	this	OS	to	run	properly,	the	time	to	execute	the	periodic	task	must	be	very
short	and	always	return.	These	periodic	tasks	cannot	spin	or	block.

This	approach	has	very	little	 time	jitter	because	SysTick	interrupts	occur	at	a	fixed
and	accurate	rate.	The	SysTick	ISR	calls	the	Scheduler,	and	then	the	Scheduler	calls
the	user	task.	The	execution	delay	from	the	SysTick	trigger	to	the	running	of	the	user
task	is	a	constant,	so	the	time	between	executions	of	the	user	task	is	fixed	and	exactly
equal	to	the	SysTick	trigger	period.

	

Figure	3.15.	Simple	mechanism	to	implement	periodic	event	threads	is	to	run
them	in	the	scheduler.

uint32_t	Counter;

#define	NUM	10
void	(*PeriodicTask1)(void);	//	pointer	to	user	function
void	Scheduler(void){
		if((++Counter)	==	NUM){
				(*PeriodicTask1)();						//	runs	every	NUM	ms
				Counter	=	0;
		}
		RunPt	=	RunPt->next;							//	Round	Robin	scheduler
}

Program	3.12.	Round	robin	scheduler	with	periodic	tasks.

If	there	are	multiple	real-time	periodic	tasks	to	run,	then	you	should	schedule	at	most
one	 of	 them	during	 each	SysTick	 ISR	 execution.	This	way	 the	 time	 to	 execute	 one
periodic	task	will	not	affect	the	time	jitter	of	the	other	periodic	tasks.	For	example,
assume	 the	 thread	 switch	 is	 occurring	 every	 1	 ms,	 and	 we	 wish	 to
run PeriodicUserTask1() every	10	ms,	and	run PeriodicUserTask2() 	every	25	ms.
In	 this	 simple	 approach,	 the	 period	 of	 each	 task	must	 be	 a	 multiple	 of	 the	 thread
switch	period.	 I.e.,	 the	periodic	 tasks	must	be	multiples	of	1	ms.	First,	we	find	 the
least	common	multiple	of	10	and	25,	which	is	50.	We	let	the	counter	run	from	0	to	49,
and	 schedule	 the	 two	 tasks	 at	 the	 desired	 rates,	 but	 at	 non-overlapping	 times	 as
illustrated	in	Program	3.13.

uint32_t	Counter;
void	Scheduler(void){
		Counter	=	(Counter+1)%50;	//	0	to	49
		if((Counter%10)	==	1){				//	1,	11,	21,	31	and	41
				PeriodUserTask1();
		}
		if((Counter%25)	==	0){				//	0	and	25
				PeriodUserTask2();
		}
		RunPt	=	RunPt->next;						//	Round	Robin	scheduler
}

Program	3.13.	Round	robin	scheduler	with	two	periodic	tasks.

Consider	a	more	difficult	example,	where	we	wish	to	run	Task0	every	1	ms,	Task1
every	1.5	ms	and	Task2	every	2	ms.	In	order	to	create	non-overlapping	executions,
we	will	need	a	thread	switch	period	faster	than	1	kHz,	so	we	don’t	have	to	run	Task0
every	 interrupt.	 So,	 let’s	 try	 working	 it	 out	 for	 2	 kHz,	 or	 0.5	 ms.	 The	 common
multiple	of	1,	1.5	and	2	is	6	ms.	So	we	use	a	counter	from	0	to	11,	and	try	to	schedule
the	three	tasks.	Start	with	Task0	running	every	other,	and	then	try	to	schedule	Task1
running	every	third.	There	is	a	conflict	at	4	and	10.

Task0:	runs	every	1	ms	at	counter	values	0,	2,	4,	6,	8,	and	10
Task1:	runs	every	1.5	ms	at	counter	values	1,	4,	7,	and	10

	
So,	let’s	try	running	faster	at	4	kHz	or	every	0.25	ms.	The	common	multiple	is	still	6
ms,	but	now	the	counter	goes	from	0	to	23.	We	can	find	a	solution

Task0:	runs	every	1	ms	at	counter	values	0,	4,	8,	12,	16,	and	20
Task1:	runs	every	1.5	ms	at	counter	values	1,	7,	13,	and	19
Task2:	runs	every	2	ms	at	counter	values	2,	10,	and	18
	

In	order	this	system	to	operate,	the	maximum	time	to	execute	each	task	must	be	very
short	compared	to	the	period	used	to	switch	threads.

3.4.	Semaphores
Remember	 that	when	an	embedded	system	employs	a	 real-time	operating	system	to
manage	 threads,	 typically	 this	system	combines	multiple	hardware/software	objects
to	 solve	 one	 dedicated	 problem.	 In	 other	 words,	 the	 components	 of	 an	 embedded
system	 are	 tightly	 coupled.	 For	 example,	 in	 lab	 all	 threads	 together	 implement	 a
personal	fitness	device.	The	fact	that	an	embedded	system	has	many	components	that
combine	 to	 solve	 a	 single	 problem	 leads	 to	 the	 criteria	 that	 threads	 must	 have
mechanisms	 to	 interact	with	 each	 other.	 The	 fact	 that	 an	 embedded	 system	may	 be
deployed	 in	 safety-critical	 environments	 also	 implies	 that	 these	 interactions	 be
effective	and	reliable.

We	will	 use	 semaphores	 to	 implement	 synchronization,	 sharing	 and	 communication
between	 threads.	 A	 semaphore	 is	 a	 counter	 with	 three	 functions:
OS_InitSemaphore,	 OS_Wait,	 and	 OS_Signal.	 Initialization	 occurs	 once	 at	 the
start,	but	wait	and	signal	are	called	at	run	time	to	provide	synchronization	between
threads.	 Other	 names	 for	 wait	 are	 pend	 and	 P	 (derived	 from	 the	 Dutch	 word
proberen,	which	means	to	test).	Other	names	for	signal	are	post	and	V	(derived	from
the	Dutch	word	verhogen,	which	means	to	increment).

The	 concept	 of	 a	 semaphore	 was	 originally	 conceived	 by	 the	 Dutch	 computer
scientist	 Edsger	 Dijkstra	 in	 1965.	 He	 received	 many	 awards	 including	 the	 1972
Turing	Award.	He	was	the	Schlumberger	Centennial	Chair	of	Computer	Sciences	at
The	University	of	Texas	at	Austin	from	1984	until	2000.	Interestingly	he	was	one	of
the	early	critics	of	 the	GOTO	 instruction	 in	high-level	 languages.	Partly	due	 to	his
passion,	 structured	 programming	 languages	 like	 C,	 C++	 and	 Java	 have	 almost
completely	replaced	non-structured	languages	like	BASIC,	COBOL,	and	FORTRAN.

In	this	book	we	will	develop	three	implementations	of	semaphores,	but	we	will	begin
with	the	simplest	implementation	called	“spin-lock”	(Figure	3.16).	Each	semaphore
has	 a	 counter.	 If	 the	 thread	 calls OS_Wait 	 with	 the	 counter	 equal	 to	 zero	 it	 will
“spin”	 (do	 nothing)	 until	 the	 counter	 goes	 above	 zero	 (Program	 3.14).	 Once	 the
counter	is	greater	than	zero,	the	counter	is	decremented,	and	the	wait	function	returns.
In	 this	 simple	 implementation,	 the OS_Signal just	 increments	 the	 counter.	 In	 the
context	 of	 the	 previous	 round	 robin	 scheduler,	 a	 thread	 that	 is	 “spinning”	 will
perform	no	 useful	work,	 but	 eventually	will	 be	 suspended	 by	 the	SysTick	 handler,
and	then	other	threads	will	execute.	It	is	important	to	allow	interrupts	to	occur	while
the	 thread	 is	 spinning	 so	 that	 the	 software	 does	 not	 hang.	 The	 read-modify-write
operations	on	the	counter, s ,	is	a	critical	section.	So	the	read-modify-write	sequence
must	be	made	atomic,	because	the	scheduler	might	switch	threads	in	between	any	two
instructions	 that	 execute	 with	 the	 interrupts	 enabled.	 Program	 3.14	 shows	 the
spinlock	implementation	of	semaphores.
	

	

Figure	3.16.	Flowcharts	of	a	spinlock	counting	semaphore.

In	 the	C	 implementation	of	 spinlock	 semaphores,	 the	 tricky	part	 is	 to	 guarantee	 all
read-modify-write	sequences	are	atomic.	The	while-loop	reads	the	counter,	which	is
always	run	with	interrupts	disabled.	If	the	counter	is	greater	than	0,	it	will	decrement
and	 store,	 such	 that	 the	 entire	 read-modify-write	 sequence	 is	 run	 with	 interrupts
disabled.	 The	 while-loop	 must	 spend	 some	 time	 with	 interrupts	 enabled	 to	 allow
other	threads	an	opportunity	to	run,	giving	other	threads	an	opportunity	to	call	signal.

	

void	OS_Wait(int32_t	*s){
		DisableInterrupts();
		while((*s)	==	0){

				EnableInterrupts();				//	<-	interrupts	can	occur	here
				DisableInterrupts();
		}
		(*s)	=	(*s)	-	1;
		EnableInterrupts();
}																		
void	OS_Signal(int32_t	*s){
		DisableInterrupts();
		(*s)	=	(*s)	+	1;
		EnableInterrupts();
}
Program	3.14.	A	spinlock	counting	semaphore.

Checkpoint	3.9:What	happens	if	we	remove	just	the EnableInterrupts
DisableInterrupts	operations	from	while-loop	of	the	spinlockOS_Wait ?

Checkpoint	3.10:What	happens	if	we	remove	all	the DisableInterrupts
EnableInterrupts operations	from	the	spinlockOS_Wait ?	

In	 Program	 3.15,	 Register	 R0	 points	 to	 the	 semaphore	 counter.	 The	 LDREX

STREXcombination	 is	 a	 read-modify-write	 sequence	 that	 implements	 mutual
exclusion.	 During	 a	 potential	 race	 condition,	 the	 first	 thread	 to	 execute	 LDREX
captures	 exclusive	 access	 to	 the	 counter.	 When	 the	 thread	 with	 exclusive	 access
performs	STREX	then	the	actual	store	will	occur,	and	then	the	counter	is	considered
free	again.	If	a	second	thread	executes	LDREX	during	the	period	of	exclusive	access
of	another	 thread,	 it	will	capture	an	 invalid	version	of	 the	counter.	However,	when
this	 second	 thread	 attempts	 STREX,	 it	 will	 not	 store.	 In	 this	 case,	 the	 assembly
instruction STREXPL	 R2,R1,[R0] 	 attempts	 to	 store	 the	 value	 in	 R1	 through	 the
pointer	in	R0.	R2	is	loaded	with	0	if	the	store	was	allowed	because	this	thread	had
exclusive	access.	On	the	other	hand,	R2	is	loaded	with	1	if	the	store	did	not	happen
because	another	thread	had	ownership.	In	this	example,	if	R2	is	nonzero,	it	will	try	it
again.

OS_Wait													;R0	points	to	counter
			LDREX			R1,	[R0]	;	counter
			SUBS				R1,	#1			;	counter	-1,
			ITT					PL							;	ok	if	>=	0
			STREXPL	R2,R1,[R0]		;	try	update
			CMPPL			R2,	#0			;	succeed?
			BNE					OS_Wait		;	no,	try	again
			BX						LR
OS_Signal	;	R0	points	to	counter
			LDREX			R1,	[R0]		;	counter
			ADD					R1,	#1				;	counter	+	1
			STREX			R2,R1,[R0]		;	try	update
			CMP					R2,	#0				;	succeed?
			BNE					OS_Signal	;no,	try	again
			BX						LR

Program	3.15.	A	spinlock	counting	semaphore	that	does	not	require
disabling	interrupts.

Observation:	If	the	semaphores	can	be	implemented	without	disabling	interrupts,
then	the	latency	in	response	to	external	events	will	be	improved.

Spinlock	 semaphores	 are	 inefficient,	 wasting	 processor	 time	 when	 they	 spin	 on	 a
counter	 with	 a	 value	 of	 zero.	 In	 the	 subsequent	 chapters	 we	 will	 develop	 more
complicated	schemes,	like	cooperation	and	blocking,	to	recover	this	lost	time.

3.5.	Thread	Synchronization

3.5.1.	Resource	sharing,	nonreentrant	code	or	mutual
exclusion

This	 section	 can	be	used	 in	 two	ways.	First	 it	 provides	 a	 short	 introduction	 to	 the
kinds	of	problems	that	can	be	solved	using	semaphores.	In	other	words,	if	you	have	a
problem	 similar	 to	 one	 of	 these	 examples,	 then	 you	 should	 consider	 a	 thread
scheduler	 with	 semaphores	 as	 one	 possible	 implementation.	 Second,	 this	 section
provides	the	basic	approach	to	solving	these	particular	problems.

When	we	use	a	 semaphore,	we	usually	can	assign	a	meaning	or	 significance	 to	 the
counter	value.	In	the	first	application	we	could	use	a	semaphore	as	a	lock	so	only	one
thread	at	a	 time	has	access	 to	a	shared	object.	Another	name	for	 this	semaphore	 is
mutex,	 because	 it	 provides	 mutual	 exclusion.	 If	 the	 semaphore	 is	 1	 it	 means	 the
object	is	free.	If	the	semaphore	is	0	it	means	the	object	is	busy	being	used	by	another
thread.	For	this	application	the	initial	value	of	the	semaphore	(x)	is	1,	because	the
object	 is	 initially	 free.	 A	 thread	 calls	OS_Wait	 to	 capture	 the	 object	 (decrement
counter)	 and	 that	 same	 thread	 calls	 OS_Signal	 to	 release	 the	 object	 (increment
counter).

void	Thread1(void){
		Init1();
		while(1){
				OS_Wait(&x);

					//	exclusive	access
	
				OS_Signal(&x);
					//	other	processing
			}
}

void	Thread2(void){
		Init2();
		while(1){
				OS_Wait(&x);
					//	exclusive	access
	
				OS_Signal(&x);
					//	other	processing
			}
}

	
The	objective	of	this	example	is	to	share	a	common	resource	on	a	one	at	a	time	basis,
also	referred	to	as	“mutually	exclusive”	fashion.	The	critical	section	(or	vulnerable
window)	of	nonreentrant	software	is	that	region	that	should	only	be	executed	by	one
thread	at	a	time.	As	an	example,	the	common	resource	we	will	consider	is	a	display
device	(LCD).	Mutual	exclusion	 in	 this	context	means	 that	once	a	 thread	has	begun
executing	a	set	of	LCD	functions,	then	no	other	thread	is	allowed	to	use	the	LCD.	See
Program	3.16.	In	other	words,	whichever	thread	starts	to	output	to	the	LCD	first	will
be	allowed	to	finish	outputting.	The	thread	that	arrives	second	will	simply	wait	for
the	first	to	finish.	Both	will	be	allowed	to	output	to	the	LCD,	however,	they	will	do

so	on	a	one	at	a	time	basis.	The	mechanism	to	create	mutual	exclusion	is	to	initialize
the	 semaphore	 to	 1,	 execute OS_Wait at	 the	 start	 of	 the	 critical	 section,	 and	 then
execute OS_Signal 	at	the	end	of	the	critical	section.	In	this	way,	the	information	sent
to	one	part	of	the	LCD	is	not	mixed	with	information	sent	to	another	part	of	the	LCD.

Initially,	 the	 semaphore	 is	 1.	 If 	 LCDmutex 	 is	 1,	 it	 means	 the	 LCDis	 free.
If LCDmutex 	is	0,	it	means	the	LCD	is	busy	and	no	thread	is	waiting.	In	this	chapter,
a	thread	that	calls OS_Wait 	on	a	semaphore	already	0	will	wait	until	the	semaphore
becomes	greater	 than	0.	For	a	 spinlock	 semaphore	 in	 this	application,	 the	possible
values	are	only	0	(busy)	or	1	(free).	A	semaphore	that	can	only	be	0	or	1	is	called	a
binary	semaphore.

void	Task5(void){
		Init5();
		while(1){
				Unrelated5();
				OS_Wait(&LCDmutex);
				BSP_LCD_SetCursor(5,		0);
				BSP_LCD_OutUDec4(Time/10,COLOR);
				BSP_LCD_SetCursor(5,		1);
				BSP_LCD_OutUDec4(Steps,COLOR);
				BSP_LCD_SetCursor(16,	0);
				BSP_LCD_OutUFix2_1(TempData,COLOR);
				BSP_LCD_SetCursor(16,	1);
				BSP_LCD_OutUDec4(SoundRMS,COLOR);
				OS_Signal(&LCDmutex);	
		}
}

void	Task2(void){
		Init2();
		while(1){
				Unrelated2();
				OS_Wait(&LCDmutex);
				BSP_LCD_PlotPoint(Data,COLOR);
				BSP_LCD_PlotIncrement();
				OS_Signal(&LCDmutex);
		}
}

Program	3.16.	Semaphores	used	to	implement	mutual	exclusion.

3.5.2.	Condition	variable
In	second	application	we	could	use	a	semaphore	for	synchronization.	One	example	of
this	synchronization	is	a	condition	variable.	If	the	semaphore	is	0	it	means	an	event
has	not	yet	happened,	or	things	are	not	yet	ok.	If	the	semaphore	is	1	it	means	the	event
has	occurred	and	things	are	ok.	For	this	application	the	initial	value	of	the	semaphore
is	0,	because	the	event	is	yet	to	occur.	A	thread	calls	OS_Wait	to	wait	for	the	event
(decrement	counter)	and	another	thread	calls	OS_Signal	 to	signal	that	the	event	has
occurred	(increment	counter).	Let	event	be	a	semaphore	with	initial	value	of	0.

void	Thread1(void){ void	Thread2(void){

		Init1();
		OS_Wait(&event);

//	wait	for	event	to	occur
		while(1){
					//	other	processing
		}
}

		Init2();
//	the	event	has	occurred
		OS_Signal(&event);	
		while(1){
					//	other	processing
			}
}

3.5.3.	Thread	communication	between	two	threads	using	a
mailbox

The	objective	of	this	example	is	to	communicate	between	two	main	threads	using	a
mailbox.	 In	 this	 first	 implementation	 both	 the	 producer	 and	 consumer	 are	 main
threads,	which	 are	 scheduled	 by	 the	 round	 robin	 thread	 scheduler	 (Program	3.17).
The	 producer	 first	 generates	 data,	 and	 then	 it	 calls SendMail ().	 Consumer	 first
calls RecvMail (),	and	 then	 it	processes	 the	data.	Mail	 is	 a	 shared	global	variable
that	is	written	by	a	producer	thread	and	read	by	a	consumer	thread.		In	this	way,	data
flows	from	the	producer	to	the	consumer.	The	Send	semaphore	allows	the	producer
to	tell	the	consumer	that	new	mail	is	available.	The	Ack	semaphore	is	a	mechanism
for	the	consumer	to	tell	the	producer,	the	mail	was	received.		If	Send	is	0,	it	means
the	shared	global	does	not	have	valid	data.	If	Send	is	1,	it	means	the	shared	global
does	have	valid	data.	If	Ack	is	0,	it	means	the	consumer	has	not	yet	read	the	global.
If	Ack	 is	1,	 it	means	the	consumer	has	read	 the	global.	The	sequence	of	operation
depends	on	which	thread	arrives	first.	Initially,	semaphores	Send	and	Ack	are	both
0.	Consider	the	case	where	the	producer	executes	first.

Execution 											 	Mail 	 Send 		 Ack 			 Comments
Initially 	none 		0 		0
Producer	sets	Mail	 valid 		0 		0 Producer	gets	here	first
Producer	signals	Send	 valid 		1 		0
Producer	waits	on	Ack 	valid 		1 		0 Producer	spins	because	Ack	=0
Consumer	waits on	Send 	valid 		0 		0 Returns	immediately
because	Send	was	1
Consumer	reads	Mail 	none 		0 		0 Reading	once	means	Mail	not	valid
Consumer	signals	Ack 	none 		0 		1 Consumer	continues	to	execute
Producer	finishes	wait 	none 		0 		0 Producer	continues	to	execute

	

Next,	consider	the	case	where	the	consumer	executes	first.

Execution 											 	Mail 	 Send 		 Ack 			 Comments
Initially 	none 		0 		0

Consumer	waits	on	send 	none 		0 		0 Consumer	spins	because	Send
=0
Producer	sets	Mail	 valid 		0 		0 Producer	gets	here	second
Producer	signals	Send	 valid 		1 		0
Producer	waits	on	Ack 	valid 		1 		0 Producer	spins	because	Ack	=0
Consumer	finishes	wait 	valid 		0 		0 Consumer	continues	to	execute
Consumer	reads	Mail 	none 		0 		0 Reading	once	means	Mail	not	valid
Consumer	signals	Ack 	none 		0 		1 Consumer	continues	to	execute
Producer	finishes	wait 	none 		0 		0 Producer	continues	to	execute

	
There	are	two	semaphores	and	one	shared	global	data.

uint32_t	Mail;		//	shared	data
int32_t	Send=0;	//	semaphore
int32_t	Ack=0;		//	semaphore
	

The	basic	idea	of	this	example	is	for	one	thread	to	send	data	to	another.	The	producer
calls SendMail and	the	consumer	calls RecvMail .

void	SendMail(uint32_t	data){
		Mail	=	data;

	
OS_Signal(&Send);

	
OS_Wait(&Ack);
}
void	Producer(void){
		Init1();
		while(1){	uint32_t	int	myData;
				myData	=	MakeData();
				SendMail(myData);
				Unrelated1();
		}
}

uint32_t	RecvMail(void){
uint32_t	theData;
		OS_Wait(&Send);
		theData	=	Mail;		//	read	mail
		OS_Signal(&Ack);
		return	theData;
}
void	Consumer(void){
		Init2();
		while(1){	uint32_t	thisData;
				thisData	=	RecvMail();
				Unrelated2();
		}
}

Program	3.17.	Semaphores	used	to	implement	a	mailbox.	Both	Producer	and
Consumer	are	main	threads.

Remember	 that	only	main	 threads	can	call OS_Wait ,	 so	 the	 above	 implementation
works	only	if	both	the	producer	and	consumer	are	main	threads.

If	producer	 is	an	event	 thread,	 it	cannot	call OS_Wait .	For	 this	scenario,	we	must
remove	 the	 Ack	 semaphore	 and	 only	 use	 the	 Send	 semaphore	 (Program	 3.18).
Initially,	 the	 Send	 semaphore	 is	 0.	 If	 Sendis	 already	 1	 at	 the	 beginning	 of	 the

producer,	it	means	there	is	already	unread	data	in	the	mailbox.	In	this	situation,	data
will	be	lost.	In	this	implementation,	the	error	count, Lost ,	is	incremented	every	time
the	producer	calls SendMail() 	whenever	the	mailbox	is	already	full.

uint32_t	Lost=0;

void
SendMail(uint32_t	data){
		Mail	=	data;
		if(Send){
				Lost++;
		}else{
				OS_Signal(&Send);
		}
}
void	Producer(void){
		uint32_t	int	myData;
		myData	=	MakeData();
		SendMail(myData);
		Unrelated1();
}

uint32_t	RecvMail(void){
		OS_Wait(&Send);
		return	Mail;		//	read	mail
}
	
	
	
	
void	Consumer(void){
		Init2();
		while(1){	uint32_t	thisData;
				thisData	=	RecvMail();
				Unrelated2();
		}
}

Program	3.18.	Semaphores	used	to	implement	a	mailbox.	Producer	is	an
event	thread	and	Consumer	is	a	main	thread.

Checkpoint	3.11:	There	are	many	possible	ways	to	handle	the	case	where	data	is
lost	in	Program	3.18.	The	code	as	written	will	destroy	the	old	data,	and	the
consumer	will	skip	processing	the	old	lost	data.	Modify	Program	3.18	such	that
the	system	destroys	the	new	data,	and	the	consumer	will	skip	processing	the	new
data.

A	 mailbox	 forces	 the	 producer	 and	 consumer	 to	 execute	 lock-step	 {producer,
consumer,	 producer,	 consumer,…}.	 It	 also	 suffers	 from	 the	 potential	 to	 lose	 data.
Both	of	these	limitations	will	motivate	the	first	in	first	out	(FIFO)	queue	presented
in	the	next	chapter.

3.6.	Process	Management
One	 of	 the	 requirements	 of	 a	 thread	manager	was	 that	 threads	 be	 tightly	 coupled,
sharing	a	common	objective.	In	this	context,	tightly	coupled	is	categorized	by	threads
that	share	global	data	and	share	I/O	devices.	However,	if	we	have	multiple	software
tasks	that	are	 loosely	coupled	 then	we	require	a	more	complex	scheduler.	Again	 in
this	 context,	 loosely	coupled	means	 that	 they	do	not	 share	data	or	 I/O	devices.	We
define	processes	 as	 software	 tasks	 that	 are	 loosely	 coupled.	 Each	 process	 has	 its
own	 stack,	 code,	 data	 (globals),	 and	 heap.	 The	 stack,	 code,	 data,	 and	 I/O	 of	 one
process	are	not	shared	with	other	processes.	See	Figure	3.17.

Figure	3.17.	Comparison	of	threads	and	processes.

In	Unix,	a	new	process	is	created	using	the	fork()	command.	To	load	and	execute	a
process,	the	Unix	command	is	exec().	An	existing	process	can	be	initialized	with	the
init()	 command.	 The	 function	 exit()	 will	 terminate	 the	 process,	 and	 the	 OS	 will
recover	 all	 resources	 (memory,	 I/O).	 The	 function	 exit()	 is	 automatically	 called
when	 the	 main()	 program	 returns.	 In	Windows	 the	CreateProcess()	 function	 will
create	a	new	process	and	load	the	program	image.	The	function	ExitProcess()	will
terminate	the	process	and	recover	the	resources.

The	OS	will	provide	mechanisms	for	the	processes	to	communicate	with	each	other,
but	in	general,	processes	do	not	have	a	shared	objective.	The	OS	handles	the	loading
of	 processes	 into	 memory.	 On	 a	 microcontroller,	 the	 memory	 image	 will	 have
multiple	segments:	code,	stack,	heap	and	data.

On	a	more	sophisticated	processor,	the	OS	will	configure	the	memory	protection	unit
to	prevent	one	process	from	accessing	the	memory	space	of	another,	see	Figure	3.18.
The	Cortex	M	microcontrollers	do	not	have	this	type	of	memory	protection.

Figure	3.18.	Loading	processes	into	physical	memory	of	a	microcontroller.

3.7.	Dynamic	loading	and	linking
The	 Executable	 and	 Linking	 Format	 (ELF)	 standard	 simplifies	 software
development	 by	 providing	 with	 a	 set	 of	 binary	 interface	 definitions	 that	 apply	 to
multiple	 environments.	 For	 example,	 code	 created	 with	 one	 compiler	 can	 be
combined	with	code	created	with	a	second	compiler	and	these	two	software	objects
can	be	executed	together.	The	standard	reduces	 the	need	for	compiling	all	software
objects	into	one	project.

After	we	 compile	 and	 before	we	 execute	 code	 onto	 a	microcontroller,	 the	 various
software	 modules	 must	 be	 combined	 (linked)	 and	 then	 loaded	 (programmed	 into
ROM).	The	following	lists	some	of	the	sections	used	by	the	Keil	IDE

Linking:	sections
Object	files	->	executables
Code	(RO	/	.text)
Data	(RW	/	.data)
Zero	data	(ZI	/	.bss)
String/symbol	table

	
Object	 files	 are	 binary	 representations	 of	 software	 created	 by	 the	 compiler	 and
linker	that	can	be	executed	by	the	processor.	For	convenience	there	are	two	parallel
views	of	 the	 same	object	 file.	The	 linker	 interacts	using	 the	Linking	View	 and	 the
operating	system	interacts	using	the	Executable	View	at	run	time,	as	shown	in	Figure
3.19.

Figure	3.19.	Object	file	format.

The	ELF	header	 describes	 the	organization	of	 the	 file.	The	 sections	 contain	object
file	information	such	as	instructions,	data,	symbol	table,	and	relocation	information.

The	 program	 header	 table	 explains	 how	 to	 create	 the	 image.	 If	 the	 file	 is	 used	 to
create	 an	 executable	 image,	 then	 it	will	 have	 a	 program	header	 table.	Relocatable
files	 do	 not	 need	 a	 program	 header	 table.	 The	 section	 header	 table	 describes	 the
sections,	including	section	name,	size,	and	type.	Files	used	during	linking	must	have	a
section	header	table,	and	files	used	during	execution	need	not	have	a	section	header
table.	The	figure	implies	an	order	for	sections	and	segments,	however	only	the	ELF
header	has	a	fixed	position,	while	sections	and	segments	have	no	order.

On	a	microcontroller	 like	 the	Cortex	M	 there	 are	 three	 types	of	memory	 segments.
See	Figure	3.20.	Typically,	we	place	instructions	and	fixed	constants	in	ROM.	Keil
labels	 this	 segment	 as	 RO	 or	 .text.	 As	we	 can	 see	 the	 compiler	 creates	 an	 image
where	 this	RO	 segment	 begins	 at	 0x00000000.	 However,	 when	 this	 segment	 is
loaded	into	memory,	it	is	combined	with	other	ROM	segments	and	possibly	moved	to
another	position	in	ROM	other	than	0x00000000.	The	second	type	of	segment	is	RW
or	.data	segment.	This	segment	contains	global	variables	that	have	initial	values.	The
compiler	creates	an	image	where	this	RW	segment	begins	at	0x20000000.	However,
when	this	segment	is	loaded	into	memory,	it	is	combined	with	other	RW	segments	and
possibly	moved	to	another	position	in	RAM	other	than	0x20000000.	The	ZI	segment
also	contains	global	variables;	however,	these	variables	are	initialized	to	0.	Again,
when	the	ZI	segments	are	loaded,	these	too	may	be	moved	to	other	positions	in	RAM.
Loading	 is	 the	 process	 of	 placing	 all	 these	 segments	 into	 appropriate	 places	 in
memory.	Linking	is	defined	as	the	process	of	combining	the	segments	and	fixing	up
all	 cross	 referenced	 addresses.	 The	 executable	 image	 also	 includes	 a	 starting
location	for	execution.

Figure	3.20.	Loading	and	linking	takes	compiler	output	and	makes	it	ready
to	run.

For	 simple	 projects,	 the	 entire	 compile,	 link	 and	 load	 operations	 occur	 statically
when	 one	 issues	 a	 build/download	 command	 to	 the	 Keil	 IDE.	 For	 more	 complex
projects,	 we	 could	 compile	 a	 process	 into	 its	 ELF	 format	 and	 the	 dynamically
load/link	 the	 process	 at	 run	 time.	 To	 facilitate	 dynamic	 linking	 we	 compile	 the
program	into	position	 independent	code	 (PIC).	Another	 name	 for	 object	 code	 that
will	run	regardless	of	its	position	in	memory	is	relocatable	code.	Most	ARM	object
code	 is	 relocatable	 because	 the	 branch	 instructions	 use	 PC-relative	 addressing.
Branches	using	the BX instruction	will	not	be	relocatable.	Function	pointers	typically
use	the BX 	instruction,	so	they	will	be	trickier	to	link.

Dynamic	 linking	 to	 global	 data	 can	 be	 achieved	with	 a	 static	 base	 register,	 called

position-independent	data.	In	the	following	example,	R9	points	to	the	beginning	of
the	 global	 variable	 space	 for	 this	 program.	 R9	 is	 set	 dynamically	 by	 the
loader/linker.	All	global	variables	have	a	fixed	offset	from	this	base	register.

;	regular	access	to	global
v1			SPACE			4		;	global
	
f1				LDR		R1,=v1
						LDR		R2,[R1]	;	contents	of	v1

uint32_t	v2;	//	global
;R9	points	to	global	space
;ofs	is	offset	of	this	variable
		LDR		R2,[R9,#ofs]

	

With	dynamic	linking	and	loading	we	need	a	mechanism	to	call	OS	functions	that	are
not	 compiled	 with	 the	 user	 program.	 The	 typically	 solution	 for	 linking	 to	 OS
functions	 is	 to	 use	 the SVC 	 or	 software	 trap	 instruction.	 The	 implementation	 of
software	trap	was	described	in	Section	2.2.6.

For	 a	 detailed	 description	 of	 the	 ELF	 format,	 search	 “ELF”	 on
http://infocenter.arm.com

3.8.	Exercises
3.1	In	16	words	or	less	for	each,	give	definitions	of	the	following	terms:	jitter,	real-
time,	call	back,	profile,	semaphore,	and	scheduler.

3.2	Compare	and	contrast	thread	and	process.

3.3	Compare	and	contrast	event	thread	and	main	thread.

3.4	Compare	and	contrast	parallel,	distributed	and	concurrent	programming.

3.5	 Compare	 and	 contrast	 hard,	 firm	 and	 soft	 real	 time.	Give	 an	 example	 of	 each
different	from	the	ones	in	the	chapter.

3.6	 Please	 name	 the	 following	 schedulers	 (round	 robin,	 rate	 monotonic,	 priority,
cooperative,	and	exponential	queue):

A.	A	dynamic	scheduler	that	shifts	importance	depending	on	if	the
thread	ran	to	the	completion	of	its	time	slice.
B.	Run	the	ready	threads	in	circular	fashion,	giving	each	the	same
amount	of	time	to	execute
C.	Assign	importance	according	to	these	periods	with	more	frequent
tasks	having	higher	importance.
D.	Threads	themselves	decide	when	to	stop	running
E.	Run	the	most	important	ready	threads	first,	running	less	important
threads	only	if	there	are	no	important	threads	ready
	

3.7	We	can	use	 semaphores	 to	 limit	 access	 to	 resources.	 In	 the	 following	 example
both	threads	need	access	to	a	printer	and	an	SPI	port.	The	binary	semaphore	sPrint
provides	 mutual	 exclusive	 access	 to	 the	 printer	 and	 the	 binary	 semaphore	 sSPI
provides	mutual	exclusive	access	to	the	SPI	port.	Consider	the	following	scenario	to
see	if	it	has	any	bugs.

Thread	1
bwait(&sPrint);
bwait(&sSPI);
OutSPI(4);
printf("Hasta	luego");
OutSPI(6);
bsignal(&sPrint);
bsignal(&sSPI);

Thread	2
bwait(&sSPI);
bwait(&sPrint);
OutSPI(5);
printf("tchau");
OutSPI(7);
bsignal(&sSPI);
bsignal(&sPrint);

If	there	is	a	bug,	show	the	correction

3.8	You	have	three	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute	and	runs	every
10	ms.	Task	2	 takes	a	maximum	of	0.5	ms	 to	execute	and	 runs	every	1	ms.	Task	3

takes	 a	 maximum	 of	 1	 ms	 to	 execute	 and	 runs	 every	 100	 ms.	 Is	 there	 a	 possible
scheduling	algorithm	for	these	three	tasks?

3.9	You	have	four	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute	and	runs	every	5
ms.	Task	2	takes	a	maximum	of	0.5	ms	to	execute	and	runs	every	2	ms.	Task	3	takes	a
maximum	of	1	ms	to	execute	and	runs	every	20	ms.	Task	4	takes	a	maximum	of	6	ms
to	execute	and	runs	every	10	ms.	 Is	 there	a	possible	scheduling	algorithm	for	 these
three	tasks?

3.10	You	have	four	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute	and	runs	every
5	ms.	Task	2	takes	a	maximum	of	0.5	ms	to	execute	and	runs	every	2	ms.	Task	3	takes
a	maximum	of	1	ms	to	execute	and	runs	every	20	ms.	Task	4	takes	a	maximum	of	5	ms
to	execute	and	runs	every	10	ms.		Do	you	think	a	scheduling	algorithm	exists?	Justify
your	answer.

	

	

4.	Time	Management
Chapter	4	objectives	are	to:
•	Implement	cooperation	using	OS_Suspend

•	Design	and	implement	blocking	semaphores

•	Implement	data	flow	with	first	in	first	out	(FIFO)	queues

•	Implement	sleeping

•	Employ	periodic	interrupts	to	manage	periodic	tasks

	
An	important	aspect	of	real-time	systems	is	managing	time,	more	specifically
minimizing	 wastage	 of	 time	 through	 an	 idle	 busy-wait.	 Such	 busy-wait
operations	were	used	 in	our	simple	 implementation	of	semaphores	 in	 the	 last
chapter.	In	this	chapter	we	will	see	how	we	can	recover	this	wasted	time.

4.1.	Cooperation

4.1.1.	Spin-lock	semaphore	implementation	with	cooperation
Sometimes	the	OS	or	the	thread	knows	the	thread	can	no	longer	make	progress.	If	a
thread	 wishes	 to	 cooperatively	 release	 control	 of	 the	 processor	 it	 can	 call
OS_Suspend,	 which	 will	 halt	 this	 thread	 and	 run	 another	 thread.	 Because	 all	 the
threads	 work	 together	 to	 solve	 a	 single	 problem,	 adding	 cooperation	 at	 strategic
places	 allows	 the	 system	 designer	 to	 greatly	 improve	 performance.	When	 threads
wish	to	suspend	themselves,	they	call OS_Suspend .	Again,	the	SysTick	ISR	must	be
configured	 as	 a	 priority	 7	 interrupt	 so	 that	 it	 does	 not	 attempt	 to	 suspend	 any
hardware	 ISRs	 that	 may	 be	 running.	OS_Suspend 	 can	 only	 be	 called	 by	 a	 main
thread.	Note	that	it	is	possible	to	force	a	SysTick	interrupt	by	bypassing	the	normal
“count	 to	 zero”	 event	 that	 causes	 it.	 To	 do	 this,	 we	 write	 a	 1	 to	 bit	 26	 of	 the
INTCTRL	 register,	which	 causes	 the	 SysTick	 interrupt.	Writing	 zeros	 to	 the	 other
bits	of	 this	 register	has	no	effect.	This	operation	will	 set	 the	Countflag	 in	SysTick
and	the	ISR	will	suspend	the	current	thread,	runs	the	SysTick_Handler	(which	calls
the	scheduler),	and	then	launch	another	 thread.	In	 this	first	 implementation,	we	will
not	 reset	 the	 SysTick	 timer	 from	 interrupting	 normally	 (count	 to	 zero).	 Rather	 we
simply	 inject	 another	 execution	of	 the	 ISR.	 If	we	were	75%	 through	 the	1-ms	 time
slice	whenOS_Suspend 	is	called,	this	operation	will	suspend	the	current	thread	and
grant	the	remaining	0.25-ms	time	to	the	next	thread.

One	way	to	make	a	spin-lock	semaphore	more	efficient	is	to	place	a	suspend	in	the
while	loop	as	it	is	spinning,	as	shown	on	the	right	of	Figure	4.1	and	as	Program	4.1.
This	way,	 if	 the	semaphore	 is	not	available,	 the	 thread	stops	running.	If	 there	are	n
other	running	threads	and	the	 time	slice	 is	Δt,	 then	 the	semaphore	 is	checked	every
n*Δt,	and	very	 little	processor	 time	 is	wasted	on	 the	 thread	which	cannot	 run.	One
way	to	suspend	a	thread	is	to	trigger	a	SysTick	interrupt.

Figure	4.1.	Regular	and	efficient	implementations	of	spinlock	wait.

void	OS_Suspend(void){
		INTCTRL	=	0x04000000;	//	trigger	SysTick
}
void	OS_Wait(int32_t	*s){
		DisableInterrupts();
		while((*s)	==	0){
				EnableInterrupts();
				OS_Suspend();	//	run	thread	switcher
				DisableInterrupts();
		}
		(*s)	=	(*s)	-	1;
		EnableInterrupts();
}

Program	4.1.	A	cooperative	thread	switch	will	occur	if	the	software	explicitly
triggers	a	thread	switch.

Checkpoint	4.1:	Assume	the	thread	scheduler	switches	threads	every	1	ms
without	cooperation,	and	there	are	5	total	threads	in	the	scheduler.	If	a	thread
needs	to	wait	1	second	for	its	semaphore	to	be	incremented,	how	much	time	will
spinlock	implementation	waste,	spinning	in	OS_Wait	doing	no	useful	work?

Checkpoint	4.2:	Assume	the	thread	scheduler	switches	threads	every	1	ms,	one
thread	is	spinning	in	OS_Wait	because	its	semaphore	is	0,	and	there	are	4	other
running	threads	that	are	not	spinning.	Assuming	OS_Wait	is	implemented	like
Program	4.1	with	cooperation,	how	often	is	the	loop	in	OS_Wait	run?

The	 implementation	 in	 Program	 4.1	 did	 not	 reset	 the	 SysTick	 counter	 on	 a
cooperative	thread	switch.	So	it	is	unfair	for	the	thread	that	happens	to	be	run	next.
However,	in	this	implementation,	since	SysTick	interrupts	are	still	triggered	every	1
ms,	 SysTick	 can	 be	 used	 to	 perform	 periodic	 tasks.	 Once	 we	 shift	 the	 running	 of
periodic	tasks	to	another	timer	ISR,	we	will	be	able	to	use	this	fair	implementation	of
suspend:

void	OS_Suspend(void){
		STCURRENT	=	0;								//	reset	counter
		INTCTRL	=	0x04000000;	//	trigger	SysTick
}

Using	 this	 version	 of	 suspend,	 if	 we	 are	 75%	 through	 the	 1-ms	 time	 slice
whenOS_Suspend 	is	called,	this	operation	will	suspend	the	current	thread	and	grant
a	 full	1-ms	 time	 to	 the	next	 thread.	We	will	be	able	 to	use	 this	version	of	 suspend
once	we	move	the	periodic	event	threads	away	from	SysTick	and	onto	another	timer
interrupt.

One	way	to	handle	periodic	event	threads	is	to	use	a	separate	periodic	interrupt	(not
the	same	SysTick	that	is	used	for	thread	switching.)This	means	the	accurate	running
of	event	 threads	will	not	be	disturbed	by	 resetting	 the	SysTick	 timer.	Although	you

could	use	either	version	ofOS_Suspend ,	resetting	the	counter	will	be	fairer.

4.1.2.	Cooperative	Scheduler
In	 this	 section	 we	 will	 develop	 a	 3-thread	 cooperative	 round-robin	 scheduler	 by
letting	the	tasks	suspend	themselves	by	triggering	a	SysTick	interrupt.

You	 can	 find	 this	 cooperative	 OS	 as	Cooperative_xxx,	 where	 xxx	 refers	 to	 the
specific	microcontroller	on	which	the	example	was	tested,	Program	4.2.	Figure	4.2
shows	a	profile	of	this	OS.	We	can	estimate	the	thread	switch	time	to	be	about	1	µs,
because	of	the	gap	between	the	last	edge	on	one	pin	to	the	first	edge	on	the	next	pin.
In	 this	case,	because	 the	 thread	switch	occurs	every	1.3	µs,	 the	1-µs	 thread-switch
overhead	 is	 significant.	 Even	 though	 SysTick	 interrupts	 are	 armed,	 the	 SysTick
hardware	never	triggers	an	interrupt.	Instead,	each	thread	voluntarily	suspends	itself
before	the	1-ms	interval.

void	Task0(void){
		Count0	=	0;
		while(1){
				Count0++;
				Profile_Toggle0();				//	toggle	bit
				OS_Suspend();
		}
}
void	Task1(void){
		Count1	=	0;
		while(1){
				Count1++;
				Profile_Toggle1();				//	toggle	bit
				OS_Suspend();
		}
}
void	Task2(void){
		Count2	=	0;
		while(1){
				Count2++;
				Profile_Toggle2();				//	toggle	bit
				OS_Suspend();
		}
}
Program	4.2.	User	threads	that	use	a	cooperative	scheduler.

Figure	4.2.	The	OS	runs	three	threads;	each	thread	volunteers	to	suspend
running	in	simulation	mode	on	the	TM4C123.	The	three	profile	pins	from
Program	4.2	are	measured	versus	time	using	a	logic	analyzer.

We	must	use	a	separate	periodic	 interrupt	 to	manage	periodic	 tasks	when	running	a
cooperative	scheduler,	so	that	the	timing	of	periodic	events	would	be	regular.

4.2.	Blocking	semaphores

4.2.1.	The	need	for	blocking
The	basic	 idea	of	a	blocking	semaphore	will	 be	 to	 prevent	 a	 thread	 from	 running
(we	say	the	thread	is	blocked)	when	the	thread	needs	a	resource	that	is	unavailable.
There	 are	 three	 reasons	 we	 will	 replace	 spin-lock	 semaphores	 with	 blocking
semaphores.	The	first	reason	is	an	obvious	inefficiency	in	having	threads	spin	while
there	 is	nothing	 for	 them	 to	do.	Blocking	semaphores	will	be	a	means	 to	 recapture
this	lost	processing	time.	Essentially,	with	blocking	semaphores,	a	thread	will	not	run
unless	 it	 has	 useful	 work	 it	 can	 accomplish.	 Even	 with	 spinlock/cooperation	 it	 is
wasteful	to	launch	a	thread	you	know	can’t	run,	only	to	suspend	itself	10	μs	later.

The	second	problem	with	spin-lock	semaphores	is	a	fairnessissue.	Consider	the	case
with	 threads	 1	 2	 3	 running	 in	 round	 robin	 order.	 Assume	 thread	 1	 is	 the	 one
calling Signal ,	and	threads	2	and	3	callWait .	 If	 threads	2	and	3	are	both	spinning
waiting	on	the	semaphore,	and	then	thread	1	signals	the	semaphore,	which	thread	(2
or	3)	will	be	allowed	to	run?	Because	of	its	position	in	the	1	2	3	cycle,	thread	2	will
always	capture	 the	semaphore	ahead	of	 thread	3.	 It	 seems	fair	when	 the	status	of	a
resource	 goes	 from	 busy	 to	 available,	 that	 all	 threads	waiting	 on	 the	 resource	 get
equal	chance.	A	similar	problem	exists	in	non-computing	scenarios	where	fairness	is
achieved	by	issuing	numbered	tickets,	creating	queues,	or	having	the	customers	sign	a
log	 when	 they	 enter	 the	 business	 looking	 for	 service.	 E.g.,	 when	 waiting	 for	 a
checkout	clerk	at	the	grocery	store,	we	know	to	get	in	line,	and	we	think	it	is	unfair
for	 pushy	 people	 to	 cut	 in	 line	 in	 front	 of	 us.	We	 define	bounded	waiting	 as	 the
condition	where	once	 a	 thread	begins	 to	wait	 on	 a	 resource	 (the	 call	 to OS_Wait
does	not	return	right	away),	there	are	a	finite	number	of	threads	that	will	be	allowed
to	 proceed	 before	 this	 thread	 is	 allowed	 to	 proceed.Bounded	 waiting	 does	 not
guarantee	 a	minimum	 time	 before OS_Wait 	 will	 return;	 it	 just	 guarantees	 a	 finite
number	of	other	threads	will	go	before	this	thread.	For	example,	it	is	holiday	time,	I
want	to	mail	a	package	to	my	mom,	I	walk	into	the	post	office	and	take	a	number,	the
number	on	the	ticket	is	251,	I	look	up	at	the	counter	and	the	display	shows	212,	and	I
know	there	are	39	people	ahead	of	me	in	line.	We	could	implement	bounded	waiting
with	blocking	semaphores	by	placing	the	blocked	threads	on	a	list,	which	is	sorted	by
the	order	in	which	they	blocked.	When	we	wake	up	a	thread	off	the	blocked	list,	we
wake	 up	 the	 one	 that	 has	 been	 waiting	 the	 longest.	 	We	 introduce	 the	 concept	 of
bounded	 waiting	 because	 it	 is	 a	 feature	 available	 in	 most	 commercial	 operating
systems.

The	third	reason	to	develop	blocking	semaphores	will	be	the	desire	to	implement	a
priority	thread	scheduler.	With	a	round-robin	scheduler	we	assume	each	thread	has
equal	 importance.	With	a	priority	 scheduler	we	will	 run	 the	highest	priority	 thread

that	is	ready	to	run.	For	example,	if	we	have	one	high	priority	thread	that	is	ready,	we
will	 run	 it	over	and	over	 regardless	of	whether	or	not	 there	are	any	 lower	priority
threads	 ready.	 We	 will	 discuss	 the	 issues	 of	 starvation,	 aging,	 inversion	 and
inheritance	in	the	next	chapter.	A	priority	scheduler	will	require	the	use	of	blocking
semaphores.	I.e.,	we	cannot	use	a	priority	scheduler	with	spin-lock	semaphores.

4.2.2.	The	blocked	state
A	 thread	 is	 in	 the	 blocked	 state	 when	 it	 is	 waiting	 for	 some	 external	 event	 like
input/output	(keyboard	input	available,	printer	ready,	I/O	device	available.)	We	will
use	 semaphores	 to	 implement	 communication	 and	 synchronization,	 and	 it	 is
semaphore	 functionOS_Wait 	 that	 will	 block	 a	 thread	 if	 it	 needs	 to	 wait.	 For
example,	if	a	thread	communicates	with	other	threads	then	it	can	be	blocked	waiting
for	 an	 input	message	or	waiting	 for	 another	 thread	 to	be	 ready	 to	 accept	 its	 output
message.	 If	a	 thread	wishes	 to	output	 to	 the	display,	but	another	 thread	 is	currently
outputting,	then	it	will	block.	If	a	thread	needs	information	from	a	FIFO	(calls	Get),
then	 it	 will	 be	 blocked	 if	 the	 FIFO	 is	 empty	 (because	 it	 cannot	 retrieve	 any
information.)	Also,	if	a	thread	outputs	information	to	a	FIFO	(calls	Put),	then	it	will
be	 blocked	 if	 the	 FIFO	 is	 full	 (because	 it	 cannot	 save	 its	 information.)	 The
semaphore	functionOS_Signal 	will	be	called	when	it	is	appropriate	for	the	blocked
thread	to	continue.	For	example,	if	a	thread	is	blocked	because	it	wanted	to	print	and
the	 printer	 was	 busy,	 it	 will	 be	 signaled	 when	 the	 printer	 is	 free.	 If	 a	 thread	 is
blocked	 waiting	 on	 a	 message,	 it	 will	 be	 signaled	 when	 a	 message	 is	 available.
Similarly,	if	a	thread	is	blocked	waiting	on	an	empty	FIFO,	it	will	be	signaled	when
new	data	are	put	into	the	FIFO.	If	a	thread	is	blocked	because	it	wanted	to	put	into	a
FIFO	 and	 the	 FIFO	 was	 full,	 it	 will	 be	 signaled	 when	 another	 thread	 calls	Get,
freeing	up	space	in	the	FIFO.

Figure	4.3	shows	five	 threads.	 In	 this	simple	 implementation	of	blocking	we	add	a
third	 field,	 called blocked ,	 to	 the	TCB	 structure,	 defining	 the	 status	 of	 the	 thread.
The RunPt points	to	the	TCB	of	the	thread	that	is	currently	running.	The next field	is
a	 pointer	 chaining	 all	 five	 TCBs	 into	 a	 circular	 linked	 list.	 Each	 TCB	 has
a StackPt field.	Recall	that,	if	the	thread	is	running	it	is	using	the	real	SP	for	its	stack
pointer.	However,	the	other	threads	have	their	stack	pointers	saved	in	this	field.	The
third	 field	 is	 a blocked field.	 If	 the blocked field	 is	 null,	 there	 are	 no	 resources
preventing	 the	 thread	 from	 running.	On	 the	 other	 hand,	 if	 a	 thread	 is	 blocked,	 the
blocked 	field	contains	a	pointer	to	the	semaphore	on	which	this	thread	is	blocked.	In
Figure	4.3,	we	see	threads	2	and	4	are	blocked	waiting	for	the	resource	(semaphore
free).	All	five	threads	are	in	the	circular	linked	list	although	only	three	of	them	will
be	run.

Figure	4.3.	Threads	0,	1	and	3	are	being	run	by	the	scheduler.	Threads	2
and	4	are	blocked	on	free	and	will	not	run	until	some	thread	signals	free.

In	this	simple	approach,	a	main	thread	can	only	be	blocked	on	one	resource.	In	other
words,	 when	 a	 thread	 calls OS_Wait 	 on	 a	 semaphore	 with	 value	 0	 or	 less,	 that
thread	 is	blocked	and	stops	 running.	Therefore,	once	blocked	on	one	semaphore,	 it
cannot	block	on	a	second	semaphore.	Figure	4.3	shows	just	one	semaphore,	but	even
when	 there	 are	multiple	 semaphores,	we	 need	 only	 one blocked field	 in	 the	 TCB.
Since	C	considers	zero	as	false	and	nonzero	as	true,	 the blocked 	 field	can	also	be
considered	 as	 a	 Boolean,	 specifying	 whether	 or	 not	 the	 thread	 is	 blocked.	 	 This
simple	 solution	 is	 adequate	 for	 systems	with	 a	 small	 number	 of	 threads	 (e.g.,	 less
than	20).

Notice	 in	 this	 simple	 implementation	we	 do	 not	maintain	 a	 separate	 linked	 list	 of
threads	 blocked	 on	 a	 specific	 semaphore.	 In	 particular,	 in	 Figure	 4.3	 we	 know
threads	2	and	5	are	blocked	on	the	semaphore	free,	but	we	do	not	know	which	thread
blocked	first.	The	advantage	of	this	implementation	using	one	circular	linked	list	data
structure	to	hold	the	TCBs	of	all	the	threads	will	be	speed	and	simplicity.	Note	that,
we	need	to	add	threads	to	the	TCB	list	only	when	created,	and	remove	them	from	the
TCB	list	if	the	thread	kills	itself.	If	a	thread	cannot	run	(blocked)	we	can	signify	this
event	by	setting	its blocked 	field	like	Figure	4.3	to	point	to	the	semaphore	on	which
the	thread	is	blocked.

In	order	to	implement	bounded	waiting,	we	would	have	to	create	a	separate	blocked
linked	 list	 for	 each	 reason	why	 the	 thread	 cannot	 execute.	 For	 example,	we	 could
have	one	blocked	list	for	threads	waiting	for	the	output	display	to	be	free,	one	list	for
threads	 waiting	 because	 a	 FIFO	 is	 full,	 and	 one	 lists	 for	 threads	 waiting	 because
another	FIFO	is	empty.	In	general,	we	will	have	one	blocked	list	with	each	reason	a

thread	might	not	be	able	to	run.	This	approach	will	be	efficient	for	systems	with	many
threads	(e.g.,	more	than	20).	These	linked	lists	contain	threads	sorted	in	order	of	how
long	 they	 have	 been	 waiting.	 To	 implement	 bounded	 waiting,	 when	 we	 signal	 a
semaphore,	we	wake	up	the	thread	that	has	been	waiting	the	longest.

In	 this	 more	 complex	 implementation,	 we	 unchain	 a	 TCB	 from	 the	 ready	 circular
linked	list	when	it	is	blocked.	In	this	way	a	blocked	thread	will	never	run.	We	place
the	blocked	TCBs	on	a	linear	linked	list	associated	with	the	semaphore	(the	reason	it
was	blocked).	We	can	 implement	bounded	waiting	by	putting	blocked	TCBs	at	 the
end	 of	 the	 list	 and	 waking	 up	 threads	 from	 the	 front	 of	 the	 list.	 There	 will	 be	 a
separate	 linked	 list	 for	 every	 semaphore.	 This	 method	 is	 efficient	 when	 there	 are
many	 threads	 that	will	be	blocked	at	one	 time.	The	 thread	switching	will	be	 faster
because	 the	scheduler	will	only	see	 threads	 that	could	 run,	and	not	have	 to	 look	at
blocked	 threads	 in	 the	 circular	 linked	 list.	 Most	 commercial	 operating	 systems
implement	 blocking	 by	 unchaining	 blocked	 threads	 because	 they	 need	 to	 operate
efficiently	with	dozens	of	threads.

However,	 for	 simple	operating	 systems	 that	manage	 less	 than	10	 threads	 it	will	be
faster	 and	 easier	 to	 not	 implement	 unchaining.	 Rather,	 simple	 schedulers	 can	 skip
threads	with	a	nonzero blocked 	field.

4.2.3.	Implementation
We	will	present	a	simple	approach	for	implementing	blocking	semaphores.	Notice	in
Figure	4.4	that	wait	always	decrements	and	signal	always	increments.	This	means	the
semaphore	can	become	negative.	In	the	example	of	using	a	semaphore	to	implement
mutual	exclusion,	if	free	is	1,	it	means	the	resource	is	free.	If	free	is	0,	it	means	the
resource	is	being	used.	If	free	is	-1,	it	means	one	thread	is	using	the	resource	and	a
second	thread	is	blocked,	waiting	to	use	it.	If	free	is	-2,	it	means	one	thread	is	using
the	resource	and	two	other	threads	are	blocked,	waiting	to	use	it.

Figure	4.4.	Flowcharts	of	a	blocking	counting	semaphore.

In	this	simple	implementation,	the	semaphore	is	a	signed	integer.	This	implementation
of	 blocking	 is	 appropriate	 for	 systems	 with	 less	 than	 20	 threads.	 In	 this
implementation,	 a blocked 	 field	 is	 added	 to	 the	 TCB.	 The	 type	 of	 this	 field	 is	 a
pointer	to	a	semaphore.	The	semaphore	itself	remains	a	signed	integer.	If blocked is
null,	the	thread	is	not	blocked.	If	the blocked 	field	contains	a	semaphore	pointer,	it	is
blocked	on	that	semaphore.	The	“Block	this	thread”	operation	will	set	 the blocked
field	to	point	to	the	semaphore,	then	suspend	the	thread.

void	OS_Wait(int32_t	*s){
		DisableInterrupts();
		(*s)	=	(*s)	-	1;
		if((*s)	<	0){
				RunPt->blocked	=	s;	//	reason	it	is	blocked
				EnableInterrupts();
				OS_Suspend();							//	run	thread	switcher
		}
		EnableInterrupts();
}
	

The	“Wakeup	one	thread”	operation	will	be	to	search	all	the	TCBs	for	first	one	that
has	a blocked 	 field	 equal	 to	 the	 semaphore	 and	wake	 it	 up	by	 setting	 its blocked
field	to	zero

void	OS_Signal(int32_t	*s){
		tcbType	*pt;
		DisableInterrupts();
		(*s)	=	(*s)	+	1;
		if((*s)	<=	0){
				pt	=	RunPt->next;		//	search	for	one	blocked	on	this
				while(pt->blocked	!=	s){
						pt	=	pt->next;
				}
				pt->blocked	=	0;			//	wakeup	this	one
		}
		EnableInterrupts();
}

	
Notice	 in	 this	 implementation,	 calling	 the	 signal	 will	 not	 invoke	 a	 thread	 switch.
During	 the	 thread	switch,	 the	OS	searches	 the	circular	 linked-list	 for	a	 thread	with
a blocked 	 field	 equal	 to	 zero	 (the	woken	up	 thread	 is	 a	 possible	 candidate).	This
simple	implementation	will	not	allow	you	to	implement	bounded	waiting.	Notice	that
this	solution	does	not	implement	bounded	waiting.

void	Scheduler(void){
		RunPt	=	RunPt->next;		//	run	next	thread	not	blocked
		while(RunPt->blocked){	//	skip	if	blocked

				RunPt	=	RunPt->next;
		}				
}

	
Checkpoint	4.3:		Assume	the	RTOS	is	running	with	a	preemptive	thread	switch
every	1	ms.	Assume	there	are	8	threads	in	the	TCB	circular	list,	and	5	of	the
threads	are	blocked.	Assume	the	while	loop	in	the	above	Scheduler	function	takes
12	assembly	instructions	or	150ns	to	execute	each	time	through	the	loop.	What	is
the	maximum	time	wasted	in	the	scheduler	looking	at	threads	that	are	blocked?	In
other	words,	how	much	time	could	be	saved	by	unchaining	blocked	threads	from
the	TCB	list?

4.2.4.	Thread	rendezvous
The	objective	of	 this	example	 is	 to	 synchronize	Threads	1	and	2	 (Program	4.3).	 In
other	words,	whichever	 thread	 gets	 to	 this	 part	 of	 the	 code	 first	will	wait	 for	 the
other.	 Initially	 semaphores S1 and S2 	 are	 both	 0.	 The	 two	 threads	 are	 said	 to
rendezvous	 at	 the	 code	 following	 the	 signal	 and	wait	 calls.	 The	 rendezvous	will
cause	thread	1	to	execute Stuff1 at	the	same	time	(concurrently)	as	thread	2	executes
its Stuff2 .

void	Task1(void){	//	Thread	1
		Init1();
		while(1){
				Unrelated1();

			
OS_Signal(&S1);
				OS_Wait(&S2);
				Stuff1();
		}
}

void	Task2(void){	//
Thread2
		Init2();
		while(1){
				Unrelated2();
				OS_Signal(&S2);
				OS_Wait(&S1);
				Stuff2();
		}
}

Program	4.3.	Semaphores	used	to	implement	rendezvous.

There	 are	 three	 scenarios	 the	 semaphores	may	experience	 and	 their	 significance	 is
listed	below:

S1 S2 Meaning
	0 	0 Neither	thread	has	arrived	at	the	rendezvous	location	or	both

have	passed
-1 +1 Thread	2	arrived	first	and	Thread	2	is	blocked	waiting	for

Thread	1
+1 -1 Thread	1	arrived	first	and	Thread	1	is	blocked	waiting	for

Thread	2

4.3.	First	In	First	Out	Queue
We	introduced	first	in	first	out	circular	queues	(FIFO)	back	in	Chapter	2	when	we
presented	interrupts.	However,	in	this	section	we	will	delve	deeper	and	investigate
how	 operating	 systems	 use	 this	 important	 data	 structure.	 A	 common	 scenario	 in
embedded	systems	has	producers	that	generate	data	and	consumers	that	process	data.
To	decouple	the	producers	and	consumers	from	having	to	work	in	lock-step,	a	buffer
is	used	to	store	the	data,	so	a	producer	thread	can	produce	when	it	can.	All	is	fine	as
long	as	there	is	room	in	the	buffer	to	store	the	produced	data.	Similarly,	the	consumer
thread	can	process	data	when	it	can.	Similarly,	all	is	fine	as	long	as	the	buffer	is	non-
empty.	 A	 common	 implementation	 of	 such	 a	 buffer	 is	 the	 FIFO	 queue,	 which
preserves	 the	 order	 of	 data,	 so	 that	 the	 first	 piece	 of	 data	 generated	 is	 the	 first
consumed.

4.3.1.	Producer/Consumer	problem	using	a	FIFO
The	FIFO	is	quite	useful	for	implementing	a	buffered	I/O	interface	(Figure	4.5).	The
function	Put	will	 store	data	 in	 the	FIFO,	and	 the	function	Get	will	 remove	data.	 It
operates	 in	a	 first	 in	 first	out	manner,	meaning	 the	Get	 function	will	 return/remove
the	oldest	data.	It	can	be	used	for	both	buffered	input	and	buffered	output.	This	order-
preserving	 data	 structure	 temporarily	 saves	 data	 created	 by	 the	 source	 (producer)
before	 it	 is	 processed	 by	 the	 sink	 (consumer).	 The	 class	 of	 FIFOs	 studied	 in	 this
section	 will	 be	 statically	 allocated	 global	 structures.	 Because	 they	 are	 global
variables,	it	means	they	will	exist	permanently	and	can	be	carefully	shared	by	more
than	one	program.	The	advantage	of	using	a	FIFO	structure	for	a	data	flow	problem	is
that	 we	 can	 decouple	 the	 producer	 and	 consumer	 threads.	 Without	 the	 FIFO	 we
would	have	to	produce	one	piece	of	data,	then	process	it,	produce	another	piece	of
data,	then	process	it.	With	the	FIFO,	the	producer	thread	can	continue	to	produce	data
without	having	to	wait	for	the	consumer	to	finish	processing	the	previous	data.	This
decoupling	can	significantly	improve	performance.

Figure	4.5.	The	FIFO	is	used	to	buffer	data	between	the	producer	and
consumer.	The	number	of	data	stored	in	the	FIFO	varies	dynamically,	where
Put	adds	one	data	element	and	Get	removes/returns	one	data	element.

Another	 name	 for	 the	FIFO	 is	 bounded	buffer.	For	 example,	 a	FIFO	 is	 used	while

streaming	audio	from	the	Internet.	As	sound	data	are	received	from	the	Internet	they
are	stored	(calls	Put)	into	a	FIFO.	When	the	sound	board	needs	data	it	calls	Get.	As
long	as	 the	FIFO	never	becomes	full	or	empty,	 the	sound	 is	played	 in	a	continuous
manner.	A	FIFO	is	also	used	when	you	ask	the	computer	to	print	a	file.	Rather	than
waiting	for	the	actual	printing	to	occur	character	by	character,	the	print	command	will
put	the	data	in	a	FIFO.	Whenever	the	printer	is	free,	it	will	get	data	from	the	FIFO.
The	advantage	of	 the	FIFO	is	 it	allows	you	to	continue	to	use	your	computer	while
the	printing	occurs	 in	 the	background.	To	 implement	 this	magic,	our	RTOS	must	be
able	 to	 manage	 FIFOs.	 There	 are	 many	 producer/consumer	 applications,	 as	 we
previously	 listed	 in	 Table	 3.1,	 where	 the	 processes	 on	 the	 left	 are	 producers	 that
create	or	input	data,	while	the	processes	on	the	right	are	consumers	which	process	or
output	data.

4.3.2.	Little’s	Theorem
In	this	section	we	introduce	some	general	theory	about	queues.	Let	N	be	the	average
number	 of	 data	 packets	 in	 the	 queue	 plus	 the	 one	 data	 packet	 currently	 being
processed	 by	 the	 consumer.	 Basically,	N	 is	 the	 average	 number	 of	 packets	 in	 the
system.	Let	L	be	 the	average	arrival	 rate	 in	packets	per	second	(pps).	Let	R	be	 the
average	response	time	of	a	packet,	which	includes	the	time	waiting	in	the	queue	plus
the	time	for	the	consumer	to	process	the	packet.	Little’s	Theorem	states

N	=	L*R

As	 long	 as	 the	 system	 is	 stable,	 this	 result	 is	 not	 influenced	 by	 the	 probability
distribution	 of	 the	 producer,	 the	 probability	 distribution	 of	 the	 consumer	 or	 the
service	order.	Let	S	be	the	mean	service	time	for	a	packet.	Thus,	C=1/S	is	defined	as
the	system	capacity	(pps).	Stable	in	this	context	means	the	packet	arrival	rate	is	less
than	the	system	capacity	(L<C).	This	means,	 in	most	cases,	 the	queue	length	can	be
chosen	so	the	queue	never	fills	and	no	data	are	lost.	In	this	case,	the	arrival	rate	L	is
also	 the	output	 rate	T,	 or	 throughput	of	 the	 system.	We	can	use	Little’s	Theorem	 to
estimate	average	response	time,

R	=	N/T

In	general,	we	want	T	 to	be	high	and	R	 to	be	 low.	To	handle	 these	 two	conflicting
goals,	 we	 develop	 the	 concept	 of	 a	 power	 metric	 for	 the	 queue.	 We	 can	 define
utilization	factor	as	 the	 throughput	divided	by	 the	capacity,	which	 is	a	normalized
throughput,

	 U	=	T/C

U	defines	 the	 loading	of	 the	queue,	because	 it	 is.	We	can	define	normalized	mean
response	time,	R/S.	We	next	define	power	metric	P	as	utilization	factor	divided	by
normalized	mean	response	time,

P	=	U/(R/S)	=	(T*S)/(R/S)

Substituting	Little’s	Theorem	(R=N/T),	we	can	write

P	=	U2/N

The	goal	of	the	operating	system	is	to	maximize	P.

	

4.3.3.	FIFO	implementation
FIFOs	 can	 be	 statically	 allocated,	 where	 the	 buffer	 size	 is	 fixed	 at	 compile	 time,
Figure	 4.6.	This	means	 the	maximum	number	 of	 elements	 that	 can	 be	 stored	 in	 the
FIFO	 at	 any	 one	 time	 is	 determined	 at	 design	 time.	 Alternately,	 FIFOs	 can	 be
dynamically	 allocated,	where	 the	OS	 allows	 the	 buffer	 to	 grow	 and	 shrink	 in	 size
dynamically.	 To	 allow	 a	 buffer	 to	 grow	 and	 shrink,	 the	 system	 needs	 a	 memory
manager	or	heap.	A	heap	 allows	 the	 system	 to	 allocate,	 deallocate,	 and	 reallocate
buffers	 in	 RAM	 dynamically.	 There	 are	 many	 memory	 managers	 (heaps),	 but	 the
usual	one	available	in	C	has	these	three	functions.	The	function	malloc 	creates	a	new
buffer	 of	 a	 given	 size.	 The	 function	 free 	 deallocates	 a	 buffer	 that	 is	 no	 longer
needed.	 The	 function	 realloc allocates	 a	 new	 buffer,	 copies	 data	 from	 a	 previous
buffer	 into	 the	 new	 buffer	 of	 different	 size,	 and	 then	 deallocates	 the	 previous
buffer. realloc 	is	the	function	needed	to	increase	or	decrease	the	allocated	space	for
the	FIFO	statically-allocated	FIFOs	might	 result	 in	 lost	data	or	 reduced	bandwidth
compared	to	dynamic	allocation.

Figure	4.6.	With	static	allocation,	the	maximum	number	of	elements	stored
in	the	FIFO	is	fixed	at	compile	time.	With	dynamic	allocation,	the	system	can
call	realloc	when	the	FIFO	is	almost	full	to	grow	the	size	of	the	FIFO
dynamically.	Similarly,	if	the	FIFO	is	almost	empty,	it	can	shrink	the	size
freeing	up	memory.

A	system	is	considered	to	be	deterministic	if	when	the	system	is	run	with	the	same
set	of	 inputs,	 it	produces	 identical	 responses.	Most	 real-time	 systems	often	 require
deterministic	 behavior,	 because	 testing	 can	 be	 used	 to	 certify	 performance.
Dynamically-allocated	 FIFOs	 cause	 the	 behavior	 of	 one	 subsystem	 (that	 might
allocate	large	amounts	of	RAM	from	the	heap)	to	affect	behavior	in	another	unrelated
subsystem	 (our	 FIFO	 that	wishes	 to	 increase	 buffer	 size).	 It	 is	 better	 for	 real-time
systems	 to	be	 reliable	and	verifiable	 than	 to	have	higher	performance.	As	 the	heap

runs,	it	can	become	fragmented;	meaning	the	free	memory	in	the	heap	has	many	little
pieces,	 rather	 than	a	 few	big	pieces.	Since	 the	 time	 to	 reallocate	a	buffer	can	vary
tremendously,	 depending	 on	 the	 fragmentation	 of	 the	 heap,	 it	 will	 be	 difficult	 to
predict	 execution	 time	 for	 the	FIFO	 functions.	 Since	 a	 statically	 allocated	FIFO	 is
simple,	we	will	 be	 able	 to	predict	 execution	behavior.	For	 these	 reasons,	we	will
restrict	 FIFO	 construction	 to	 static	 allocation.	 In	 other	 words,	 you	 should	 not	 use
malloc	and	free	in	your	RTOS.

There	 are	many	ways	 to	 implement	 a	 statically-allocated	 FIFO.	We	 can	 use	 either
two	pointers	or	two	indices	to	access	the	data	in	the	FIFO.	We	can	either	use	or	not
use	a	counter	that	specifies	how	many	entries	are	currently	stored	in	the	FIFO.	There
are	 even	hardware	 implementations.	For	non-OS	 implementations	of	 the	FIFO,	 see
Section	2.3.	In	this	section	we	will	present	three	implementations	using	semaphores.

4.3.4.	Three-semaphore	FIFO	implementation
The	first	scenario	we	will	solve	is	where	there	are	multiple	producers	and	multiple
consumers.	In	this	case	all	threads	are	main	threads,	which	are	scheduled	by	the	OS.
The	FIFO	is	used	to	pass	data	from	the	producers	to	the	consumers.	In	this	situation,
the	 producers	 do	 not	 care	 to	 which	 consumer	 their	 data	 are	 passed,	 and	 the
consumers	do	not	care	from	which	producer	the	data	arrived.	These	are	main	threads,
so	 we	 will	 block	 producers	 when	 the	 FIFO	 is	 full	 and	 we	 will	 block	 consumers
when	the	FIFO	is	empty.

Figure	4.7.	FIFO	used	to	pass	data	from	multiple	producers	to	multiple
consumers.	All	threads	are	main	threads.

The	producer	puts	data	into	the	FIFO.	If	the	FIFO	is	full	and	the	user	calls Fifo_Put ,
there	 are	 two	 responses	 we	 could	 employ.	 The	 first	 response	 would	 be	 for
the Fifo_Put routine	to	block	assuming	it	is	unacceptable	to	discard	data.	The	second
response	would	be	 for	 the Fifo_Put 	 routine	 to	discard	 the	data	 and	 return	with	 an
error	 value.	 In	 this	 subsection	 we	 will	 block	 the	 producer	 on	 a	 full	 FIFO.	 This
implementation	can	be	used	if	the	producer	is	a	main	thread,	but	cannot	be	used	if	the
producer	is	an	event	thread	or	ISR.

The	consumer	removes	data	from	the	FIFO.	For	most	applications,	the	consumer	will

be	a	main	thread	that	calls Fifo_Get when	it	needs	data	to	process.	After	a	get,	 the
particular	information	returned	from	the	get	routine	is	no	longer	saved	in	the	FIFO.	If
the	FIFO	is	empty	and	the	user	tries	to	get,	the Fifo_Get routine	will	block	because
we	assume	the	consumer	needs	data	to	proceed.	The	FIFO	is	order	preserving,	such
that	 the	 information	 returned	 by	 repeated	 calls	 to Fifo_Get give	 data	 in	 the	 same
order	as	the	data	saved	by	repeated	calls	of Fifo_Put .

The	 two-pointer	 implementation	 has,	 of	 course,	 two	 pointers.	 If	 we	were	 to	 have
infinite	 memory,	 a	 FIFO	 implementation	 is	 easy	 (Figure	 4.8). GetPt points	 to	 the
data	 that	 will	 be	 removed	 by	 the	 next	 call	 to Fifo_Get ,	 and PutPt	 points	 to	 the
empty	 space	where	 the	data	will	 stored	by	 the	next	 call	 to Fifo_Put ,	 see	Program
4.4.

Figure	4.8.	The	FIFO	implementation	with	infinite	memory.

uint32_t	volatile	*PutPt;	//	put	next
uint32_t	volatile	*GetPt;	//	get	next
void	Fifo_Put(uint32_t	data){						//	call	by	value
		*PutPt	=	data;			//	Put
		PutPt++;									//	next
}
uint32_t	Fifo_Get(void){	uint32_t	data;
		data	=	*GetPt;			//	return	by	reference
		GetPt++;									//	next
		return	data;				//	true	if	success
}

Program	4.4.	Code	fragments	showing	the	basic	idea	of	a	FIFO.

There	are	four	modifications	that	are	required	to	the	above	functions.	If	the	FIFO	is
full	when Fifo_Put 	is	called,then	the	function	should	block.	Similarly,	if	the	FIFO	is
empty	 when Fifo_Get is	 called,	 then	 the	 function	 should	 block. PutPt	 must	 be
wrapped	back	up	to	the	top	when	it	reaches	the	bottom	(Figure	4.9).

	

Figure	4.9.	The	FIFOFifo_Put 	operation	showing	the	pointer	wrap.

	

The GetPt 	 must	 also	 be	 wrapped	 back	 up	 to	 the	 top	when	 it	 reaches	 the	 bottom
(Figure	4.10).

Figure	4.10.	The	FIFOFifo_Get 	operation	showing	the	pointer	wrap.

We	will	deploy	two	semaphores	to	describe	the	status	of	the	FIFO,	see	Program	4.5.
In	 this	 FIFO,	 each	 element	 is	 a	 32-bit	 integer.	 The	 maximum	 number	 of
elements, FIFOSIZE ,	is	determined	at	compile	time.	In	other	words,	to	increase	the
allocation,	we	first	change FIFOSIZE ,	and	then	recompile.

The	first	semaphore,	CurrentSize,	specifies	the	number	of	elements	currently	in	the
FIFO.	This	semaphore	is	initialized	to	zero,	meaning	the	FIFO	is	initially	empty,	it	is
incremented	 by Fifo_Put signifying	 one	 more	 element,	 and	 decremented
by Fifo_Get 	signifying	one	less	element.

The	second	semaphore,	RoomLeft,	specifies	the	how	many	more	elements	could	be
put	 into	 the	 FIFO.	 This	 semaphore	 is	 initialized	 to FIFOSIZE ,	 it	 is	 decremented
by Fifo_Put signifying	 there	 is	 space	 for	 one	 less	 element,	 and	 incremented
by Fifo_Get 	 signifying	 there	 is	 space	 for	 one	more	 element.	When	RoomLeft	 is
zero,	the	FIFO	is	full.

Race	conditions	and	critical	sections	are	important	issues	in	systems	using	interrupts.
If	there	are	more	than	one	producer	or	more	than	one	consumer,	access	to	the	pointers
represent	a	critical	 section,	and	hence	we	will	need	 to	protect	 the	pointers	using	a
FIFOmutex	semaphore.

#define	FIFOSIZE	10							//	can	be	any	size
uint32_t	volatile	*PutPt;	//	put	next
uint32_t	volatile	*GetPt;	//	get	next
uint32_t	static	Fifo[FIFOSIZE];
int32_t	CurrentSize;						//	0	means	FIFO	empty
int32_t	RoomLeft;									//	0	means	FIFO	full
int32_t	FIFOmutex;							//	exclusive	access	to	FIFO
//	initialize	FIFO
void	OS_Fifo_Init(void){
		PutPt	=	GetPt	=	&Fifo[0];	//	Empty
		OS_InitSemaphore(&CurrentSize,	0);
		OS_InitSemaphore(&RoomLeft,	FIFOSIZE);
		OS_InitSemaphore(&FIFOmutex,	1);
}
void	OS_Fifo_Put(uint32_t	data){
		OS_Wait(&RoomLeft);
		OS_Wait(&FIFOmutex);
		*(PutPt)	=	data;				//	Put
		PutPt++;												//	place	to	put	next
		if(PutPt	==	&Fifo[FIFOSIZE]){
				PutPt	=	&Fifo[0];		//	wrap
		}
		OS_Signal(&FIFOmutex);
		OS_Signal(&CurrentSize);
}
uint32_t	OS_Fifo_Get(void){	uint32_t	data;
		OS_Wait(&CurrentSize);
		OS_Wait(&FIFOmutex);
		data	=	*(GetPt);						//	get	data
		GetPt++;														//	points	to	next	data	to	get
		if(GetPt	==	&Fifo[FIFOSIZE]){
				GetPt	=	&Fifo[0];			//	wrap
		}
		OS_Signal(&FIFOmutex);
		OS_Signal(&RoomLeft);
		return	data;
}
Program	4.5.	Two-pointer	three-semaphore	implementation	of	a	FIFO.	This
implementation	is	appropriate	when	producers	and	consumers	are	main
threads.

Checkpoint	4.4:On	average	over	the	long	term,	what	is	the	relationship	between
the	number	of	timesWait is	called	compared	to	the	number	of	times Signal 	is
called?	

Checkpoint	4.5:On	average	over	the	long	term,	what	is	the	relationship	between
the	number	of	times Put is	successfully	called	compared	to	the	number	of
times Get 	is	successfully	called?		To	answer	this	question,consider	a	successful
call	to Put as	a	called	that	correctly	stored	data,	and	a	successful	call	to Get 	as	a
call	that	correctly	returned	data.

4.3.5.	Two-semaphore	FIFO	implementation
If	 there	is	one	producer	as	an	event	thread	coupled	with	one	or	more	consumers	as
main	threads	(Figure	4.11),	 the	FIFO	implementation	shown	in	the	previous	section
must	be	changed,	because	we	cannot	block	or	spin	an	event	thread.	If	the	FIFO	is	full
when	the	producer	calls	Put,	then	that	data	will	be	lost.	The	number	of	times	we	lose
data	is	recorded	inLostData .	The	Put	function	returns	an	error	(-1)	if	the	data	was
not	saved	because	the	FIFO	was	full.	This	Putfunction	cannot	be	called	by	multiple
producers	because	of	the	read-modify-write	sequence	to PutPt .	See	Program	4.6.	To
tell	if	the	FIFO	is	full,	we	simply	compare	the	CurrentSize	with	its	maximum.	This
is	a	statically	allocated	FIFO,	so	the	maximum	size	is	a	constant.

Figure	4.11.	FIFO	used	to	pass	data	from	a	single	producer	to	multiple
consumers.	The	producer	is	an	event	thread	and	the	consumers	are	main
threads.

#define	FIFOSIZE	10							//	can	be	any	size
uint32_t	volatile	*PutPt;	//	put	next
uint32_t	volatile	*GetPt;	//	get	next
uint32_t	static	Fifo[FIFOSIZE];
int32_t	CurrentSize;						//	0	means	FIFO	empty
int32_t	FIFOmutex;							//	exclusive	access	to	FIFO
uint32_t	LostData;
//	initialize	FIFO
void	OS_Fifo_Init(void){
		PutPt	=	GetPt	=	&Fifo[0];	//	Empty
		OS_InitSemaphore(&CurrentSize,	0);
		OS_InitSemaphore(&FIFOmutex,	1);
		LostData=0;

}
int	OS_FIFO_Put(uint32_t	data){
		if(CurrentSize	==	FIFOSIZE){
				LostData++;										//	error
				return	-1;
		}
		*(PutPt)	=	data;							//	Put
		PutPt++;															//	place	for	next
		if(PutPt	==	&Fifo[FIFOSIZE]){
				PutPt	=	&Fifo[0];			//	wrap
		}
		OS_Signal(&CurrentSize);
		return	0;
}
uint32_t	OS_FIFO_Get(void){uint32_t	data;
		OS_Wait(&CurrentSize);	//	block	if	empty
		OS_Wait(&FIFOmutex);
		data	=	*(GetPt);						//	get	data
		GetPt++;														//	points	to	next	data	to	get
		if(GetPt	==	&Fifo[FIFOSIZE]){
				GetPt	=	&Fifo[0];			//	wrap
		}
		OS_Signal(&FIFOmutex);
		return	data;
}
Program	4.6.	Two-pointer	two-semaphore	implementation	of	a	FIFO.	This
implementation	is	appropriate	when	a	single	producer	is	running	as	an	event
thread	and	multiple	consumers	are	running	as	main	threads.

Note	 that,	 in	 this	solution	we	no	 longer	need	 the RoomLeft 	 semaphore,which	was
used	to	protect	the	multiple	changes	to PutPt that	multiple	producers	would	entail.	A
single	 producer	 does	 not	 have	 this	 problem.	 We	 still	 need
the CurrentSize semaphore	 because	 we	 have	 multiple	 consumers	 that	 can	 change
the GetPt pointer.	The FIFOmutex 	semaphore	is	needed	to	prevent	two	consumers
from	reading	the	same	data.

4.3.6.	One-semaphore	FIFO	implementation
If	 there	 is	 one	 producer	 as	 an	 event	 thread	 coupled	with	 one	 consumer	 as	 a	main
thread	(Figure	4.12),	we	can	remove	the	mutex	semaphore.	This	Getfunction	cannot
be	 called	 by	 multiple	 consumers	 because	 of	 the	 read-modify-write	 sequence
to GetI .	 In	 the	 previous	 FIFO	 implementations,	 we	 used	 pointers,	 but	 in	 this
example	we	use	indices,	see	Program	4.7.	Whether	you	use	pointers	versus	indices	is

a	matter	of	style,	and	our	advice	is	to	use	the	mechanism	you	understand	the	best.	As
long	as	 there	 is	one	event	 thread	calling	Put	and	one	main	 thread	calling	Get,	 this
implementation	does	not	have	any	critical	sections.

Figure	4.12.	FIFO	used	to	pass	data	from	a	single	producer	to	a	single
consumer.	The	producer	is	an	event	thread	and	the	consumer	is	a	main
thread.

#define	FIFOSIZE	10	//	can	be	any	size
uint32_t	PutI;						//	index	of	where	to	put	next
uint32_t	GetI;						//	index	of	where	to	get	next
uint32_t	Fifo[FIFOSIZE];
int32_t	CurrentSize;	//	0	means	FIFO	empty,	FIFOSIZE	means	full
uint32_t	LostData;			//	number	of	lost	pieces	of	data
void	OS_FIFO_Init(void){
		PutI	=	GetI	=	0;			//	Empty
		OS_InitSemaphore(&CurrentSize,	0);
		LostData	=	0;
}
int	OS_FIFO_Put(uint32_t	data){
		if(CurrentSize	==	FIFOSIZE){
				LostData++;
				return	-1;		//	full
		}	else{
				Fifo[PutI]	=	data;							//	Put
				PutI	=	(PutI+1)%FIFOSIZE;
				OS_Signal(&CurrentSize);
				return	0;			//	success
		}
}
uint32_t	OS_FIFO_Get(void){uint32_t	data;
		OS_Wait(&CurrentSize);				//	block	if	empty
		data	=	Fifo[GetI];								//	get
		GetI	=	(GetI+1)%FIFOSIZE;	//	place	to	get	next
		return	data;
}
Program	4.7.	Two-index	one-semaphore	implementation	of	a	FIFO.	This
implementation	is	appropriate	when	a	single	producer	is	running	as	an	event
thread	and	a	single	consumer	is	running	as	a	main	thread.

The	use	of	 indexes	 rather	 than	pointers	also	means	all	 index	arithmetic	 is	a	simple
modulo	the	size	of	the	FIFO	to	implement	the	wraparound.

Checkpoint	4.6:	Notice	in	Program	4.7	that	there	are	two	conditions	that	result	in
PutI	equaling	GetI.	One	condition	is	the	FIFO	is	empty	and	the	other	condition	is
the	FIFO	is	full.	How	does	the	software	distinguish	between	these	two
conditions?

Checkpoint	4.7:	How	might	you	optimize	Program	4.7	if	the	size	of	the	FIFO
were	a	power	of	2?

4.3.7.	Kahn	Process	Networks
Gilles	Kahn	 first	 introduced	 the	Kahn	Process	Network	 (KPN).	We	 use	KPNs	 to
model	 distributed	 systems	 as	 well	 as	 signal	 processing	 systems.	 Each	 node
represents	a	computation	block	communicating	with	other	nodes	 through	unbounded
FIFO	channels.	The	circles	in	Figure	4.13	are	computational	blocks	and	the	arrows
are	FIFO	queues.	The	resulting	process	network	exhibits	deterministic	behavior	that
does	 not	 depend	 on	 the	 various	 computation	 or	 communication	 delays.	 As	 such,
KPNs	 have	 found	 many	 applications	 in	 modeling	 embedded	 systems,	 high-
performance	computing	systems,	and	computational	tasks.

Figure	4.13.	A	Kahn	Process	Network	consists	of	process	nodes	linked	by
unbounded	FIFO	queues.

For	each	FIFO,	only	one	process	puts,	and	only	one	process	gets.	Figure	4.13	shows
a	KPN	with	four	processes	and	three	edges	(communication	channels).	Processes	P1
and	P2	are	producers,	generating	data	into	channels	A	and	B	respectively.	Process	P3
consumes	one	token	from	channel	A	and	another	from	channel	B	(in	either	order)	and
then	 produces	 one	 token	 into	 channel	 C.	 Process	 P4	 is	 a	 consumer	 because	 it
consumes	tokens.

We	can	use	a	KPN	to	describe	signal	processing	systems	where	 infinite	streams	of
data	are	transformed	by	processes	executing	in	sequence	or	parallel.	Streaming	data
means	we	input/analyze/output	one	data	packet	at	a	time	without	the	desire	to	see	the
entire	 collection	 of	 data	 all	 at	 once.	 Despite	 parallel	 processes,	 multitasking	 or
parallelism	 are	 not	 required	 for	 executing	 this	 model.	 In	 a	 KPN,	 processes
communicate	 via	 unbounded	FIFO	channels.	 Processes	 read	 and	write	 atomic	 data
elements,	 or	 alternatively	 called	 tokens,	 from	 and	 to	 channels.	 The	 read	 token	 is
equivalent	 to	a	FIFO	get	and	 the	write	 token	 is	a	FIFO	put.	 In	a	KPN,	writing	 to	a
channel	 is	non-blocking.	 This	means	we	 expect	 the	 put	 FIFO	 command	 to	 always
succeed.	In	other	words,	the	FIFO	never	becomes	full.	From	a	practical	perspective,

we	can	use	KPN	modeling	for	situations	where	the	FIFOs	never	actually	do	become
full.	Furthermore,	 the	approximate	behavior	of	a	system	can	be	still	be	deemed	for
systems	where	FIFO	 full	 errors	are	 infrequent.	For	 these	approximations	we	could
discard	data	with	the	FIFO	becomes	full	on	a	put	instead	of	waiting	for	there	to	be
free	space	in	the	FIFO.

On	 the	 other	 hand,	 reading	 from	a	 channel	 requires	 blocking.	A	process	 that	 reads
from	 an	 empty	 channel	will	 stall	 and	 can	 only	 continue	when	 the	 channel	 contains
sufficient	data	items	(tokens).	Processes	are	not	allowed	to	test	an	input	channel	for
existence	of	 tokens	without	 consuming	 them.	Given	 a	 specific	 input	 (token)	history
for	a	process,	the	process	must	be	deterministic	so	that	it	always	produces	the	same
outputs	(tokens).	Timing	or	execution	order	of	processes	must	not	affect	the	result	and
therefore	testing	input	channels	for	tokens	is	forbidden.

In	 order	 to	 optimize	 execution	 some	 KPNs	 do	 allow	 testing	 input	 channels	 for
emptiness	as	long	as	it	does	not	affect	outputs.	It	can	be	beneficial	and/or	possible	to
do	 something	 in	 advance	 rather	 than	wait	 for	 a	 channel.	 In	 the	 example	 shown	 in
Figure	4.13,	process	P3	must	get	from	both	channel	A	and	channel	B.	The	left	side	of
Program	4.8	shows	the	process	stalls	if	the	AFifo	is	empty	(even	if	there	is	data	in
the	BFifo).	If	the	first	FIFO	is	empty,	it	might	be	efficient	to	see	if	there	is	data	in	the
other	FIFO	to	save	time	(right	side	of	Program	4.8).

void	Process3(void){
int32_t	inA,	inB,	out;
		while(1){
				while(AFifo_Get(&inA)){};
				while(BFifo_Get(&inB)){};
				out	=	compute(inA,inB);
				CFifo_Put(out);
		}
}
	

void	Process3(void){
int32_t	inA,	inB,	out;
		while(1){
				if(AFifo_Size()==0){
						while(BFifo_Get(&inB)){};
						while(AFifo_Get(&inA)){};
				}	else{
						while(AFifo_Get(&inA)){};
						while(BFifo_Get(&inB)){};
				}
				out	=	compute(inA,inB);
				CFifo_Put(out);
		}
}

Program	4.8.	Two	C	implementations	of	a	process	on	a	KPN.	The	one	on	the
right	is	optimized.

Processes	of	a	KPN	are	deterministic.	For	the	same	input	history,	they	must	always
produce	exactly	the	same	output.	Processes	can	be	modeled	as	sequential	programs
that	do	reads	and	writes	to	ports	in	any	order	or	quantity	as	long	as	the	determinism
property	is	preserved.

KPN	processes	are	monotonic,	which	means	that	they	only	need	partial	information
of	 the	 input	 stream	 in	 order	 to	 produce	 partial	 information	 of	 the	 output	 stream.

Monotonicity	allows	parallelism.	In	a	KPN	there	is	a	total	order	of	events	inside	a
signal.	However,	there	is	no	order	relation	between	events	in	different	signals.	Thus,
KPNs	are	only	partially	ordered,	which	classifies	them	as	an	untimed	model.

4.4.	Thread	sleeping
Sometimes	 a	 thread	 needs	 to	wait	 for	 a	 fixed	 amount	 of	 time.	We	will	 implement
anOS_Sleep 	function	that	will	make	a	thread	dormant	for	a	finite	time.	A	thread	in
the	sleep	 state	 will	 not	 be	 run.	After	 the	 prescribed	 amount	 of	 time,	 the	OS	will
make	the	thread	active	again.	Sleeping	would	be	used	for	 tasks	which	are	not	real-
time.	In	Program	4.9,	the PeriodicStuff 	is	run	approximately	once	a	second.

void	Task(void){
		InitializationStuff();
		while(1){
				PeriodicStuff();
				OS_Sleep(ONE_SECOND);	//	go	to	sleep	for	1	second
		}
}

Program	4.9.	This	thread	uses	sleep	to	execute	its	task	approximately	once	a
second.

To	 implement	 the	 sleep	 function,	 we	 could	 add	 a	 counter	 to	 each	 TCB	 and	 call
it Sleep .	 If Sleep is	 zero,	 the	 thread	 is	 not	 sleeping	 and	 can	 be	 run,	meaning	 it	 is
either	in	the	run	or	active	state.	If Sleep is	nonzero,	the	thread	is	sleeping.	We	need	to
change	the	scheduler	so	that RunPt 	is	updated	with	the	next	thread	to	run	that	is	not
sleeping	and	not	blocked,	see	Program	4.10.

void	Scheduler(void){
		RunPt	=	RunPt->next;					//	skip	at	least	one
		while((RunPt->Sleep)||(RunPt-> 	blocked)){					
				RunPt	=	RunPt->next;			//	find	one	not	sleeping	and	not	blocked
		}
}

Program	4.10.	Round-robin	scheduler	that	skips	threads	if	they	are	sleeping
or	blocked.

Any	thread	with	a	nonzero Sleep counter	will	not	be	run.	The	user	must	be	careful	not
to	let	all	the	threads	go	to	sleep,	because	doing	so	would	crash	this	implementation.
Next,	 we	 need	 to	 add	 a	 periodic	 task	 that	 decrements	 the Sleep 	 counter	 for	 any
nonzero	 counter.	When	 a	 thread	wishes	 to	 sleep,	 it	will	 set	 its Sleep 	 counter	 and
invoke	 the	 cooperative	 scheduler.	 The	 period	 of	 this	 decrementing	 task	 will
determine	the	resolution	of	the	parameter time .

Notice	that	this	implementation	is	not	an	exact	time	delay.	When	the	sleep	parameter
is	decremented	 to	0,	 the	 thread	 is	not	 immediately	 run.	Rather,	when	 the	parameter
reaches	0,	the	thread	is	signified	ready	to	run.	If	there	are	n	other	threads	in	the	TCB

list	and	the	thread	switch	time	is	Δt,	then	it	may	take	an	additional	n*Δt	time	for	the
thread	to	be	launched	after	it	awakens	from	sleeping.

4.5.	Deadlocks
One	of	the	drawbacks	of	semaphores	is	a	deadlock.	With	a	deadlock	there	is	a	circle
of	 threads	blocked	(or	spinning)	because	 they	are	waiting	on	each	other.	There	are
four	necessary	conditions	for	a	deadlock	to	occur.

Mutual	exclusion
Hold	and	wait
No	preemption	of	resources
Circular	waiting

	
Mutual	exclusion	means	 one	 thread	will	 have	 exclusive	 access	 to	 a	 resource	 and
other	 threads	will	have	 to	wait	 if	 they	wish	access	 to	 the	resource.	Hold	and	wait
means	a	thread	is	allowed	to	hold	one	resource	will	it	waits	for	another.	A	deadlock
could	be	resolved	if	the	operating	system	could	detect	the	deadlock	is	about	to	occur
and	 preempt	 resources	 by	 killing	 threads	 and	 recovering	 the	 resources	 attached	 to
that	thread.	So,	we	say	a	necessary	condition	for	a	deadlock	to	occur	is	that	the	OS
does	not	support	preemption	of	resources.	The	last	and	most	obvious	condition	for
a	deadlock	to	occur	is	circular	waiting.	Program	4.11	shows	three	threads	that	share
three	resources	SDC,	LCD,	and	CAN.	To	use	a	resource,	a	thread	first	requests	the
resource	 by	 waiting	 on	 its	 semaphore,	 uses	 the	 resource,	 and	 then	 releases	 the
resource	by	signaling	its	semaphore.

Thread	A
		wait(&bLCD);		
//1
		wait(&bSDC);		
//4
			use	LCD	and
SDC
	
signal(&bSDC);
	
signal(&bLCD);

Thread	B
		wait(&bSDC);		
//2
		wait(&bCAN);	
//5
			use	CAN	and
SDC
	
signal(&bCAN);
	
signal(&bSDC);

Thread	C
		wait(&bCAN);
		//3
		wait(&bLCD);	
//6
			use	CAN	and
LCD
	
signal(&bLCD);
	
signal(&bCAN);

Program	4.11.	A	deadlock	will	occur	if	the	execution	sequence	follows	1-2-3.

One	way	 to	visualize	a	deadlock	 is	 to	draw	a	resource	allocation	graph.	 Another
name	for	this	graph	is	a	wait-for	graph.	Threads	are	drawn	as	circles	and	resources
(binary	 semaphores)	 are	 drawn	 as	 rectangles.	 In	 these	 examples	 the	 resources	 are
single	instance.	For	example,	these	is	only	one	CAN,	one	LCD,	and	one	SDC.	This
means	 the	mutual	exclusive	access	 is	controlled	by	 three	binary	semaphores.	There
are	two	types	of	arrows	in	a	resource	allocation	graph.	The	steps	1,2,3	in	Program

4.11	all	successfully	return	from	a	wait	on	a	binary	semaphore.	We	signify	a	thread
possessing	a	 resource	using	 an	assignment	arrow	 from	 the	 resource	 to	 the	 thread.
The	steps	4,5,6	in	Program	4.11	all	execute	a	wait	on	a	binary	semaphore,	but	do	not
return	because	the	resource	is	unavailable.	We	signify	a	thread	waiting	for	a	resource
using	a	request	arrow	from	the	thread	to	the	resource.	Notice	that	a	thread	can	have
at	most	one	request	arrow,	because	once	it	is	spinning	or	blocked	on	a	semaphore	it
will	not	continue	 to	execute.	A	closed	path	 in	a	single-instance	 resource	allocation
graph	 is	an	 indication	 that	a	deadlock	has	occurred.	Figure	4.14	plots	 the	 resource
allocation	graph	occurring	if	the	example	in	Program	4.11	executes	steps	1,2,3,4,5,6.

Figure	4.14.	A	resource	allocation	graph	can	be	used	to	visualize	a
deadlock.

One	way	 to	prevent	deadlocks	 is	 to	 remove	 one	 of	 the	 four	 necessary	 conditions
required	 to	have	a	deadlock.	We	could	remove	mutual	exclusion	by	eliminating	 the
semaphores	 all	 together.	 However,	 this	 usually	 impractical.	 One	 simple	 way	 to
eliminate	 hold	 and	wait	 is	 to	 request	 all	 resources	 at	 the	 same	 time.	The	OS	will
either	 grant	 a	 thread	 all	 its	 resources	 or	 block	 it	 until	 the	 resources	 are	 available.
Notice	 in	 Program	 4.12	 that	 a	 new	wait	 function	 is	 needed	 that	 supports	multiple
simultaneous	 requests.	 One	 disadvantage	 of	 this	 solution	 is	 the	 efficiency	 of
requesting	a	resource	before	it	may	be	needed.

Thread	A
	
wait(&bLCD,&bSDC);	
			use	LCD	and	SDC
	
signal(&bLCD,&bSDC);

Thread	B
		wait(&bSDC,&bCAN);
			use	CAN	and	SDC
	
signal(&bSDC,&bCAN);

Thread	C
		wait(&bCAN,&bLCD);
			use	CAN	and	LCD
	
signal(&bCAN,&bLCD);

Program	4.12.	A	deadlock	will	not	occur	because	there	is	no	hold	and	wait.

Another	way	to	prevent	deadlocks	is	to	remove	the	possibility	of	circular	waiting.	In
this	solution	all	resources	are	ordered	numerically.	A	thread	must	request	resources
in	this	numerical	order.	If	a	thread	needs	resources	3,	6,	and	15,	the	thread	first	asks
for	3,	then	6,	and	finally	asks	for	15.		This	solution	like	the	first	may	cause	a	thread	to
request	a	resource	before	it	is	needed.	In	Program	4.13	we	arbitrarily	assign	the	LCD
to	1,	 the	SDC	 to	2,	 and	 the	CAN	 to	3.	 In	particular,	we	 simply	 swap	 the	order	of

requesting	 in	 Thread	 3	 to	 conform	 to	 the	 numerical	 order	 and	 the	 possibility	 of
deadlock	is	removed.

Thread	A
		wait(&bLCD);
		wait(&bSDC);		
			use	LCD	and
SDC
	
signal(&bSDC);
	
signal(&bLCD);

Thread	B
		wait(&bSDC);		
		wait(&bCAN);	
			use	CAN	and
SDC
	
signal(&bCAN);
	
signal(&bSDC);

Thread	C
		wait(&bLCD);
	
wait(&bCAN);				
				use	CAN	and
LCD
		signal(&bLCD);
		signal(&bCAN);

Program	4.13.	A	deadlock	will	not	occur	because	there	is	no	circular
waiting.

Deadlock	prevention	often	puts	severe	restrictions	on	the	operating	system	resulting
in	efficiencies.	A	similar	approach	with	far	less	restrictions	is	deadlock	avoidance.
With	 deadlock	 avoidance	 every	 time	 a	 thread	 requests	 a	 resource,	 it	 lists	 all	 the
additional	resources	it	might	need	to	finish.	If	there	is	at	least	one	safe	sequence	that
allows	all	threads	to	complete,	then	the	resource	is	granted.	If	no	safe	sequence	can
be	found,	the	request	would	be	denied.	Referring	back	to	Program	4.11	an	operating
system	 implementing	 deadlock	 avoidance	 would	 have	 denied	 Thread	 3	 at	 step	 3
when	 it	 requests	 the	 CAN	 (knowing	 it	 also	 would	 need	 the	 LCD).	 It	 is	 a	 little
inefficient	 to	block	 thread	3	on	 the	CAN	even	 though	 the	CAN	was	free.	For	more
information	about	deadlock	avoidance,	search	the	term	“Banker’s	Algorithm”.

Another	 approach	 is	 to	 implement	 preemption.	 An	 operating	 system	 could	 use	 a
resource	allocation	graph	to	detect	that	a	deadlock	has	occurred.	At	this	point,	the	OS
would	 choose	 the	 least	 critical	 thread	 to	 kill	 that	 breaks	 the	 cycle.	 The	 resources
would	be	recovered	and	the	killed	thread	could	be	restarted.	Another	approach	is	to
kill	all	the	threads	in	the	cycle	and	to	restart	them	all.

A	very	 effective	 approach	 to	deadlock	 is	 to	 add	 timeouts	 to	 the	wait	 function.	For
each	wait,	the	thread	specifies	a	maximum	time	it	is	willing	to	wait	for	a	resource.	If
the	timeout	is	triggered,	the	thread	either	skips	that	task	or	attempts	to	solve	the	task
in	another	way.

4.6.	Monitors
Semaphores	are	rich	but	 low-level	mechanism	for	synchronization.	Semaphores	are
powerful,	but	when	used	incorrectly	they	can	cause	deadlocks	and	crashes.	Monitors
are	 a	 higher-level	 synchronization	 mechanism	 because	 proper	 use	 is	 enforced.
Monitors	can	be	developed	to	solve	any	of	the	applications	presented	in	the	previous
section.

Semaphores	 are	 essentially	 shared	 global	 variables,	 which	 can	 be	 accessed
anywhere	 in	 the	 software	 system	 by	 calling	 wait	 or	 signal.	 There	 is	 no	 formal
connection	between	the	semaphore	and	the	data	being	controlled	by	the	semaphore.
Semaphores	 enforce	 no	 control	 or	 have	 any	 guarantee	 of	 proper	 usage.	A	monitor
will	 encapsulate	 the	 data	 with	 synchronization	 mechanisms	 to	 access	 the	 data.	 A
monitor	defines	a	lock	and	zero	or	more	condition	variables	for	managing	concurrent
access	to	shared	data.	The	monitor	uses	the	lock	to	insure	that	only	a	single	thread	is
active	 in	 the	monitor	 at	 any	 instance.	The	 lock	 also	 provides	mutual	 exclusion	 for
shared	 data.	 Condition	 variables	 enable	 threads	 to	 go	 to	 sleep	 inside	 of	 critical
sections,	by	releasing	their	lock	at	the	same	time	it	puts	the	thread	to	sleep.

A	monitor	 encapsulates	 protected	 data	with	 synchronization.	A	 thread	 acquires	 the
mutex	at	the	start	by	accessing	the	lock.	Once	granted	acquiring	the	lock,	the	thread
operates	on	the	shared	data.	If	the	thread	cannot	complete,	it	will	temporarily	release
the	mutex,	leaving	the	data	in	a	consistent	state.	It	will	need	to	reacquire	when	it	can
continue.	When	complete	the	thread	releases	the	mutex	and	exits	the	monitor.

A	condition	variable	 is	 a	 queue	 of	 threads	waiting	 for	 something	 inside	 a	 critical
section.	Condition	variables	support	three	operations:	Wait , Signal and Broadcast .
Although	 monitors	 use	 functions	 calledWait and Signal ,	 these	 are	 not	 the	 same
operations	as	semaphores.	The	Wait 	 function	 takes	a	 lock	parameter.	 In	an	atomic
fashion	it	will	either	acquire	the	lock	or	go	to	sleep.	When	the	process	wakes	up,	it
attempts	to	reacquire	the	lock.The Signal 	function	wakes	up	a	waiting	thread,	if	one
exists.	Otherwise,	it	does	nothing.The Broadcast 	function	will	wake	up	all	waiting
threads.	A	thread	must	hold	the	lock	when	doing	condition	variable	operations.

To	illustrate	the	concept,	we	will	design	a	FIFO	using	a	monitor	for	synchronization.
This	 implementation	 handles	 the	 empty	 condition,	 but	 assumes	 the	 FIFO	 is	 never
full.This	 FIFO	 has	 two	 public	 functions, Put() ,	 which	 enters	 data	 into	 the	 FIFO,
and Get() ,	 which	 is	 used	 to	 extract	 data	 from	 the	 FIFO.	 There	 is	 a	 private	 lock,
called	Lock.	Private	means	the	lock	cannot	be	accessed	outside	of	the	monitor.	The
FIFO	 of	 course	 also	 has	 private	 data,	which	 is	 the	 queue.	All	 access	 to	 the	 FIFO
requires	capturing	the	lock.	If	a	thread	finds	the	lock	unavailable	it	will	spin	or	block
or	 sleep.	 It	 will	 attempt	 to	 reacquirethe	 lock.	 After	 acquiring	 the	 lock,
the Put operation	will	enter	the	item	onto	the	queue,	signal	the	conditionVar,	and	then
release	 the	 lock.	 The conditionVar->Signal operation	 will	 wake	 up	 a	 thread

currently	 sleeping	 on	 the conditionVar .	 If	 there	 areno	 sleeping	 threads,
then Signal has	no	action.	Compare	this	to	a	semaphore Signal ,	which	will	increment
its	counter	 regardless	of	whether	or	not	any	consumer	 threads	are	waiting	for	data.
The	operationGet 	must	all	acquire	the	lock	before	proceeding.	If	the	FIFO	is	empty,
the	 thread	will	wait	 for	data	by	releasing	 the	 lock	and	go	 to	sleep.	Notice	 that	 this
thread	is	not	holding	any	resources	will	it	waits.	When	the	sleeping	thread	awakens,
it	 must	 attempt	 to	 reacquire	 the	 lock	 before	 proceeding	 to	 step	 3	 where	 data	 is
removed	from	the	queue.

Put(item)
1)	lock->Acquire();
2)	put	item	on	queue;
3)	conditionVar->Signal();
4)	lock->Release();

Get()
1)	lock->Acquire();
2)	while	queue	is	empty
			conditionVar->Wait(lock);
3)	remove	item	from	queue;
4)	lock->Release();
5)	return	item;

	
Condition	 variables	 do	 not	 have	 any	 history,	 but	 semaphores	 do.	When	Signal 	 is
executed,	if	no	thread	is	waiting,	the	signal	is	a	no-op.	If	a	thread	executes	Wait ,	 it
waits.	The	wait	and	signal	functions	of	a	semaphore	are	commutative;	the	result	is	the
same	 regardless	 of	 the	 order	 of	 execution.	 In	 other	 words,	 if	 one	 thread	 calls	 a
semaphore	wait	and	another	 thread	calls	a	semaphore	signal,	 the	 result	 is	 the	same
regardless	 of	 the	 order	 of	 execution.	 Condition	 variables	 are	 not	 commutative.	 In
other	words,	 the	order	of	execution	matters.	Therefore,	all	access	to	the	Signal	and
Wait	functions	of	a	condition	variable	must	require	acquiring	a	lock.

There	 are	 two	 flavors	 of	 monitors	 that	 differ	 in	 the	 scheduling	 semantics	 of	 the
function	signal.	With	a	Hoare	monitor	the	signal	function	immediately	switches	from
the	thread	that	called	signal	to	a	waiting	thread.	The	condition	that	the	waiting	thread
was	anticipating	is	guaranteed	to	hold	when	waiting	thread	executes.	The	thread	that
called	Signal	must	make	sure	the	data	is	in	a	consistent	state	before	signaling.	With	a
Mesa	monitor,	 as	 implemented	 in	 Java,	 the	 function	 signal	 places	 a	 thread	 on	 the
ready	queue,	but	thread	that	called	signal	continues	inside	monitor.	This	means	when
the	 awaken	 thread	 eventually	 runs,	 the	 condition	 is	 not	 necessarily	 true.	 In	 a	Mesa
monitor	after	returning	from	a	wait,	the	thread	only	knows	something	as	changed.

Hoare	wait
if(FIFO	empty)
		wait(condition)

Mesa	wait
while(FIFO	empty)
		wait(condition)

4.7.	Fixed	Scheduling
In	 the	 round	 robin	scheduler	of	 the	previous	chapter,	 the	 threads	were	 run	one	at	a
time	 and	 each	 was	 given	 the	 same	 time	 slice.	When	 using	 semaphores	 the	 thread
scheduler	dynamically	 runs	or	blocks	 threads	depending	on	conditions	at	 that	 time.
There	 is	 another	 application	 of	 thread	 scheduling	 sometimes	 found	 in	 real-time
embedded	systems,	which	 involves	a	 fixed	 scheduler.	 	 In	 this	 scheduler,	 the	 thread
sequence	 and	 the	 allocated	 time-slices	 are	 determined	 a	 priori,	 during	 the	 design
phase	of	 the	project.	This	 class	of	 problems	 is	 like	 creating	 the	 city	bus	 schedule,
managing	a	construction	project,	or	routing	packages	through	a	warehouse.	Because
of	 this	 analogy,	one	would	expect	 fundament	principles	of	managing	a	 construction
project	will	apply	to	the	design	of	a	fixed	scheduler.	It	is	important	to	have	accurate
data	about	the	tasks	in	advance;	we	should	build	slack	into	the	plan	expecting	delays
and	anticipating	problems;	“just	 in	 time”	where	 tasks	are	performed	when	 they	are
actually	needed.	First,	we	create	a	list	of	tasks	to	perform

1.	Assigning	a	priority	to	each	task,
2.	Defining	the	resources	required	for	each	task,
3.	Determining	how	often	each	task	is	to	run,	and
4.	Estimating	how	long	each	task	will	require	to	complete.
	

Next,	we	compare	resources	required	 to	run	versus	 the	available	resources	at	each
point.	 Since	 this	 chapter	 deals	 with	 time	 management,	 the	 only	 resource	 we	 will
consider	 here	 is	 processor	 cycles.	 	 In	 more	 complex	 systems,	 we	 could	 consider
other	 resources	 like	memory,	necessary	data,	 and	 I/O	channels.	For	 real-time	 tasks
we	want	to	guarantee	performance,	so	we	must	consider	the	worst	case	estimate	of
how	long	each	task	will	take,	so	the	schedule	can	be	achieved	100%	of	the	time.	On
the	other	hand,	if	it	is	acceptable	to	meet	the	scheduling	requirement	most	of	the	time,
we	could	consider	the	average	time	it	takes	to	perform	each	task.	Lastly,	we	schedule
the	run	times	for	each	tasks	by	assigning	times	for	the	highest	priority	tasks	first,	then
shuffle	 the	 assignments	 like	 placing	 pieces	 in	 a	 puzzle	 until	 all	 real-time	 tasks	 are
scheduled	 as	 required.	 The	 tasks	 that	 are	 not	 real-time	 can	 be	 scheduled	 in	 the
remaining	 slots.	 If	 all	 real-time	 tasks	 cannot	 be	 scheduled,	 then	 a	 faster
microcontroller	 will	 be	 required.	 The	 design	 of	 this	 type	 of	 fixed	 scheduler	 is
illustrated	with	a	design	example,	Figure	4.15.

Figure	4.15.	Real-time	specifications	for	these	three	tasks.

The	 goal	 of	 this	 design	 example	 is	 to	 schedule	 three	 real-time	 tasks:	 a	 finite	 state
machine	 (FSM),	 a	 proportional-integral-derivative	 controller	 (PID),	 and	 a	 data
acquisition	system	(DAS).	There	will	also	be	one	non-real-time	task, PAN ,	which
will	 input/output	with	the	front	panel.	Figure	4.15	shows	that	each	real-time	task	in
the	 example	 has	 a	 required	 period	 of	 execution,	 a	maximum	 execution	 time,	 and	 a
minimum	execution	time.

Because	we	wish	to	guarantee	tasks	will	always	be	started	on	time,	we	will	consider
the	maximum	times.	If	a	solution	were	to	exist,	then	we	will	be	able	find	one	with	a
repeating	6000-µs	pattern,	because	6000	is	the	least	common	multiple	of	2000,	1000,
and	1500.	The	basic	approach	to	scheduling	periodic	tasks	is	to	time-shift	the	second
and	third	tasks	so	that	when	the	three	tasks	are	combined,	there	are	no	overlaps,	as
shown	in	Figure	4.16.	We	start	with	the	most	frequent	task,	which	in	this	example	is
the	PID	controller,	and	 then	we	schedule	 the	FSM	task	 immediately	after	 it.	 In	 this
example,	about	41%	of	the	time	is	allocated	to	real-time	tasks.	A	solution	is	possible
for	 this	 case	 because	 the	 number	 of	 tasks	 is	 small,	 and	 there	 is	 a	 simple	 1/1.5/2
relationship	between	the	required	periods.	Then,	we	schedule	non	real-time	tasks	in
the	remaining	intervals.

Figure	4.16.	Repeating	pattern	to	schedule	these	three	real-time	tasks.

Program	 4.14shows	 the	 four	 threads	 for	 this	 system.	 The	 real-time	 threads
execute OS_Suspendwhen	it	completes	its	task,	which	will	suspend	the	thread	and
run	 the	 non-real-time	 thread.	 In	 this	 way,	 each	 thread	 will	 run	 one	 time	 through
the for 	 loop	 at	 the	 period	 requirement	 specified	 in	 Figure	 4.15.	When	 the	 treads
explicitly	release	control	(in	this	case	by	callingOS_Suspend),	the	system	is	called
cooperative	multitasking.	The	non-real-time	 thread	 (PAN)	will	be	 suspended	by
the	timer	interrupt,	in	a	manner	similar	to	the	preemptive	schedule	described	earlier
in	Section	4.1.

void	FSM(void){	StatePtr	Pt;			uint8_t	in;
		Pt	=	SA;																	//	Initial	State
		for(;;)	{
				OS_Suspend();										//	Runs	every	2ms
				Port_Out(Pt->Out);					//	Output	depends	on	the	current	state
				in	=	Port_In();
				Pt	=	Pt->Next[in];					//	Next	state	depends	on	the	input
		}
}
void	PID(void){	uint8_t	speed,power;		
		PID_Init();														//	Initialize
		for(;;)	{
				OS_Suspend();										//	Runs	every	1ms
				speed	=	PID_In();						//	read	tachometer
				power	=	PID_Calc(speed);
				PID_Out(power);								//	adjust	power	to	motor
		}
}
void	DAS(void){	uint8_t	raw;		
		DAS_Init();												//	Initialize
		for(;;)	{
				OS_Suspend();								//	Runs	every	1.5ms
				raw	=	DAS_In();						//	read	ADC
				Result	=	DAS_Calc(raw);
		}
}
void	PAN(void){	uint8_t	input;		
		PAN_Init();												//	Initialize
		for(;;)	{
				input	=	PAN_In();				//	front	panel	input
				if(input){
						PAN_Out(input);				//	process
				}
		}
}
Program	4.14.	Four	user	threads	(FixedScheduler_xxx).

Program	4.15	creates	the	four	thread	control	blocks.	In	this	system	the	TCBs	are	not
linked	together,	but	rather	exist	as	a	table	of	four	entries,	one	for	each	thread.	Each
thread	will	 have	 a	 total	 of	 396bytes	 of	 stack,	 and	 the	 stack	 itself	 exists	 inside	 the
TCB.	The RunPt 	will	point	to	the	TCB	of	the	currently	running	thread.

struct	TCB{
		uint32_t	*StackPt;							//	Stack	Pointer

		uint32_t	MoreStack[83];		//	396	bytes	of	stack
		uint32_t	InitialReg[14];	//	R4-R11,R0-R3,R12,R14
		uint32_t	InitialPC;						//	pointer	to	program	to	execute
		uint32_t	InitialPSR;					//	0x01000000
};
typedef	struct	TCB	TCBType;
TCBType	*RunPt;												//	thread	currently	running
#define	TheFSM	&sys[0]					//	finite	state	machine
#define	ThePID	&sys[1]					//	proportional-integral-derivative
#define	TheDAS	&sys[2]					//	data	acquisition	system
#define	ThePAN	&sys[3]					//	front	panel
TCBType	sys[4]={
		{	&sys[0].InitialReg[0],{	0},	(uint32_t)	FSM,	0x01000000},
		{	&sys[1].InitialReg[0],{	0},	(uint32_t)	PID,	0x01000000},
		{	&sys[2].InitialReg[0],{	0},	(uint32_t)	DAS,	0x01000000},
		{	&sys[3].InitialReg[0],{	0},	(uint32_t)	PAN,	0x01000000}
};
Program	4.15.	The	thread	control	blocks	(FixedScheduler_xxx).

	
Program	4.16	defines	the	data	structure	containing	the	details	of	the	fixed	scheduler.
This	structure	is	a	circular	linked	list,	because	the	schedule	repeats.	In	particular,	the
22	entries	explicitly	define	the	schedule	drawn	in	Figure	4.16.	The	front	panel	thread
(PAN)	is	assigned	to	run	in	the	gaps	when	no	real-time	thread	requires	execution.

struct	Node{
		struct	Node	*Next;								//	circular	linked	list
		TCBType	*ThreadPt;								//	which	thread	to	run
		uint32_t	TimeSlice;	//	how	long	to	run	it
};
typedef	struct	Node	NodeType;
NodeType	*NodePt;
NodeType	Schedule[22]={
{	&Schedule[1],	ThePID,	300},	//	interval					0,		300
{	&Schedule[2],	TheFSM,	100},	//	interval			300,		400
{	&Schedule[3],	TheDAS,		50},	//	interval			400,		450
{	&Schedule[4],	ThePAN,	550},	//	interval			450,	1000
{	&Schedule[5],	ThePID,	300},	//	interval		1000,	1300
{	&Schedule[6],	ThePAN,	600},	//	interval		1300,	1900
{	&Schedule[7],	TheDAS,		50},	//	interval		1900,	1950
{	&Schedule[8],	ThePAN,		50},	//	interval		1950,	2000
{	&Schedule[9],	ThePID,	300},	//	interval		2000,	2300
{	&Schedule[10],TheFSM,	100},	//	interval		2300,	2400
{	&Schedule[11],ThePAN,	600},	//	interval		2400,	3000

{	&Schedule[12],ThePID,	300},	//	interval		3000,	3300
{	&Schedule[13],ThePAN,	100},	//	interval		3300,	3400
{	&Schedule[14],TheDAS,		50},	//	interval		3400,	3450
{	&Schedule[15],ThePAN,	550},	//	interval		3450,	4000
{	&Schedule[16],ThePID,	300},	//	interval		4000,	4300
{	&Schedule[17],TheFSM,	100},	//	interval		4300,	4400
{	&Schedule[18],ThePAN,	500},	//	interval		4400,	4900
{	&Schedule[19],TheDAS,		50},	//	interval		4900,	4950
{	&Schedule[20],ThePAN,		50},	//	interval		4950,	5000
{	&Schedule[21],ThePID,	300},	//	interval		5000,	5300
{	&Schedule[0],	ThePAN,	700}		//	interval		5300,	6000
};
Program	4.16.	The	scheduler	defines	both	the	thread	and	the	duration
(FixedScheduler_xxx.zip).

A	 simple	 solution	 for	 the	 thread	 scheduler	 can	 be	 found	 on	 the	 book	web	 site	 as
FixedScheduler_xxx.	AnOS_Suspend 	creates	the	cooperative	multitasking,	and	is
used	by	 the	 real-time	 threads	when	 their	 task	 is	complete.	 In	 this	example,	 there	 is
only	one	non-real-time	thread,	but	it	would	be	straight	forward	to	implement	a	round-
robin	scheduler	for	these	threads	in	the	software	interrupt	handler.

We	could	have	attempted	to	implement	this	system	with	regular	periodic	interrupts.	In
particular,	 we	 could	 have	 created	 three	 independent	 periodic	 interrupts	 and
performed	each	task	in	a	separate	ISR.	Unfortunately,	there	would	be	situations	when
one	or	more	 tasks	would	overlap.	 In	other	words,	one	 interrupt	might	be	requested
while	 we	 are	 executing	 one	 of	 the	 other	 two	 ISRs.	 Although	 all	 tasks	 would	 run,
some	would	 be	 delayed.	This	 delay	 is	 called	 time-jitter,	 which	 is	 defined	 as	 the
difference	 between	 when	 a	 thread	 is	 supposed	 to	 run	 (see	 comments	 of	 Program
4.16)	 and	when	 it	 does	 run.	According	 to	 the	Rate	Monotonic	Theorem	we	 should
have	been	able	to	schedule	these	tasks	because

4.8.	Exercises
4.1	For	each	of	the	following	terms	give	a	definition	in	16	words	or	less

a)	active
b)	atomic
c)	blocked
d)	bounded	buffer
e)	bounded	waiting
f)	critical	section

g)	deadlock
h)	hook
i)	nonreentrant
j)	path	expression
k)	sleeping
l)	normalized	mean
response	time

m)	preemptive
scheduler
n)	producer-consumer
o)	reentrant
p)	rendezvous
q)	round	robin
scheduler
r)	spin	lock

	
4.2	 Consider	 the	 queue	 of	 people	 waiting	 in	 line	 at	 the	 bank.	 How	 can	 Little’s
Theorem	 be	 used	 to	 measure	 the	 average	 time	 a	 person	 spends	 in	 the	 bank	 (time
waiting	plus	time	being	served).
	
4.3	Consider	situation	of	cars	traveling	across	a	bridge.	Typically,	10	cars/sec	arrive
at	 the	 bridge.	On	 a	 sunny	day	 it	 takes	 10	 seconds	 to	 cross	 the	 bridge.	Use	Little’s
Theorem	 explain	what	 happens	 on	 a	 rainy	 day	when	 now	 it	 takes	 100	 seconds	 to
cross	the	bridge.
	
4.4	 Use	 Little’s	 Theorem	 to	 explain	why	 a	 fast	 food	 restaurant	 requires	 a	 smaller
dining	room	than	a	regular	restaurant	even	though	they	the	same	customer	arrival	rate.
	
4.5	 If	a	 thread	 is	blocked	because	 the	output	display	 is	not	available,	when	should
you	wake	it	up	(signal	it)?
	
4.6	You	have	three	tasks.	Task	1	takes	a	maximum	of	1	ms	to	execute	and	runs	every
10	ms.	Task	2	 takes	a	maximum	of	0.5	ms	 to	execute	and	 runs	every	1	ms.	Task	3
takes	 a	 maximum	 of	 1	 ms	 to	 execute	 and	 runs	 every	 100	 ms.	 Do	 you	 think	 a
scheduling	algorithm	exists?	Justify	your	answer.
	
4.7	 Consider	 a	 problem	 of	 running	 three	 foreground	 threads	 using	 a	 preemptive
scheduler	 with	 semaphore	 synchronization.	 Each	 thread	 has	 a	 central	 body()
containing	 code	 that	 should	 be	 executed	 together.	The	 basic	 shell	 of	 this	 system	 is
given.	 Define	 one	 or	 more	 semaphores,	 then	 add	 semaphore	 function	 calls	 to
implement	a	three-thread	rendezvous.	Basically,	each	time	through	the	while	 loop,
the	first	two	threads	to	finish	their	start()	code	will	wait	for	the	last	thread	to	finish
its	 start()	 code.	 Then,	 all	 three	 threads	 will	 be	 active	 at	 the	 same	 time	 as	 they
execute	 their	 corresponding	 body().	 You	 may	 call	 any	 if	 the	 semaphore	 functions
defined	 in	 this	 book.	You	will	 allocate	 one	 or	more	 semaphores	 and	 add	 calls	 to
semaphore	 functions,	 otherwise	 no	 other	 changes	 are	 allowed.	 	 You	 may	 assume

thread1	runs	first.	For	each	semaphore	you	add,	explain	what	it	means	to	be	0,	1	etc.
	

void	thread1(void){
init1();		
while(1){
			start1();
			body1();
			end1();
}
}

void	thread2(void){
init2();		
while(1){
			start2();
			body2();
			end2();
}
}

void	thread3(void){
init3();		
while(1){
			start3();
			body3();
			end3();
}
}

	
4.8	Consider	a	problem	of	deadlocks	that	can	occur	with	semaphore	synchronization.
The	following	is	a	classic	example	that	might	occur	if	two	threads	need	both	the	disk
and	the	printer.	In	this	example,	the	disk	has	a	binary	semaphore DiskFree ,	which	is
1	 if	 the	 disk	 is	 available,	 and	 similarly	 the	 printer	 has	 a	 binary
semaphore PrinterFree ,	which	is	1	if	the	printer	is	available.	A	deadlock	occurs	if
each	thread	gets	one	resource	then	waits	(on	each	other)	for	the	other	resource.	In	this
example,	we	assume	there	is	one	disk	and	one	printer.

void	thread1(void){
		OS_bWait(&DiskFree);
		OS_bWait(&PrinterFree);
	
//	use	disk	and	printer
	
		OS_bSignal(&DiskFree);
		OS_bSignal(&PrinterFree);
}

void	thread2(void){
		OS_bWait(&PrinterFree);
		OS_bWait(&DiskFree);
	
//	use	printer	and	disk
	
		OS_bSignal(&PrinterFree);
		OS_bSignal(&DiskFree);
}

	
In	 this	problem	we	will	develop	a	graphical	method	 (called	a	resource	 allocation
graph)	 to	visualize/recognize	 the	deadlock.	Draw	each	thread	 in	your	system	as	an
oval,	 and	 each	 binary	 semaphore	 as	 a	 rectangle.	 If	 a	 thread	 calls OS_bWait 	 and
returns,	 then	draw	an	arrow	(called	an	allocation	edge)	 from	the	semaphore	 to	 the
thread.	An	arrow	from	a	semaphore	to	a	thread	means	that	thread	owns	the	resource.
If	a	thread	calls OS_bSignal ,	 then	erase	the	previously	drawn	allocation	edge.	If	a
thread	calls OS_bWait 	and	spins	or	blocks	because	the	semaphore	is	not	free,	then
draw	an	arrow	from	the	thread	to	the	semaphore	(called	a	request	edge).	An	arrow
from	a	thread	to	a	semaphore	means	that	thread	is	waiting	for	the	resource	associated
with	the	semaphore.
a)	Draw	the	resource	allocation	graph	that	occurs	with	the	deadlock	sequence
1)	thread1	executes OS_bWait(&DiskFree);
2)	thread2	executes OS_bWait(&PrinterFree);
3)	thread2	executes OS_bWait(&DiskFree);
4)	thread1	executes OS_bWait(&PrinterFree);

b)	 This	method	 can	 be	 generalized	 to	 detect	 that	 a	 deadlock	 has	 occurred	with	 an

arbitrary	 number	 of	 binary	 semaphores	 and	 threads.	 What	 shape	 in	 the	 resource
allocation	 graph	 defines	 a	 deadlock?	 In	 other	 words,	 generalize	 the	 use	 of	 this
method	such	that	you	can	claim
“There	is	a	deadlock	if	and	only	if	the	resource	allocation	graph	contains	a	shape
in	the	form	of	a	______________________”.
c)	 Justify	 your	 answer	 by	 giving	 a	 deadlock	 example	with	 three	 threads	 and	 three
binary	semaphores.	 In	particular,	give	1)	 the	C	code;	2)	 the	execution	sequence;	3)
the	resource	allocation	graph
	

4.9	You	 are	 given	 three	 identical	 I/O	 ports	 to	manage	 on	 the	LM3S/TM4C,	 PortF,
PortG,	 and	 PortH.	 	 You	 may	 assume	 there	 is	 a	 preemptive	 thread	 scheduler	 and
blocking	semaphores.
a)	Look	up	the	address	of	each	port	and	its	direction	register.
b)	Create	a	data	structure	to	hold	an	address	of	the	port	and	the	address	of	the	data
direction	register.	Assume	the	type	of	this	structure	is	called PortType .
c)	Design	and	implement	a	manager	that	supports	two	functions.	The	first	function	is
called NewPort .	Its	prototype	is
PortType	*NewPort(void);
If	a	port	 is	available	when	a	 thread	calls NewPort ,	 then	a	pointer	 to	 the	structure,
defined	in	part	b)	is	returned.	If	no	port	is	available,	then	the	thread	will	block.	When
a	 port	 becomes	 available	 this	 thread	 will	 be	 awakened	 and	 the	 pointer	 to	 the
structure	 will	 be	 returned.	 You	 may	 define	 and	 use	 blocking	 semaphores	 without
showing	 the	 implementation	of	 the	 semaphore	or	 scheduler.	The	 second	 function	 is
called FreePort ,	and	its	prototype	is
void	FreePort(PortType	*pt);
This	 function	 returns	 a	 port	 so	 that	 it	 can	 be	 used	 by	 the	 other	 threads.	 Include	 a
function	that	initializes	the	system,	where	all	five	ports	are	free.	Hint:	the	solution	is
very	similar	to	the	FIFO	queue	example	shown	in	Section	4.3.
	
4.10	 Consider	 a	 system	 with	 two	 LCD	 message	 displays	 in	 the	 context	 of	 a
preemptive	thread	schedulerwith	blocking	semaphores.	To	display	a	message,	the	OS
can	 call	 either LCD1_OutString or LCD2_OutString passing	 it	 an	 ASCII	 string.
These	 routines	 have	 critical	 sections	 but	 must	 run	 with	 interrupts	 enabled.	 The
foreground	 threads	 will	 not	 call LCD1_OutString or LCD2_OutString directly;
rather,	the	threads	call	a	generic	OS	routine OS_Display .	 If	an	LCD	is	free,the	OS
passes	 the	message	 to	 the	free	LCD.	If	both	LCDs	are	busy,	 the	 thread	will	block.	
There	are	many	threads	that	wish	to	display	messages,	and	the	threads	do	not	care	or
know	 onto	 which	 LCD	 their	 message	 will	 be	 displayed.	 	 You	 are	 given
the LCD1_OutString or LCD2_OutString 	 routines,	 the	 OS	 and	 the	 blocking
semaphores	with	the	following	prototypes.

void	LCD1_OutString(char	*string);	//	up	to	20ms	to	complete
void	LCD2_OutString(char	*string);	//	up	to	20ms	to	complete
int	OS_InitSemaphore(Sema4Type	*semaPt,	int16_t	value);
void	OS_Wait(Sema4Type	*semaPt);

void	OS_Signal(Sema4Type	*semaPt);
a)	 List	 the	 semaphores	 and	 private	 global	 variables	 needed	 for	 your	 solution.	 For
each	semaphore	define	what	it	means	and	what	initial	value	it	should	have.	Give	the
meaning	 and	 initial	 values	 for	 any	 private	 global	 variables	 you	 need.	 The	 threads
will	not	directly	access	these	semaphores	or	variables.
b)	Write	the	generic	OS	display	routine	that	the	foreground	threads	will	call	(you	may
not	disable	interrupts	or	call	any	other	functions	other	than	the	five	functions	shown
above)
void	OS_Display(char	*string){
	

5.	Real-time	Systems
Chapter	5	objectives	are	to:
•	Review	real-time	applications	that	require	priority

•	Implement	a	priority	scheduler

•	Use	the	operating	system	to	debounce	switches

•	Run	event	threads	as	high	priority	main	threads

•	Review	of	other	real-time	operating	systems

	
The	key	concept	in	this	chapter	is	the	introduction	of	“priority”,	which	captures
the	relative	importance	of	tasks	in	a	system.	Real-time	systems	in	general	and
operating	systems	for	real-time	systems	in	particular	use	priority	as	a	means	to
achieve	effective	performance.	First	we	motivate	the	need	for	priority	and	then
we	will	show	how	priority	can	be	incorporated	into	our	simple	RTOS.	We	will
conclude	 by	 reviewing	 how	 priority	 is	 implemented	 in	 some	 of	 the	 RTOS
schedulers	in	popular	use.

5.1.	Data	Acquisition	Systems
To	 motivate	 the	 need	 for	 priority	 we	 will	 discuss	 some	 classic	 real-time	 system
scenarios	like	Data	Acquisition	systems,	Digital	Signal	Processing	(DSP),	and	Real-
Time	Control	systems.	The	level	of	detail	provided	here	is	not	needed	for	the	course,
but	we	believe	it	will	give	you	a	context	for	the	kinds	of	systems	you	may	encounter
as	a	practitioner	in	the	RTOS	domain.

5.1.1.	Approach
Figure	 5.1	 illustrates	 the	 integrated	 approach	 to	 data	 acquisition	 systems.	 In	 this
section,	 we	 begin	 with	 the	 clear	 understanding	 of	 the	 problem.	 We	 can	 use	 the
definitions	 in	 this	 section	 to	 clarify	 the	 design	 parameters	 as	well	 as	 to	 report	 the
performance	specifications.

The	measurand	 is	 the	 physical	 quantity,	 property,	 or	 condition	 that	 the	 instrument
measures.	See	Figure	5.2.	The	measurand	can	be	inherent	to	the	object	(like	position,
mass,	or	color),	located	on	the	surface	of	the	object	(like	the	human	EKG,	or	surface
temperature),	located	within	the	object	(e.g.,	fluid	pressure,	or	internal	temperature),
or	separated	from	the	object	(like	emitted	radiation.)

Figure	5.1.	Individual	components	are	integrated	into	a	data	acquisition
system.

Figure	5.2.	Signal	paths	for	a	data	acquisition	system	without	an	actuator;
the	control	system	includes	an	actuator	so	the	system	can	use	feedback	to
drive	the	real-world	parameter	to	a	desired	state.

In	general,	a	transducer	converts	one	energy	type	into	another.	In	the	context	of	this
section,	 the	 transducer	 converts	 the	measurand	 into	 an	 electrical	 signal	 that	 can	be
processed	 by	 the	 microcontroller-based	 instrument.	 Typically,	 a	 transducer	 has	 a
primary	 sensing	 element	 and	 a	 variable	 conversion	 element.	 The	 primary	 sensing
element	 interfaces	 directly	 to	 the	 object	 and	 converts	 the	 measurand	 into	 a	 more
convenient	 energy	 form.	 The	 output	 of	 the	 variable	 conversion	 element	 is	 an
electrical	 signal	 that	 depends	 on	 the	measurand.	 For	 example,	 the	 primary	 sensing
element	 of	 a	 pressure	 transducer	 is	 the	 diaphragm,	which	 converts	 pressure	 into	 a
displacement	 of	 a	 plunger.	 The	 variable	 conversion	 element	 is	 a	 strain	 gauge	 that
converts	the	plunger	displacement	into	a	change	in	electrical	resistance.	If	the	strain
gauge	is	placed	in	a	bridge	circuit,	the	voltage	output	is	directly	proportional	to	the
pressure.	 Some	 transducers	 perform	 a	 direct	 conversion	without	 having	 a	 separate
primary	sensing	element	and	variable	conversion	element.	The	system	contains	signal
processing,	 which	 manipulates	 the	 transducer	 signal	 output	 to	 select,	 enhance,	 or
translate	 the	 signal	 to	 perform	 the	 desired	 function,	 usually	 in	 the	 presence	 of
disturbing	 factors.	 The	 signal	 processing	 can	 be	 divided	 into	 stages.	 The	 analog
signal	 processing	 consists	 of	 instrumentation	 electronics,	 isolation	 amplifiers,
amplifiers,	 analog	 filters,	 and	 analog	 calculations.	 The	 first	 analog	 processing
involves	 calibration	 signals	 and	 preamplification.	 Calibration	 is	 necessary	 to
produce	accurate	results.	An	example	of	a	calibration	signal	is	the	reference	junction
of	a	thermocouple.	The	second	stage	of	the	analog	signal	processing	includes	filtering
and	 range	conversion.	The	analog	signal	 range	should	match	 the	ADC	analog	 input
range.	 Examples	 of	 analog	 calculations	 include:	 RMS	 calculation,	 integration,
differentiation,	 peak	 detection,	 threshold	 detection,	 phase	 lock	 loops,	 AM	 FM
modulation/demodulation,	 and	 the	 arithmetic	 calculations	 of	 addition,	 subtraction,
multiplication,	 division,	 and	 square	 root.	When	 period,	 pulse	 width,	 or	 frequency
measurement	is	used,	we	typically	use	an	analog	comparator	to	create	a	digital	logic
signal	 to	measure.	Whereas	 the	 Figure	 5.1	 outlined	 design	 components,	 Figure	 5.2
shows	 the	 data	 flow	 graph	 for	 a	 data	 acquisition	 system	 or	 control	 system.	 The
control	system	uses	an	actuator	to	drive	a	parameter	in	the	real	world	to	a	desired

value	while	 the	data	acquisition	system	has	no	actuator	because	it	simply	measures
the	parameter	in	a	nonintrusive	manner.

The	 data	 conversion	 element	 performs	 the	 conversion	 between	 the	 analog	 and
digital	 domains.	 This	 part	 of	 the	 instrument	 includes:	 hardware	 and	 software
computer	 interfaces,	ADC,	DAC,	 and	 calibration	 references.	 The	 analog	 to	 digital
converter	 (ADC)	 converts	 the	 analog	 signal	 into	 a	 digital	 number.	 The	 digital	 to
analog	converter	(DAC)	converts	a	digital	number	to	an	analog	output.

In	 many	 systems	 the	 input	 could	 be	 digital	 rather	 than	 analog.	 For	 these	 systems
measuring	period,	pulse	width,	and/or	frequency	provides	a	low-cost	high-precision
alternative	 to	 the	 traditional	 ADC.	 Similarly,	 the	 output	 of	 the	 system	 could	 be
digital.	 The	 pulse	 width	 modulator	 (PWM)	 is	 a	 digital	 output	 with	 a	 constant
period,	but	variable	duty	cycle.	The	software	can	adjust	the	output	of	the	actuator	by
setting	the	duty	cycle	of	the	PWM	output.

The	digital	 signal	 processing	 includes:	 data	 acquisition	 (sampling	 the	 signal	 at	 a
fixed	 rate),	 data	 formatting	 (scaling,	 calibration),	 data	 processing	 (filtering,	 curve
fitting,	FFT,	event	detection,	decision	making,	analysis),	control	algorithms	(open	or
closed	loop).	The	human	interface	includes	the	input	and	output	which	is	available
to	 the	 human	 operator.	 The	 advantage	 of	 computer-based	 instrumentation	 is	 that,
devices	that	are	sophisticated	but	easy	to	use	and	understand	are	possible.	The	inputs
to	 the	 instrument	 can	 be	 audio	 (voice),	 visual	 (light	 pens,	 cameras),	 or	 tactile
(keyboards,	 touch	 screens,	 buttons,	 switches,	 joysticks,	 roller	 balls).	 The	 outputs
from	 the	 instrument	 can	 be	 numeric	 displays,	 CRT	 screens,	 graphs,	 buzzers,	 bells,
lights,	and	voice.

5.1.2.	Performance	Metrics
Before	 designing	 a	 data	 acquisition	 system	 (DAS)	 we	 must	 have	 a	 clear
understanding	of	the	system	goals.	We	can	classify	system	as	a	Quantitative	DAS,	if
the	specifications	can	be	defined	explicitly	in	terms	of	desired	range	(rx),	resolution
(∆x),	precision	(nx),	and	frequencies	of	interest	(fmin	to	fmax).	If	the	specifications
are	 more	 loosely	 defined,	 we	 classify	 it	 as	 a	 Qualitative	 DAS.	 Examples	 of
qualitative	 systems	 include	 those	 which	 mimic	 the	 human	 senses	 where	 the
specifications	are	defined	using	terms	like	“sounds	good”,	“looks	pretty”,	and	“feels
right.”	Other	 qualitative	 systems	 involve	 the	 detection	of	 events.	We	will	 consider
two	examples,	a	burglar	detector,	and	an	instrument	to	diagnose	cancer.		For	binary
detection	systems	like	the	presence/absence	of	a	burglar	or	the	presence/absence	of
cancer,	we	define	a	true	positive	(TP)	when	the	condition	exists	(there	is	a	burglar)
and	the	system	properly	detects	it	(the	alarm	rings.)	We	define	a	false	positive	(FP)
when	the	condition	does	not	exist	(there	is	no	burglar)	but	the	system	thinks	there	is
(the	alarm	rings.)		A	false	negative	(FN)	occurs	when	the	condition	exists	(there	is	a
burglar)	but	the	system	does	not	think	there	is	(the	alarm	is	silent.)		A	true	negative
(TN)	occurs	when	the	condition	does	not	exist	(the	patient	does	not	have	cancer)	and

the	system	properly	detects	it	(the	instrument	says	the	patient	is	normal.)	Prevalence
is	 the	probability	 the	condition	exists,	 sometimes	called	pre-test	probability.	 In	 the
case	of	diagnosing	the	disease,	prevalence	tells	us	what	percentage	of	the	population
has	 the	 disease.	 	Sensitivity	 is	 the	 fraction	 of	 properly	 detected	 events	 (a	 burglar
comes	and	the	alarm	rings)	over	the	total	number	of	events	(number	of	robberies.)	It
is	a	measure	of	how	well	our	system	can	detect	an	event.	For	the	burglar	detector,	a
sensitivity	 of	 1	 means	 when	 a	 burglar	 breaks	 in	 the	 alarm	 will	 go	 off.	 For	 the
diagnostic	instrument,	a	sensitivity	of	1	means	every	sick	patient	will	get	treatment.
Specificity	 is	 the	 fraction	 of	 properly	 handled	 non-events	 (a	 patient	 doesn’t	 have
cancer	and	the	instrument	claims	the	patient	is	normal)	over	the	total	number	of	non-
events	(the	number	of	normal	patients.)	A	specificity	of	1	means	no	people	will	be
treated	for	a	cancer	they	don’t	have.	The	positive	predictive	value	of	a	system	(PPV)
is	 the	probability	 that	 the	condition	exists	when	restricted	 to	 those	cases	where	 the
instrument	 says	 it	 exists.	 It	 is	 a	 measure	 of	 how	 much	 we	 believe	 the	 system	 is
correct	when	it	says	it	has	detected	an	event.	A	PPV	of	1	means	when	the	alarm	rings,
the	 police	 will	 come	 and	 arrest	 a	 burglar.	 Similarly,	 a	 PPV	 of	 1	 means	 if	 our
instrument	 says	 a	 patient	 has	 the	 disease,	 then	 that	 patient	 is	 sick.	 The	 negative
predictive	 value	 of	 a	 system	 (NPV)	 is	 the	 probability	 that	 the	 condition	 does	 not
exists	when	 restricted	 to	 those	 cases	where	 the	 instrument	 says	 it	 doesn’t	 exist.	A
NPV	of	1	means	if	our	instrument	says	a	patient	doesn’t	have	cancer,	then	that	patient
is	 not	 sick.	 Sometimes	 the	 true	 negative	 condition	 doesn’t	 really	 exist	 (how	many
times	a	day	does	a	burglar	not	show	up	at	your	house?)	If	there	are	no	true	negatives,
only	sensitivity	and	PPV	are	relevant.

Prevalence	 =		(TP	+	FN)	/	(TP	+	TN	+	FP	+	FN)
Sensitivity =	TP	/	(TP	+	FN)
Specificity =	TN	/	(TN	+	FP)
PPV	 =	TP	/	(TP	+	FP)
NPV	 =	TN	/	(TN	+	FN)

	
There	 are	 two	 errors	 introduced	 by	 the	 sampling	 process.	 	Voltage	 quantizing	 is
caused	 by	 the	 finite	 word	 size	 of	 the	 ADC.	 The	 precision	 is	 determined	 by	 the
number	of	bits	in	the	ADC.	If	the	ADC	has	n	bits,	then	the	number	of	distinguishable
alternatives	is

nz	=	2n

Time	 quantizing	 is	 caused	 by	 the	 finite	 discrete	 sampling	 interval.	 The	Nyquist
Theorem	 states	 that	 if	 the	 signal	 is	 sampled	 at	 fs,	 then	 the	 digital	 samples	 only
contain	frequency	components	from	0	to	0.5	fs.	Conversely,	if	the	analog	signal	does
contain	frequency	components	larger	than	½	fs,	then	there	will	be	an	aliasing	error.	
Aliasing	 is	 when	 the	 digital	 signal	 appears	 to	 have	 a	 different	 frequency	 than	 the
original	analog	signal.	Simply	put,	if	one	samples	a	sine	wave	at	a	sampling	rate	of
fs,

V(t)	=	A	sin(2πft	+	φ)
	

is	it	possible	to	determine	A	f	and	φ	from	the	digital	samples?		Nyquist	Theory	says
that	 if	 fs	 is	 strictly	greater	 than	 twice	 f,	 then	one	can	determine	A	f	 and	φ	 from	 the
digital	samples.	 	In	other	words,	 the	entire	analog	signal	can	be	reconstructed	from
the	digital	samples.	But	if	fs	less	than	or	equal	to	f,	then	one	cannot	determine	A	f	and
φ.		In	this	case,	the	apparent	frequency,	as	predicted	by	analyzing	the	digital	samples,
will	be	shifted	to	a	frequency	between	0	and	½	fs.

In	 Figure	 5.3,	 the	 sampling	 rate	 is	 fixed	 at	 1600	 Hz	 and	 the	 signal	 frequency	 is
varied.	When	sampling	rate	 is	exactly	 twice	 the	 input	frequency,	 the	original	signal
may	or	may	not	be	properly	reconstructed.	In	this	specific	case,	it	is	frequency	shifted
(aliased)	 to	 DC	 and	 lost.	 When	 sampling	 rate	 is	 slower	 than	 twice	 the	 input
frequency,	the	original	signal	cannot	be	properly	reconstructed.	It	is	frequency	shifted
(aliased)	 to	 a	 frequency	 between	 0	 and	½	 fs.	 In	 this	 case	 the	 1500	Hz	wave	was
aliased	to	100	Hz.

	
100	Hz	sine	wave	(properly	sampled) 400	Hz	sine	wave	(properly	sampled)

	
800	Hz	sine	wave	(aliased) 1500	Hz	sine	wave	(aliased)

Figure	5.3.	Aliasing	does	not	occur	when	the	sampling	rate	is	more	than
twice	the	signal	frequency.

The	 choice	 of	 sampling	 rate,	 fs,	 is	 determined	 by	 the	 maximum	 useful	 frequency
contained	 in	 the	 signal.	 One	 must	 sample	 at	 least	 twice	 this	 maximum	 useful
frequency.	 Faster	 sampling	 rates	may	 be	 required	 to	 implement	 a	 digital	 filter	 and
other	digital	signal	processing.

fs	>	2	fmax
Even	though	the	largest	signal	frequency	of	interest	is	 fmax,	 there	may	be	significant
signal	magnitudes	at	frequencies	above	fmax.	These	signals	may	arise	from	the	input
x,	from	added	noise	in	the	transducer	or	from	added	noise	in	the	analog	processing.
Once	the	sampling	rate	is	chosen	at	fs,	then	a	low	pass	analog	filter	may	be	required
to	 remove	 frequency	 components	 above	 ½fs.	 	 A	 digital	 filter	 cannot	 be	 used	 to
remove	aliasing.

An	 interesting	 question	 arises:	 how	 do	 we	 determine	 the	 maximum	 frequency
component	 in	our	 input?	If	we	know	enough	about	our	system,	we	might	be	able	 to
derive	 an	 equation	 to	 determine	 the	 maximum	 frequency.	 For	 example,	 if	 a
mechanical	 system	 consists	 of	 a	 mass,	 friction	 and	 a	 spring,	 then	 we	 can	 write	 a
differential	 equation	 relating	 the	 applied	 force	 to	 the	 position	 of	 the	 object.	 The
second	way	to	find	the	maximum	frequency	component	in	our	signal	is	to	measure	it
with	a	spectrum	analyzer.

Valvano	Postulate:	If	fmax	is	the	largest	frequency	component	of	the
analog	signal,	then	you	must	sample	more	than	ten	times	fmax	in	order
for	the	reconstructed	digital	samples	to	look	like	the	original	signal
when	plotted	on	a	voltage	versus	time	graph.
	

The	choice	of	the	ADC	precision	 is	a	compromise	of	various	factors.	 	The	desired
resolution	 of	 the	 data	 acquisition	 system	 will	 dictate	 the	 number	 of	 ADC	 bits
required.		If	the	transducer	is	nonlinear,	then	the	ADC	precision	must	be	larger	than
the	precision	specified	in	the	problem	statement.		For	example,	let	y	be	the	transducer
output,	and	let	x	be	the	real	world	signal.	Assume	for	now,	that	the	transducer	output
is	connected	to	the	ADC	input.	Let	the	range	of	x	be	rx.	Let	the	range	of	y	be	ry.		Let
the	 required	 precision	 of	 x	 be	 nx.	 The	 resolutions	 of	 x	 and	 y	 are	 ∆x	 and	 ∆y
respectively.		Let	the	following	describe	the	nonlinear	transducer.

y	=	f(x)

The	required	ADC	precision,	ny,	(in	alternatives)	can	be	calculated	by:

∆x	=rx/nx	

∆y	=	min	{f(x+∆x)-f(x)}	for	all	x	in	rx

ny	=	ry/∆y
In	general,	we	wish	 the	analog	signal	processing	 to	map	 the	 full	 scale	 range	of	 the
transducer	 into	 the	 full	 scale	 range	 of	 the	ADC.	 If	 the	ADC	 precision	 is	N=2n	 in
alternatives,	and	the	output	impedance	of	the	transducer	is	Rout,	then	we	need	an	input
impedance	larger	than	N*Rout	to	avoid	loading	the	signal.	We	need	the	analog	circuit
to	pass	the	frequencies	of	interest.	When	considering	noise,	we	determine	the	signal

equivalent	noise.	For	 example,	 consider	 a	 system	 that	measures	 temperature.	 If	we
wish	 to	 consider	 noise	 on	 signal	Vout,	 we	 calculate	 the	 relationship	 between	 input
temperature	T	and	the	signal	Vout.	Next,	we	determine	the	sensitivity	of	the	signal	to
temperature,	 dVout/dT.	 If	 the	 noise	 is	 Vn,	 then	 the	 temperature	 equivalent	 noise	 is
Tn=Vn/(dVout/dT).	In	general,	we	wish	all	equivalent	noises	to	be	less	than	the	system
resolution.

An	analog	 low	 pass	 filter	may	 be	 required	 to	 remove	 aliasing.	 The	 cutoff	 of	 this
analog	 filter	 should	be	 less	 than	½fs.	Some	 transducers	automatically	 remove	 these
unwanted	frequency	components.	For	example,	a	thermistor	is	inherently	a	low	pass
device.	 Other	 types	 of	 filters	 (analog	 and	 digital)	 may	 be	 used	 to	 solve	 the	 data
acquisition	system	objective.	One	useful	filter	is	a	60	Hz	bandreject	filter.

In	order	to	prevent	aliasing,	one	must	know	the	frequency	spectrum	of	the	ADC	input
voltage.	 This	 information	 can	 be	measured	 with	 a	 spectrum	 analyzer.	 Typically,	 a
spectrum	analyzer	samples	the	analog	signal	at	a	very	high	rate	(>1	MHz),	performs	a
Discrete	 Fourier	 Transform	 (DFT),	 and	 displays	 the	 signal	 magnitude	 versus
frequency.	We	define	z(t)	as	the	input	to	the	ADC.	Let	 |Z(f)|	be	the	magnitude	of	 the
ADC	input	voltage	as	a	function	of	frequency.	There	are	3	regions	in	the	magnitude
versus	 frequency	 graph	 shown	 in	 Figure	 5.4.	 We	 will	 classify	 any	 signal	 with
amplitude	less	than	the	ADC	resolution,	∆z,	to	be	undetectable.	This	region	is	labeled
“Undetectable”.	 Undetectable	 signals	 cannot	 cause	 aliasing	 regardless	 of	 their
frequency.		We	will	classify	any	signal	with	amplitude	larger	than	the	ADC	resolution
at	frequencies	less	than	½fs	to	be	properly	sampled.	This	region	is	labeled	“Properly
sampled”.	It	is	information	in	this	region	that	is	available	to	the	software	for	digital
processing.	 The	 last	 region	 includes	 signals	 with	 amplitude	 above	 the	 ADC
resolution	at	frequencies	greater	than	or	equal	to	½fs.	Signals	in	this	region	will	be
aliased,	 which	 means	 their	 apparent	 frequencies	 will	 be	 shifted	 into	 the	 0	 to	 ½fs
range.	

Figure	5.4.	To	prevent	aliasing	there	should	be	no	measurable	signal	above
½	fs.

Most	spectrum	analyzers	give	 the	output	 in	decibels	 full	 scale	 (dBFS).	For	 an	ADC
system	with	a	range	of	0	 to	3.3V,	 the	full	scale	peak-to-peak	amplitude	for	any	AC
signal	is	3.3	V.	If	V	is	the	DFT	output	magnitude	in	volts

		 dBFS	=	20	log10(V/3.3)

Table	5.1	calculates	the	ADC	resolution	in	dBFS.	For	a	real	ADC,	the	resolution	will
be	a	function	of	other	factors	other	than	bits.	For	example,	the	MAX1246	12-bit	ADC
has	a	minimum	Signal-to-Noise+Distortion	Ratio	 (SINAD)	of	70	dB,	meaning	 it	 is
not	quite	12	bits.	The	typical	SINAD	is	73	dB,	which	is	slightly	better	than	12	bits.

Bits dBFS
8 -48.2
9 -54.2
10 -60.2
11 -66.2
12 -72.2
13 -78.3
14 -84.3

Table	5.1.	ADC	resolution	in	dBFS,	assuming	full	scale	is	defined	as	peak-to-peak	voltage.
	
Aliasing	will	occur	if	 |Z|	is	larger	than	the	ADC	resolution	for	any	frequency	larger
than	 or	 equal	 to	 ½fs.	 In	 order	 to	 prevent	 aliasing,	 |Z|	 must	 be	 less	 than	 the	 ADC
resolution.	 Our	 design	 constraint	 will	 include	 a	 safety	 factor	 of	 α	 ≤	 1.	 Thus,	 to
prevent	aliasing	we	will	make:

|Z|	<	α	∆z for	all	frequencies	larger	than	or	equal	to	½fs
This	 condition	 usually	 be	 can	 be	 satisfied	 by	 increasing	 the	 sampling	 rate	 or
increasing	 the	 number	 of	 poles	 in	 the	 analog	 low	 pass	 filter.	 We	 cannot	 remove
aliasing	with	a	digital	 low	pass	 filter,	because	once	 the	high	 frequency	 signals	 are
shifted	into	the	0	to	½fs	range,	we	will	be	unable	to	separate	the	aliased	signals	from
the	 regular	 ones.	 To	 determine	 α,	 the	 sum	 of	 all	 errors	 (e.g.,	 ADC,	 aliasing,	 and
noise)	must	be	less	than	the	desired	resolution.

To	measure	resolution,	we	use	the	student’s	t-test	to	determine	if	the	system	is	able
to	 detect	 the	 change.	 To	 use	 the	 student’s	 t	 test	 we	 need	 to	 make	 the	 following
assumptions:
1)	Errors	in	one	data	set	are	independent,	not	correlated	to	errors	in	the	other	data

set;
2)	Errors	in	each	data	sample	are	independent,	not	correlated	to	errors	within	that

set;
3)	Errors	are	normally	distributed;
4)	Variance	is	unknown;
5)	Variances	in	the	two	sets	are	equal.

	
We	measure	the	input	N	times	with	the	input	fixed	at	x	(X0i).	Then,	we	measure	it	N
more	 times	with	 the	 input	 fixed	 at	 x+Δx	 (X1i).	 	 See	 Figure	 5.5.	We	 employ	 a	 test
statistic	to	test	the	hypothesis	H0:	µ0=	µ1.	First,	we	estimate	the	means	and	variances
of	the	data	(assuming	equal	sized	samples)

	

	

From	these,	we	calculate	the	test	statistic	t:
	

Figure	5.5.	Resolution	means	if	the	input	increases	byΔ x,	the	system	will
probably	notice.

The	two	sets	of	data,	together,	have	2N-2	degrees	of	freedom.	If	N=10,	the	number	in
the	df=18	row,	confidence=99%	column	is	2.878.	This	means	if	H0	is	true,	then	the
probability	that	t	is	less	than	-2.878	=	0.005		and	the	probability	that		t	is	greater	than
2.878	=	0.005.	Therefore,	the	probability	of		-2.878	<	t	<	2.878	=	0.99		(confidence
interval	of	99%)													

If	we	collect	data	and	calculate	t	such	that	the	test	statistic	t	is	greater	than	2.878	or
less	than	‑2.878,	then	we	claim	“we	reject	the	hypothesis	H0”.		If	the	test	statistic	t	is
between	-2.878	and	2.878	we	do	not	claim	the	hypothesis	to	be	true.	In	other	words,
we	 have	 not	 proven	 the	means	 to	 be	 equal.	 Rather,	 we	 say	 “we	 do	 not	 reject	 the
hypothesis	H0”.	 If	 t	 is	 greater	 than	 2.878	 or	 less	 than	 ‑2.878,	 then	 we	 claim	 the
resolution	of	the	system	is	less	than	or	equal	to	Δx.

5.1.3.	Audio	Input/Output
A	 microphone	 is	 a	 type	 of	 displacement	 transducer.	 Sound	 waves,	 which	 are
pressure	waves	 travelling	 in	 air,	 cause	 a	 diaphragm	 to	 vibrate,	 and	 the	 diaphragm

motion	 causes	 the	 distance	 between	 capacitor	 plates	 to	 change.	 This	 variable
capacitance	 creates	 a	 voltage,	which	 can	be	 amplified	 and	 recorded.	The	electret
condenser	 microphone	 (ECM)	 is	 an	 inexpensive	 choice	 for	 converting	 sound	 to
analog	voltage.	Electret	microphones	are	used	in	consumer	and	communication	audio
devices	 because	 of	 their	 low	 cost	 and	 small	 size.	 For	 applications	 requiring	 high
sensitivity,	 low	noise,	 and	 linear	 response,	we	could	use	 the	dynamic	microphone,
like	the	ones	used	in	high-fidelity	audio	recording	equipment.	The	ECM	capsule	acts
as	an	acoustic	resonator	for	the	capacitive	electret	sensor	shown	in	Figure	5.6.	The
ECM	has	a	Junction	Field	Effect	Transistor	(JFET)	inside	the	transducer	providing
some	amplification.	This	JFET	requires	power	as	supplied	by	the	R1	resistor.	This
local	amplification	allows	the	ECM	to	function	with	a	smaller	capsule	than	typically
found	 with	 other	 microphones.	 ECM	 devices	 are	 cylindrically	 shaped,	 have	 a
diameter	ranging	from	3	to	10	mm,	and	have	a	thickness	ranging	from	1	to	5	mm.

Figure	5.6.	Physical	and	electrical	view	of	an	ECM	with	JFET	buffer	(Vcc
depends	on	microphone)

An	ECM	consists	 of	 a	 pre-charged,	 non-conductive	membrane	 between	 two	plates
that	form	a	capacitor.	The	backplate	is	fixed,	and	the	other	plate	moves	with	sound
pressure.	Movement	of	the	plate	results	in	a	capacitance	change,	which	in	turn	results
in	 a	 change	 in	 voltage	 due	 to	 the	 non-conductive,	 pre-charged	 membrane.	 An
electrical	 representation	 of	 such	 an	 acoustic	 sensor	 consists	 of	 a	 signal	 voltage
source	in	series	with	a	source	capacitor.	The	most	common	method	of	interfacing	this
sensor	is	a	high-impedance	buffer/amplifier.	A	single	JFET	with	its	gate	connected	to
the	 sensor	 plate	 and	 biased	 as	 shown	 in	 Figure	 5.7	 provides	 buffering	 and
amplification.	 The	 capacitor	C	 provides	 high-pass	 filtering,	 so	 the	 voltage	 at	 the
output	 will	 be	 less	 than	 ±100	 mV	 for	 normal	 voice.	 Audio	 microphones	 need
additional	amplification	and	band-pass	filtering.	Typical	audio	signals	exist	from	100
Hz	 to	 10	 kHz.	 The	 presence	 of	 the	 R1	 resistor	 is	 called	 "phantom	 biasing".	 The
electret	has	two	connections:	Gnd	and	Signal/bias.	Typically,	the	metallic	capsule	is
connected	to	Gnd.

Figure	5.7.	An	electret	microphone	can	be	used	to	record	sound.

Many	 electret	 data	 sheets	 suggest	 an	R1	 of	 2	 kΩ,	 but	 signal-to-noise	 ratio	 can	 be
improved	 by	 using	 a	 10	 kΩ	 resistor.	 The	 series	 capacitor	C1	 creates	 a	 high	 pass
filter.	Because	 the	output	of	a	high	pass	 filter	would	normally	 include	positive	and
negative	voltages,	we	will	need	a	way	to	offset	the	circuit	so	all	voltages	exist	from
0	to	+3.3	V,	allowing	the	use	of	a	single	supply	and	rail-to-rail	op	amps.	R2	and	R3
provide	an	offset	 for	 the	high	pass	 filter,	 so	 the	 signal	V2	will	be	 the	 sound	signal
plus	a	fixed	offset	of	1.65	V.	The	effective	impedance	from	V2	to	ground	is	11	kΩ,	so
the	HPF	cutoff	is	1/(2π*0.22µF*11kΩ)	=	66	Hz.	The	gain	of	the	system	is	1+R6/R5,
which	will	be	101.	The	capacitor	C2	will	make	the	signal	V3	be	the	amplified	sound
plus	1.65	V.	The	gain	 is	 selected	 so	 the	V3	 signal	 is	1.65	±1	V	 for	 the	 sounds	we
wish	 to	 record.	 The	 capacitor	C3	 provides	 a	 little	 low	 pass	 filtering,	 causing	 the
amplifier	gain	to	drop	to	one	for	frequencies	above	1/(2π*220pF*100kΩ)	=	7.2	kHz.
A	better	LPF	would	be	to	add	an	active	LPF.	The	active	LPF	would	also	need	a	1.65
V	offset.	If	we	wish	to	process	sound	with	frequency	components	from	100	to	5	kHz,
then	we	should	sample	at	or	above	10	kHz.	The	analog	system	must	pass	the	signals
of	 interest,	 but	 reject	 signals	 above	 ½	 the	 sampling	 rate.	 One	 of	 the	 cost	 savings
tradeoffs	is	to	use	a	less	analog	filter	(fewer	poles)	and	increase	the	sampling	rate,
adding	digital	filtering.	If	we	sampled	sound	with	a	12-bit	ADC,	we	should	select	a
12-bit	DAC	to	output	the	sound.	We	could	improve	signal	to	noise	by	replacing	the
+3.3	V	connected	 to	R1	and	R2	 in	Figure	5.7	with	 a	LM4041	adjustable	 reference
and	create	a	low	noise	3.0V	voltage.

	

The	LM4041CILP	is	a	shunt	reference	used	to	make	the	analog	reference	required	by
the	MAX5353	12-bit	DAC.	This	DAC	was	previously	interfaced	in	Example	7.2	of
Volume	 2.	 The	 MC34119	 audio	 amp	 can	 be	 used	 to	 amplify	 the	 DAC	 output
providing	the	current	needed	to	drive	a	typical	8-Ω	speaker	(Figure	5.8).	The	gain	of
the	audio	amplifier	is	2*R11/R10,	which	for	this	circuit	will	be	one.	This	means	a	2-
V	peak-to-peak	signal	out	of	the	DAC	will	translate	to	a	2-V	peak-to-peak	signal	on
the	speaker.	The	maximum	power	that	the	MC34119	can	deliver	to	the	speaker	is	250
mW,	so	the	software	should	limit	the	sound	signal	below	1.4	Vrms	when	driving	an
8-Ω	speaker.	The	quality	of	sound	can	be	increased	by	selecting	a	better	speaker	and
placing	 the	 speaker	 into	 an	 enclosure.	 For	 more	 information	 on	 how	 to	 design	 a

speaker	box,	perform	a	web	search	on	“speaker	enclosure”.

Software	 in	Program	7.2	(Volume	2)	can	be	used	 to	 interface	 the	MAX5353	12-bit
DAC.	 	 	Program	5.1	performs	 the	 sound	 input	 and	output.	The	 sampling	 rate	 is	 10
kHz.	The	ADC	code	was	presented	earlier	in	Chapter	2.

void	ADC3_Handler(void){	int16_t	data;						
		ADC_ISC_R	=	ADC_ISC_IN3;		//	acknowledge	ADC	sequence	3	completion
		data	=	(ADC_SSFIFO3_R&ADC_SSFIFO3_DATA_M)-512;		//	10-bit	sound
//	process,	filter,	record	etc.
		DAC_Out(data);				
}
void	main(void){
		PLL_Init();																										//	now	running	at	80	MHz	
		ADC_	InitTimer0ATriggerSeq3PD3(7999);	//	sample	at	10	kHz
		DAC_Init(2048);																							//	Volume	2,	Program	7.2	
		while(1){	};
}
Program	5.1.		Real-time	sound	output	input/output.	

Figure	5.8.	A	DAC	and	an	audio	amplifier	allow	the	microcontroller	to
output	sound.

	

5.2.	Priority	scheduler

5.2.1.	Implementation
To	 implement	 priority,	we	 add	 another	 field	 to	 the	 TCB,	 see	 Program	 5.2.	 In	 this
system	we	define	0	as	the	highest	priority	and	254	as	the	lowest.	In	some	operating
systems,	each	 thread	must	have	unique	priority,	but	 in	 this	chapter	multiple	 threads
can	 have	 the	 same	 priority.	 If	 we	 have	multiple	 threads	with	 equal	 priority,	 these
threads	will	be	run	in	a	round	robin	fashion.	The	strategy	will	be	to	find	the	highest
priority	thread,	which	is	neither	blocked	nor	sleeping	and	run	it	as	shown	in	Figure
5.9.

struct	tcb{
		int32_t	*sp;							//	pointer	to	stack	(valid	for	threads	not	running
		struct	tcb	*next;		//	linked-list	pointer
		int32_t	*BlockPt;		//	nonzero	if	blocked	on	this	semaphore
		uint32_t	Sleep;				//	nonzero	if	this	thread	is	sleeping
		uint8_t	Priority;		//	0	is	highest,	254	lowest
};
Program	5.2.	TCB	for	the	priority	scheduler.

Figure	5.9.	Priority	scheduler	finds	the	highest	priority	thread.

Observation:	Normally,	we	add	priority	to	a	system	that	implements	blocking
semaphores	and	not	to	one	that	uses	spinlock	semaphores.

If	there	are	multiple	threads	at	that	highest	priority	that	are	not	sleeping	nor	blocked,
then	 the	 scheduler	will	 run	 them	 in	 a	 round	 robin	 fashion.	 The	 statement, pt	 =	 pt-
>next 	guarantees	that	the	same	higher	priority	task	is	not	picked	again.

void	Scheduler(void){		//	every	time	slice
		uint32_t	max	=	255;		//	max
		tcbType	*pt;
		tcbType	*bestPt;
		pt	=	RunPt;				//	search	for	highest	thread	not	blocked	or	sleeping
		do{
				pt	=	pt->next;	//	skips	at	least	one
				if((pt->Priority	<	max)&&((pt->BlockPt)==0)&&((pt->Sleep)==0)){
						max	=	pt->Priority;
						bestPt	=	pt;
				}
		}		while(RunPt	!=	pt);	//	look	at	all	possible	threads
		RunPt	=	bestPt;
}
Program	5.3.	One	possible	priority	scheduler.

Checkpoint	5.1:	If	there	are	N	threads	in	the	TCB	list,	how	many	threads	must	the
scheduler	in	Program	5.3	consider	before	choosing	the	thread	the	next	thread	to
run?		In	other	words,	how	many	times	does	the	do-while	loop	run?

There	are	many	approaches	to	assigning	priority.	If	the	system	is	I/O	centric	then	we
can	assign	high	priority	to	I/O	bound	threads	and	low	priority	to	CPU	bound	threads.
Another	 approach	 is	 to	 define	 a	 cost	 to	 various	performance	metrics	 like	 lateness,
and	bandwidth,	and	then	assign	priorities	that	minimize	cost.	A	dynamic	scheduler	is
one	that	adjusts	priority	at	run	time.	Examples	include	earliest	deadline	first	(EDF)
and	least	slack	time	first	(LST)	(EDF)

5.2.2.	Multi-level	Feedback	Queue
The	priority	scheduler	in	the	previous	section	will	be	inefficient	if	there	are	a	lot	of
threads.	Because	the	scheduler	must	look	at	all	threads,	the	time	to	run	the	scheduler
grows	linearly	with	the	number	of	threads.	One	implementation	that	is	appropriate	for
priority	systems	with	many	threads	is	called	the	multi-level	feedback	queue	(MLFQ).
MLFQ	was	introduced	in	1962	by	Corbato	et	al.	and	has	since	been	adopted	in	some
form	 by	 all	 the	 major	 operating	 systems,	 BSD	 Unix	 and	 variants,	 Solaris	 and
Windows.	Its	popularity	stems	from	its	ability	to	optimize	performance	with	respect
to	 two	metrics	commonly	used	 in	 traditional	Operating	Systems.	These	metrics	are
turnaround	time,	and	response	time.	Turnaround	time	is	the	time	elapsed	from	when
a	thread	arrives	till	 it	completes	execution.	Response	time	is	the	time	elapsed	from
when	a	thread	arrives	till	 it	starts	execution.	Let	S	be	the	average	time	to	service	a

request,	and	R	be	the	average	response	time	(waiting+service).	One	nondimensional
metric	 for	 response	 time	 is	 normalized	 mean	 response	 time,	 R/S.	 Preemptive
scheduling	mechanisms	 like	Shortest	Time-to-completion	First	 (STCF)	 and	Round-
Robin	(RR)	are	optimal	at	minimizing	the	average	turnaround	time	and	response	time
respectively.	 	However,	 both	perform	well	 on	only	one	of	 these	metrics	 and	 show
very	poor	performance	with	 respect	 to	 the	other.	MLFQ	fairs	equally	well	on	both
these	metrics.	As	 the	 name	 indicates,	MLFQ	has	multiple	 queues,	 one	 per	 priority
level,	with	multiple	threads	operating	at	the	same	priority	level.	In	keeping	with	our
description	of	 priority,	we	 assume	 level	 0	 is	 the	highest	 priority	 and	higher	 levels
imply	lower	priority.	There	will	be	a	finite	number	of	priority	levels	from	0	to	n-1,
see	Figure	5.10.	The	rules	that	govern	the	processing	of	these	queues	by	the	scheduler
are	as	follows:

1.	 Startup:	All	threads	start	at	the	highest	priority.	Start	in	queue	at
level	0.

2.	 Highest	runs:	If	Priority(Ti)	<	Priority(Tj)	then	Ti	is	scheduled	to	run
before	Tj.

3.	 Equals	take	turns:	If	Priority(Ti)	=	Priority(Tj)	then	Ti	and	Tj	are	run
in	RR	order.

4.	 True	accounting:	If	a	thread	uses	up	its	timeslice	at	priority	m	then
its	priority	is	reduced	to	m+1.	It	is	moved	to	the	corresponding
queue.

5.	 Priority	Boost:	The	scheduler	does	a	periodic	reset,	where	all
threads	are	bumped	to	the	highest	priority.

Figure	5.10.	The	shaded	task	in	this	figure	begins	in	the	level	0	(highest)
priority	queue.	If	it	runs	to	the	end	of	its	10-ms	time	slice	(timeout),	it	is
bumped	to	level	1.	If	it	again	runs	to	the	end	of	its	10-ms	time	slice,	it	is
bumped	to	level	2.	Eventually,	a	thread	that	does	not	sleep	or	block	will	end
up	in	the	lower	priority	queue.	Periodically	the	system	will	reset	and	place
all	threads	back	at	level	0.

An	obvious	precondition	to	choosing	a	thread	is	to	make	sure	it	is	“ready”,	that	is,	it
is	not	blocked	on	a	 resource	or	sleeping.	This	 rule	 is	 implicit	and	hence	not	 listed
here.	Rules	2,	and	3	are	self-explanatory	as	MLFQ	attempts	to	schedule	the	highest
priority	ready	thread	at	any	time.		Rule	1	makes	sure	that	every	thread	gets	a	shot	at

executing	as	quickly	as	possible,	 the	 first	 time	 it	 enters	 the	 system.	Rule	4	 is	what
determines	when	 a	 thread	 is	moved	 from	 one	 level	 to	 another.	 Further,	 whether	 a
thread	uses	up	its	timeslice	at	one	shot	or	over	multiple	runs,	true	accounting	requires
that	the	accumulated	time	for	the	thread	at	a	given	priority	level	be	considered.	There
are	versions	of	MLFQ	that	let	a	thread	remain	at	a	priority	level	with	its	accrued	time
towards	 the	 timeslice	 reset	 to	 zero,	 if	 it	 blocked	 on	 a	 resource.	 These	 versions
allowed	 the	possibility	of	gaming	 the	scheduler.	 	Without	 rule	5,	MLFQ	eventually
reduces	 to	 RR	 after	 running	 for	 a	 while	 with	 all	 threads	 operating	 at	 the	 lowest
priority	 level.	 By	 periodically	 boosting	 all	 threads	 to	 the	 highest	 priority,	 rule	 5
causes	a	scheduler	reset	that	lets	the	scheduler	adapt	to	changes	in	thread	behavior.

5.2.3.	Starvation	and	aging
One	disadvantage	of	a	priority	scheduler	on	a	busy	system	is	that	low	priority	threads
may	never	be	run.	This	situation	is	called	starvation.	For	example,	if	a	high	priority
thread	never	sleeps	or	blocks,	then	the	lower	priority	threads	will	never	run.	It	is	the
responsibility	 of	 the	 user	 to	 assign	 priorities	 to	 tasks.	 As	 mentioned	 earlier,	 as
processor	 utilization	 approaches	 one,	 there	 will	 not	 be	 a	 solution.	 	 In	 general,
starvation	is	not	a	problem	of	the	RTOS	but	rather	a	result	of	a	poorly	designed	user
code.

One	solution	to	starvation	is	called	aging.	In	this	scheme,	threads	have	a	permanent
fixed	 priority	 and	 a	 temporary	 working	 priority,	 see	 Program	 5.4.	 The	 permanent
priority	 is	 assigned	 according	 to	 the	 rules	 of	 the	 previous	 paragraph,	 but	 the
temporary	priority	is	used	to	actually	schedule	threads.	Periodically	the	OS	increases
the	temporary	priority	of	threads	that	have	not	been	run	in	a	long	time.	For	example,
the	Age	 field	 is	 incremented	 once	 every	 1ms	 if	 the	 thread	 is	 not	 blocked	 or	 not
sleeping.	 For	 every	 10	 ms	 the	 thread	 has	 not	 been	 run,	 its	WorkingPriority	 is
reduced.	Once	a	 thread	 is	 run,	 its	 temporary	priority	 is	 reset	back	 to	 its	permanent
priority.	When	 the	 thread	 is	 run,	 the	Age	 field	 is	 cleared	 and	 the	FixedPriority	 is
copied	into	the	WorkingPriority.

struct	tcb{
		int32_t	*sp;							//	pointer	to	stack	(valid	for	threads	not	running
		struct	tcb	*next;		//	linked-list	pointer
		int32_t	*BlockPt;		//	nonzero	if	blocked	on	this	semaphore
		uint32_t	Sleep;				//	nonzero	if	this	thread	is	sleeping
		uint8_t	WorkingPriority;	//	used	by	the	scheduler
		uint8_t	FixedPriority;			//	permanent	priority
		uint32_t	Age;												//	time	since	last	execution
};
Program	5.4.	TCB	for	the	priority	scheduler.

5.2.4.	Priority	inversion	and	inheritance	on	Mars	Pathfinder
Another	problem	with	a	priority	scheduler	is	priority	inversion,	a	condition	where	a
high-priority	 thread	 is	waiting	 on	 a	 resource	 owned	 by	 a	 low-priority	 thread.	 For
example,	consider	the	case	where	both	a	high	priority	and	low	priority	thread	need
the	 same	 resource.	 Assume	 the	 low-priority	 thread	 asks	 for	 and	 is	 granted	 the
resource,	and	then	the	high-priority	thread	asks	for	it	and	blocks.	During	the	time	the
low	priority	thread	is	using	the	resource,	the	high-priority	thread	essentially	becomes
low	priority.	The	scenario	in	Figure	5.11	begins	with	a	low	priority	meteorological
task	 asking	 for	 and	 being	 granted	 access	 to	 a	 shared	 memory	 using
the mutex semaphore.	The	second	step	is	a	medium	priority	communication	task	runs
for	a	long	time.	Since	communication	is	higher	priority	than	the	meteorological	task,
the	communication	task	runs	but	the	meteorological	task	does	not	run.	Third,	a	very
high	priority	task	starts	but	also	needs	access	to	the	shared	memory,	so	it	calls	wait
onmutex .	This	high	priority	task,	however,	will	block	because mutex 	is	0.	Notice
that	while	the	communication	task	is	running,	this	high	priority	task	effectively	runs	at
low	priority	because	 it	 is	blocked	on	a	 semaphore	captured	previously	by	 the	 low
priority	task.

Figure	5.11.	Priority	inversion	as	occurred	with	Mars	Pathfinder.

http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html

One	solution	to	priority	inversion	is	priority	inheritance.	With	priority	inheritance,
once	a	high-priority	thread	blocks	on	a	resource,	the	thread	holding	that	resource	is
granted	a	temporary	priority	equal	to	the	priority	of	the	high-priority	blocked	thread.
Once	the	thread	releases	the	resource,	its	priority	is	returned	to	its	original	value.

A	 second	 approach	 is	 called	 priority	 ceiling.	 In	 this	 protocol	 each	 semaphore	 is
assigned	a	priority	ceiling,	which	is	a	priority	equal	to	the	highest	priority	of	any	task
which	may	block	on	a	semaphore	for	that	resource.	With	priority	ceiling,	once	a	high-
priority	 thread	 blocks	 on	 a	 resource,	 the	 thread	 holding	 that	 resource	 is	 granted	 a
temporary	priority	equal	 to	 the	priority	of	 the	priority	ceiling.	Just	 like	 inheritance,
once	the	thread	releases	the	resource,	its	priority	is	returned	to	its	original	value.

	

5.3.	Debouncing	a	switch

5.3.1.	Approach	to	debouncing
One	 of	 the	 problems	 with	 switches	 is	 called	 switch	 bounce.	 Many	 inexpensive
switches	will	mechanically	oscillate	for	up	 to	a	few	milliseconds	when	touched	or
released.	 It	behaves	 like	an	underdamped	oscillator.	These	mechanical	oscillations
cause	 electrical	 oscillations	 such	 that	 a	 port	 pin	will	 oscillate	 high/low	during	 the
bounce.

Contact	bounce	is	a	typical	problem	when	interfacing	switches.	Figure	5.12	shows	an
actual	 voltage	 trace	 occurring	when	 a	 negative	 logic	 switch	 is	 touched.	On	 both	 a
touch	and	release,	there	can	be	from	0	to	2	ms	of	extra	edges,	called	switch	bounce.
However,	sometimes	there	is	no	bounce.

This	bounce	is	a	problem	when	the	system	uses	the	switch	to	trigger	important	events.
There	 are	 two	 problems	 to	 solve:	 1)	 remove	 the	 bounce	 so	 there	 is	 one	 software
event	attached	to	the	switch	touch;	2)	remove	the	bounce	in	such	a	way	that	there	is
low	latency	between	the	physical	touch	and	the	execution	of	the	associated	software
task.

Figure	5.12.	Because	of	the	mass	and	spring	some	switches	bounce.

In	 some	 cases,	 this	 bounce	 should	 be	 removed.	 To	 remove	 switch	 bounce	we	 can
ignore	 changes	 in	 a	 switch	 that	 occur	within	 10	ms	 of	 each	 other.	 In	 other	words,
recognize	a	switch	transition,	disarm	interrupts	for	10ms,	and	then	rearm	after	10	ms.

Alternatively,	we	could	record	the	time	of	the	switch	transition.	If	the	time	between
this	 transition	and	 the	previous	 transition	 is	 less	 than	10ms,	 ignore	 it.	 If	 the	 time	 is
more	than	10	ms,	then	accept	and	process	the	input	as	a	real	event.

Another	method	for	debouncing	the	switch	is	to	use	a	periodic	interrupt	with	a	period
greater	than	the	bounce,	but	less	than	the	time	the	switch	is	held	down.	Each	interrupt
we	read	 the	switch,	 if	 the	data	 is	different	 from	the	previous	 interrupt	 the	software
recognizes	the	switch	event.

Checkpoint	5.2:	Consider	the	periodic	interrupt	method	for	debouncing	a	switch.
Assume	the	interrupt	period	is	20	ms.	What	are	the	maximum	and	average

latencies	(time	between	switch	touch	and	execution	of	the	task)?	

5.3.2.	Debouncing	a	switch	on	TM4C123
If	we	have	a	RTOS	we	can	use	a	semaphore	to	debounce	a	switch.	In	order	to	run	the
user	 task	 immediately	 on	 touch	 we	 will	 configure	 the	 GPIO	 input	 to	 trigger	 an
interrupt	on	both	edges.	However,	 there	can	be	multiple	falling	and	rising	edges	on
both	 a	 touch	 and	 a	 release,	 see	 Figure	 5.13.	 A	 main	 thread	 will	 wait	 on	 that
semaphore,	sleep	for	10ms	and	then	read	the	switch.	The	interrupt	occurs	at	the	start
of	the	bouncing,	but	the	reading	of	the	switch	occurs	at	a	time	when	the	switch	state	is
stable.	We	will	disarm	the	interrupt	during	the	ISR,	so	the	semaphore	is	incremented
once	per	touch	and	once	per	release.	We	will	rearm	the	interrupt	at	the	stable	time.
Program	5.5	and	Figure	5.14	show	one	possible	solution	that	executes	Touch1	when
the	switch	SW1	is	touched,	and	it	executes	Touch2	when	switch	SW2	is	touched.

We	can	set	the	priorities	of	the	hardware	interrupt	and	main	threads	depending	on	the
importance	of	the	software	event.	If	the	edge-triggered	interrupt	has	high	priority,	the
semaphore	 will	 be	 signaled	 immediately	 after	 a	 hardware	 touch/release	 event.
Furthermore,	 the	main	 threads	 also	 have	 high	 priority,	 the	 software	 responses	will
also	be	run	 immediately.	Notice	 the OS_Suspend() call	 at	 the	end	of	 the	 ISR.	This
will	run	the	scheduler.

Figure	5.13.	Touch	and	release	both	cause	the	ISR	to	run.	The	port	is	read
during	the	stable	time

int32_t	SW1,SW2;
uint8_t	last1,last2;
void	Switch_Init(void){
		SYSCTL_RCGCGPIO_R	|=	0x20;						//	activate	clock	for	Port	F
		OS_InitSemaphore(&SW1,0);							//	initialize	semaphores
		OS_InitSemaphore(&SW2,0);
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;	//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0x1F;									//	allow	changes	to	PF4-0			
		GPIO_PORTF_DIR_R	&=	~0x11;						//	make	PF4,PF0	in
		GPIO_PORTF_DEN_R	|=	0x11;							//	enable	digital	I/O	on	PF4,PF0
		GPIO_PORTF_PUR_R	|=	0x11;							//	pullup	on	PF4,PF0

		GPIO_PORTF_IS_R	&=	~0x11;							//	PF4,PF0	are	edge-sensitive
		GPIO_PORTF_IBE_R	|=	0x11;							//	PF4,PF0	are	both	edges
		GPIO_PORTF_ICR_R	=	0x11;								//	clear	flags
		GPIO_PORTF_IM_R	|=	0x11;								//	arm	interrupts	on	PF4,PF0
		NVIC_PRI7_R	=	(NVIC_PRI7_R&0xFF00FFFF)|0x00200000;	//	priority	1
		NVIC_EN0_R	=	0x40000000;								//	enable	interrupt	30	in	NVIC
}
void	GPIOPortF_Handler(void){
		if(GPIO_PORTF_RIS_R&0x10){		//	poll	PF4
				GPIO_PORTF_ICR_R	=	0x10;		//	acknowledge	flag4
				OS_Signal(&SW1);										//	signal	SW1	occurred
				GPIO_PORTF_IM_R	&=	~0x10;	//	disarm	interrupt	on	PF4
		}
		if(GPIO_PORTF_RIS_R&0x01){		//	poll	PF0
				GPIO_PORTF_ICR_R	=	0x01;		//	acknowledge	flag0
				OS_Signal(&SW2);										//	signal	SW2	occurred
				GPIO_PORTF_IM_R	&=	~0x81;	//	disarm	interrupt	on	PF0
		}
		OS_Suspend();}
void	Switch1Task(void){	//	high	priority	main	thread
		last1	=	GPIO_PORTF_DATA_R&0x10;
		while(1){
				OS_Wait(&SW1);	//	wait	for	SW1	to	be	touched/released
				if(last1){					//	was	previously	not	touched
						Touch1();				//	user	software	associated	with	touch
				}else{
						Release1();		//	user	software	associated	with	release
				}
				OS_Sleep(10);		//	wait	for	bouncing	to	be	over
				last1	=	GPIO_PORTF_DATA_R&0x10;
				GPIO_PORTF_IM_R	|=	0x10;		//	rearm	interrupt	on	PF4
				GPIO_PORTF_ICR_R	=	0x10;		//	acknowledge	flag4
		}
}
void	Switch2Task(void){	//	high	priority	main	thread
		last2	=	GPIO_PORTF_DATA_R&0x01;
		while(1){
				OS_Wait(&SW2);		//	wait	for	SW2	to	be	touched/released
				if(last2){						//	was	previously	not	touched
						Touch2();					//	user	software	associated	with	touch
				}else{
						Release2();			//	user	software	associated	with	release
				}
				OS_Sleep(10);			//	wait	for	bouncing	to	be	over

				last2	=	GPIO_PORTF_DATA_R&0x01;
				GPIO_PORTF_IM_R	|=	0x01;		//	rearm	interrupt	on	PF0
				GPIO_PORTF_ICR_R	=	0x01;		//	acknowledge	flag0
		}
}
Program	5.5.	Interrupt-driven	edge-triggered	input	that	calls	Touch1()	on
the	falling	edge	of	PF4,	calls	Release1()	on	the	rising	edge	of	PF4,	calls
Touch2()	on	the	falling	edge	of	PF0	and	calls	Release2()	on	the	rising	edge
of	PF0.

Figure	5.14.	Flowchart	of	a	RTOS-solution	to	switch	bounce.	Switch1Task	is
a	high-priority	main	thread.	Notice	that	Release1	is	executed	immediately
after	a	release,	and	Touch1	is	executed	immediate	after	the	switch	is	touched.
However	the	global	variable	Last	is	set	at	a	time	the	switch	is	guaranteed	to
be	stable.

5.3.3.	Debouncing	a	switch	on	MSP432
If	we	have	a	RTOS	we	can	perform	a	 similar	 sequence.	 In	particular,	we	will	use
Program	5.6	to	signal	a	semaphore.	Even	though	we	armed	the	interrupt	for	fall,	there
can	 be	multiple	 falling	 edges	 on	 both	 a	 touch	 and	 a	 release.	A	 high	 priority	main
thread	will	wait	 on	 that	 semaphore,	 sleep	 for	 10ms	 and	 then	 read	 the	 switch.	The
interrupt	occurs	at	the	start	of	the	bouncing,	but	the	reading	of	the	switch	occurs	at	a
time	when	the	switch	state	is	stable.	We	will	disarm	the	interrupt	during	the	ISR,	so
the	semaphore	is	incremented	once	per	touch	or	once	per	release.	We	will	rearm	the
interrupt	at	the	stable	time.	Program	5.6	and	Figure	5.15	show	one	possible	solution
that	executes	Touch1	when	the	switch	SW1	is	touched,	and	it	executes	Touch2	when
switch	SW2	is	touched.

Figure	5.15.	Flowchart	of	a	RTOS-solution	to	switch	bounce.	Switch1Task	is
a	high-priority	main	thread.	Notice	that	Release1	is	executed	immediately
after	a	release,	and	Touch1	is	executed	immediate	after	the	switch	is	touched.
However,	the	global	variable	Last	is	set	at	a	time	the	switch	is	guaranteed	to
be	stable.

int32_t	SW1,SW2;
uint8_t	last1,last2;
void	Switch_Init(void){							
		SW1	=	SW2	=	0;																//	initialize	semaphores
		P1SEL1	&=	~0x12;														//	configure	P1.1,	P1.4	as	GPIO
		P1SEL0	&=	~0x12;														//	built-in	Buttons	1	and	2
		P1DIR	&=	~0x12;															//	make	P1.1,	P1.4	in
		P1REN	|=	0x12;																//	enable	pull	resistors
		P1OUT	|=	0x12;																//	P1.1,	P1.4	is	pull-up
		P1IES	|=	0x12;																//	P1.1,	P1.4	is	falling	edge	event
		P1IFG	&=	~0x12;															//	clear	flag1	and	flag4
		P1IE	|=	0x12;																	//	arm	interrupt	on	P1.1,	P1.4
		NVIC_IPR8	=	(NVIC_IPR8&0x00FFFFFF)|0x20000000;	//	(f)	priority	1
		NVIC_ISER1	=	0x00000008;}					//	enable	interrupt	35	in	NVIC
void	PORT1_IRQHandler(void){	uint8_t	status;
		status	=	P1IV;	//	4	for	P1.1	and	10	for	P1.4
		if(status	==	4){
				OS_Signal(&SW1);	//	SW1	occurred
			P1IE	&=	~0x02;}		//	disarm	interrupt	on	P1.2
		if(status	==	10){
				OS_Signal(&SW2);	//	SW2	occurred
			P1IE	&=	~0x10;}		//	disarm	interrupt	on	P1.4
		OS_Suspend();}
void	Switch1Task(void){	//	high	priority	main	thread
		last1	=	P1IN&0x02;

		while(1){
				OS_Wait(&SW1);		//	wait	for	SW1	to	be	touched/released
				if(last1){					//	was	previously	not	touched
						Touch1();				//	user	software	associated	with	touch
				}else{
						Release1();}	//	user	software	associated	with	release
				OS_Sleep(10);
				last1	=	P1IN&0x02;
				if(last1){
						P1IES	|=	0x02;		//	next	will	be	falling	edge
				}else{
						P1IES	&=	~0x02;	//	next	will	be	rising	edge
				}
				P1IE	|=	0x02;				//	rearm	interrupt	on	P1.1
			P1IFG	&=	~0x02;		//	clear	flag1
		}
}
void	Switch2Task(void){	//	high	priority	main	thread
		last2	=	P1IN&0x10;
		while(1){
				OS_Wait(&SW2);		//	wait	for	SW2	to	be	touched/released
				if(last2){						//	was	previously	not	touched
						Touch2();					//	user	software	associated	with	touch
				}else{
						Release2();			//	user	software	associated	with	release
				}
				OS_Sleep(10);
				last2	=	P1IN&0x10;
				if(last2){
						P1IES	|=	0x10;		//	next	will	be	falling	edge
				}else{
						P1IES	&=	~0x10;}//	next	will	be	rising	edge
			P1IE	|=	0x10;					//	rearm	interrupt	on	P1.4
			P1IFG	&=	~0x10;			//	clear	flag4
		}
}
Program	5.6.	Interrupt-driven	edge-triggered	input	that	calls	Touch1()	on
the	falling	edge	of	P1.1,	calls	Release1()	on	the	rising	edge	of	P1.1,	calls
Touch2()	on	the	falling	edge	of	P1.4	and	calls	Release2()	on	the	rising	edge
of	P1.4.

5.4.	Running	event	threads	as	high	priority	main
threads

In	 the	 previous	 chapters,	we	 ran	 time-critical	 tasks	 (event	 tasks)	 directly	 from	 the
interrupt	service	routine.	Now	that	we	have	a	priority	scheduler,	we	can	place	time-
critical	 tasks	 as	high	priority	main	 threads.	We	will	 block	 these	 time-critical	 tasks
waiting	on	an	event	(semaphore),	and	when	the	event	occurs	we	signal	its	semaphore.
Because	we	now	have	a	high	priority	 thread	not	blocked,	 the	 scheduler	will	 run	 it
immediately.	 In	 Program	 5.7,	 we	 have	 a	 periodic	 interrupt	 that	 simply	 signals	 a
semaphore	 and	 invokes	 the	 scheduler.	 If	 we	 assign	 the	 programTask0 	 as	 a	 high
priority	main	thread,	it	will	be	run	periodically	with	very	little	jitter.		

It	may	seem	like	a	lot	of	trouble	to	run	a	periodic	task.	One	might	ask	why	not	just	put
the	time-critical	task	in	the	interrupt	service	routine.	A	priority	scheduler	is	flexible
in	two	ways.	First,	because	it	implements	priority	we	can	have	layers	of	important,
very	important	and	very	very	important	tasks.	Second,	we	can	use	this	approach	for
any	triggering	event,	hardware	or	software.	We	simply	make	that	triggering	event	call
OS_Signal	 	 and	 OS_Suspend.	 One	 of	 the	 advantages	 of	 this	 approach	 is	 the
separation	of	the	user/application	code	from	the	OS	code.	The	OS	simply	signals	the
semaphore	on	the	appropriate	event	and	the	user	code	runs	as	a	main	thread.

int32_t	TakeSoundData;	//	binary	semaphore
void	RealTimeEvents(void){
		OS_Signal(&TakeSoundData);
		OS_Suspend();
}
void	Task0(void){
		while(1){
				OS_Wait(&TakeSoundData);	//	signaled	every	1ms
				TExaS_Task0();					//	toggle	virtual	logic	analyzer
				Profile_Toggle0();	//	viewed	by	logic	analyzer	to	know	Task0	started
//	time-critical	software
		}
}
int	main(void){
		OS_Init();
//	other	initialization
		OS_InitSemaphore(&TakeSoundData,0);
		OS_AddThreads(&Task0,0,&Task1,1,&Task2,2,	&Task3,3,
																&Task4,3,	&Task5,3,	&Task6,3,	&Task7,4);
		BSP_PeriodicTask_InitC(&RealTimeEvents,1000,0);
		TExaS_Init(LOGICANALYZER,	1000);	//	initialize	the	logic	analyzer

		OS_Launch(BSP_Clock_GetFreq()/THREADFREQ);	//	doesn't	return
		return	0;													//	this	never	executes
}
Program	5.7.	Running	time-critical	tasks	as	high	priority	event	threads.

5.5.	Available	RTOS

5.5.1.	Micrium	uC/OS-II
We	introduced	several	concepts	that	common	in	real-time	operating	systems	but	ones
we	don’t	implement	in	our	simple	RTOS.		To	complete	this	discussion,	we	explore
some	of	 the	 popular	RTOSs	 (for	 the	ARM	Cortex-M)	 in	 commercial	 use	 and	 how
they	implement	some	of	the	features	we	covered.

Micrium	 μC/OS-II	 is	 a	 portable,	 ROMable,	 scalable,	 preemptive,	 real-time
deterministic	 multitasking	 kernel	 for	 microprocessors,	 microcontrollers	 and	 DSPs
(for	 more	 information,	 see	 http://micrium.com/rtos/ucosii/overview/).	 Portable
means	user	and	OS	code	written	on	one	processor	can	be	easily	 shifted	 to	another
processor.	ROMable	is	a	standard	feature	of	most	compilers	for	embedded	systems,
meaning	 object	 code	 is	 programmed	 into	 ROM,	 and	 variables	 are	 positioned	 in
RAM.	Scalable	means	applications	can	be	developed	on	this	OS	for	10	threads,	but
the	OS	allows	expansion	to	255	threads.	Like	most	real-time	operating	systems,	high
priority	 tasks	 can	 preempt	 lower	 priority	 tasks.	 Because	 each	 thread	 in	 Micrium
μC/OS-II	has	a	unique	priority	(no	two	threads	have	equal	priority),	the	threads	will
run	 in	 a	 deterministic	 pattern,	 making	 it	 easy	 to	 certify	 performance.	 In	 fact,	 the
following	lists	the	certifications	available	for	Micrium	μC/OS-II

MISRA-C:1998
DO178B	Level	A	and	EUROCAE	ED-12B
Medical	FDA	pre-market	notification	(510(k))	and	pre-market
approval	(PMA)														
SIL3/SIL4	IEC	for	transportation	and	nuclear	systems
IEC-61508

As	 of	 December	 2016,	 Micrium	 μC/OS-II	 is	 available	 for	 over	 50	 processor
architectures,	 including	 the	 Cortex	 M3	 and	 Cortex	 M4F.	 Ports	 are	 available	 for
download	on	http://micrium.com.	Micrium	μC/OS-II	manages	up	to	255	application
tasks.	μC/OS-II	includes:	semaphores;	event	flags;	mutual-exclusion	semaphores	that
eliminate	unbounded	priority	 inversions;	message	mailboxes	and	queues;	 task,	 time
and	timer	management;	and	fixed	sized	memory	block	management.

Micrium	μC/OS-II’s	footprint	can	be	scaled	(between	5	kibibytes	to	24	kibibytes)	to
only	contain	the	features	required	for	a	specific	application.	The	execution	time	for
most	 services	 provided	 by	 μC/OS-II	 is	 both	 constant	 and	 deterministic;	 execution
times	do	not	depend	on	the	number	of	tasks	running	in	the	application.

To	provide	for	stability	and	protection,	this	OS	runs	user	code	with	the	PSP	and	OS

code	with	the	MSP.	The	way	in	which	the	Micrium	μC/OS	supports	many	processor
architectures	 is	 to	 be	 layered.	 Only	 a	 small	 piece	 of	 the	 OS	 code	 is	 processor
specific.	It	also	provides	a	Board	Support	Package	(BSP)	so	the	user	code	can	also
be	layered,	see	Figure	5.16.	

Figure	5.16.	Block	diagram	of	the	Micrium	uC/OSII.

To	 illustrate	 the	 operation	 of	 Micrium	 μC/OS-II,	 Program	 5.8	 shows	 the	 thread-
switch	 code.	 PendSV	 is	 an	 effective	method	 for	 performing	 context	 switches	with
Cortex-M	 because	 the	 Cortex-M	 saves	 R0-R3,R12,LR,PC,PSW	 on	 any	 exception,
and	 restores	 the	 same	 on	 return	 from	 exception.	 	 So	 only	 saving	 of	 R4-R11	 is
required	 and	 fixing	 up	 the	 stack	 pointers.	 	 Using	 the	 PendSV	 exception	 this	 way
means	 that	 context	 saving	 and	 restoring	 is	 identical	 whether	 it	 is	 initiated	 from	 a
thread	or	occurs	due	 to	an	 interrupt	or	exception.	On	entry	 into	PendSV	handler	1)
xPSR,	PC,	LR,	R12,	R0-R3	have	been	saved	on	the	process	stack	(by	the	processor);
2)	Processor	mode	is	switched	to	Handler	mode	(from	Thread	mode);	3)	The	stack	is
now	 the	 Main	 stack	 (switched	 from	 Process	 stack);	 3) OSTCBCur points	 to
the OS_TCB of	 the	 task	 to	 suspend;	 and	 4) OSTCBHighRdy 	 	 points	 to
the OS_TCB 	of	the	task	to	resume.	There	nine	steps	for	switching	a	thread:

1.					Get	the	process	SP,	if	0	then	go	to	step	4.	the	saving	part	(first	switch);
2.					Save	remaining	regs	R4-R11	on	process	stack;
3.					Save	the	process	SP	in	its	TCB, OSTCBCur->OSTCBStkPtr	=	SP;
4.					Call OSTaskSwHook();
5.					Get	current	high	priority, OSPrioCur	=	OSPrioHighRdy;

6.					Get	current	ready	thread	TCB, OSTCBCur	=	OSTCBHighRdy;
7.	 	 	 	 	 Get	 new	 process	 SP	 from	 TCB,	 SP	 = OSTCBHighRdy-
>OSTCBStkPtr;
8.					Restore	R4-R11	from	new	process	stack;
9.					Perform	exception	return	which	will	restore	remaining	context.

	
OS_CPU_PendSVHandler
				CPSID			I															;	Prevent	interruption	during	context	switch
				MRS					R0,	PSP									;	PSP	is	process	stack	pointer
				CBZ					R0,	OS_CPU_PendSVHandler_nosave					;	Skip	first	time
				SUBS				R0,	R0,	#0x20		;	Save	remaining	regs	R4-11	on	process	stack
				STM					R0,	{R4-R11}
				LDR				R1,	=OSTCBCur			;	OSTCBCur->OSTCBStkPtr	=	SP;
				LDR					R1,	[R1]
				STR					R0,	[R1]								;	R0	is	SP	of	process	being	switched	out
	
;	At	this	point,	entire	context	of	process	has	been	saved
OS_CPU_PendSVHandler_nosave
				PUSH				{R14}													;	Save	LR	exc_return	value
				LDR					R0,	=OSTaskSwHook	;	OSTaskSwHook();
				BLX					R0
				POP					{R14}
				LDR					R0,	=OSPrioCur		;	OSPrioCur	=	OSPrioHighRdy;
				LDR					R1,	=OSPrioHighRdy
				LDRB				R2,	[R1]
				STRB				R2,	[R0]
				LDR					R0,	=OSTCBCur			;	OSTCBCur		=	OSTCBHighRdy;
				LDR					R1,	=OSTCBHighRdy
				LDR					R2,	[R1]
				STR					R2,	[R0]
				LDR					R0,	[R2]		;	R0	is	new	PSP;	SP	=	OSTCBHighRdy->OSTCBStkPtr;
				LDM					R0,	{R4-R11}				;	Restore	R4-11	from	new	process	stack
				ADDS				R0,	R0,	#0x20
				MSR					PSP,	R0									;	Load	PSP	with	new	process	SP
				ORR					LR,	LR,	#0x04		;	Ensure	exception	return	uses	process	stack
				CPSIE			I
				BX						LR										;	Exception	return	will	restore	remaining	context
Program	5.8.	Thread	switch	code	on	the	Micrium	uC/OSII.

Since	PendSV	is	set	to	lowest	priority	in	the	system,	we	know	that	it	will	only	be	run
when	 no	 other	 exception	 or	 interrupt	 is	 active,	 and	 therefore	 safe	 to	 assume	 that
context	 being	 switched	 out	was	 using	 the	 process	 stack	 (PSP).	Micrium	 μC/OS-II
provides	numerous	hooks	within	the	OS	to	support	debugging,	profiling,	and	feature
expansion.	 An	 example	 of	 a	 hook	 is	 the	 call	 to OSTaskSwHook() .	 The	 user	 can

specify	the	action	invoked	by	this	call.

Micrium	µC/OS-III	extends	this	OS	with	many	features	as	more	threads,	round-robin
scheduling,	 enhanced	 messaging,	 extensive	 performance	 measurements,	 and	 time
stamps.

5.5.2.	Texas	Instruments	RTOS
TI-RTOS	scales	 from	a	 real-time	multitasking	kernel	 to	 a	 complete	RTOS	solution
including	 additional	 middleware	 components	 and	 device	 drivers.	 TI-RTOS	 is
provided	with	full	source	code	and	requires	no	up-front	or	runtime	license	fees.	TI-
RTOS	Kernel	is	available	on	most	TI	microprocessors,	microcontrollers	and	DSPs.
TI-RTOS	middleware,	drivers	and	board	initialization	components	are	available	on
select	ARM®	Cortex™-M4	Tiva-C,	C2000™	dual	core	C28x	+	ARM	Cortex-M3,
MSP430	 microcontrollers,	 and	 the	 SimpleLink™	 WiFi®	 CC3200.	 	 For	 more
information,	see	http://www.ti.com/tool/ti-rtos	or	search	RTOS	on	www.ti.com.	TI-
RTOS	 combines	 a	 real-time	 multitasking	 kernel	 with	 additional	 middleware
components	including	TCP/IP	and	USB	stacks,	a	FAT	file	system,	and	device	drivers,
see	Figure	5.17	and	Table	5.2.	TI-RTOS	provides	a	consistent	embedded	software
platform	 across	 TI’s	 microcontroller	 devices,	 making	 it	 easy	 to	 port	 legacy
applications	to	the	latest	devices.

Figure	5.17.	Block	diagram	of	the	Texas	Instruments	RTOS.

TI-RTOS	Module Description
TI-RTOS	Kernel TI-RTOS	Kernel	provides	deterministic

preemptive	multithreading	and
synchronization	services,	memory
management,	and	interrupt	handling.	TI-
RTOS	Kernel	is	highly	scalable	down	to	a
few	KBs	of	memory.

TI-RTOS
Networking

TI-RTOS	Networking	provides	an	IPv4	and
IPv6-compliant	TCP/IP	stack	along	with

http://www.ti.com

associated	network	applications	such	as
DNS,	HTTP,	and	DHCP.

TI-RTOS	File
System

TI-RTOS	File	System	is	a	FAT-compatible
file	system	based	on	the	open	source	Fatfs
product.

TI-RTOS	USB TI-RTOS	USB	provides	both	USB	Host	and
Device	stacks,	as	well	as	MSC,	CDC,	and
HID	class	drivers.	TI-RTOS	USB	uses	the
proven	TivaWare	USB	stack.

TI-RTOS	IPC The	TI-RTOS	IPC	provides	efficient
interprocessor	communication	in	multicore
devices.

TI-RTOS
Instrumentation

TI-RTOS	Instrumentation		allows	developers
to	include	debug	instrumentation	in	their
application	that	enables	run-time	behavior,
including	context-switching,	to	be	displayed
by	system-level		analysis	tools.

TI-RTOS	Drivers
and	Board
Initialization	

TI-RTOS	Drivers	and	Board	Initialization
provides	a	set	of	device	driver	APIs,	such	as
Ethernet,	UART	and	IIC,	that	are	standard
across	all	devices,	as	well	as	initialization
code	for	all	supported	boards.	All	driver	and
board	initialization	APIs	are	built	on	the
TivaWare,	MWare,	or	MSP430Ware
libraries.

Table	5.2.	Components	of	the	TI	RTOS.

5.5.3.	ARM	RTX	Real-Time	Operating	System
The	Keil	RTX	is	a	royalty-free,	deterministic	Real-Time	Operating	System	designed
for	 ARM	 and	 Cortex-M	 devices.	 For	 more	 information,	 search	 RTX	 RTOS	 on
www.arm.com.	 It	 allows	 you	 to	 create	 programs	 that	 simultaneously	 perform
multiple	 functions	 and	 helps	 to	 create	 applications	which	 are	 better	 structured	 and
more	 easily	 maintained.	 RTX	 is	 available	 royalty-free	 and	 includes	 source	 code.
RTX	is	deterministic.	It	has	flexible	scheduling	including	round-robin,	pre-emptive,
and	collaborative.	It	operates	at	high	speed	with	low	interrupt	latency.	It	has	a	small
footprint.	 It	 supports	 unlimited	 number	 of	 tasks	 each	 with	 254	 priority	 levels.	 It
provides	 an	 unlimited	 number	 of	 mailboxes,	 semaphores,	 mutex,	 and	 timers.	 It
includes	 support	 for	 multithreading	 and	 thread-safe	 operation.	 There	 is	 debugging
support	 in	 MDK-ARM.	 It	 has	 a	 dialog-based	 setup	 using	 µVision	 Configuration
Wizard.

RTX	 allows	 up	 to	 250	 active	 tasks.	 The	 priority	 scheduler	 supports	 up	 to	 254
priority	levels.	The	OS	will	dynamically	check	for	valid	stacks	for	running	tasks.	It
implements	timeouts,	interval	timing,	and	user	timers.	Synchronization	and	inter-task
communication	are	handled	by		signals/events,	semaphores,	mutexes,	and	mailboxes.
A	 task	 switch,	 the	 Cortex	 M3	 version	 shown	 as	 Program	 5.9,	 requires	 192	 bus
cycles.	The STMDB instruction	saves	the	current	thread	and	the LDMIA 	instruction
restores	the	context	for	the	next	thread.

__asm	void	PendSV_Handler	(void)	{
								BL						__cpp(rt_pop_req)			;	choose	next	thread	to	run
								LDR					R3,=__cpp(&os_tsk)
								LDM					R3,{R1,R2}														;	os_tsk.run,	os_tsk.new
								CMP					R1,R2
								BEQ					Sys_Exit
								PUSH				{R2,R3}
								MOV					R3,#0
								STRB				R3,[R1,#TCB_RETUPD]					;	os_tsk.run->ret_upd	=	0
								MRS					R12,PSP																	;	Read	PSP
								STMDB			R12!,{R4-R11}											;	Save	Old	context
								STR					R12,[R1,#TCB_TSTACK]				;	Update	os_tsk.run->tsk_stack
								BL						rt_stk_check												;	Check	for	Stack	overflow
								POP					{R2,R3}
								STR					R2,[R3]																	;	os_tsk.run	=	os_tsk.new
								LDR					R12,[R2,#TCB_TSTACK]				;	os_tsk.new->tsk_stack
								LDMIA			R12!,{R4-R11}											;	Restore	New	Context
								MSR					PSP,R12																	;	Write	PSP
								LDRB				R3,[R2,#TCB_RETUPD]					;	Update	ret_val?
								CBZ					R3,Sys_Exit
								LDRB				R3,[R2,#TCB_RETVAL]					;	Write	os_tsk.new->ret_val
								STR					R3,[R12]
Sys_Exit	MVN				LR,#:NOT:0xFFFFFFFD					;	set	EXC_RETURN	value
								BX						LR																						;	Return	to	Thread	Mode
}
Program	5.9.	Thread	switch	code	on	the	ARM	RTX	RTOS	(see	file
HAL_CM3.c).

ARM’s	 Cortex	 Microcontroller	 Software	 Interface	 Standard	 (CMSIS)	 is	 a
standardized	 hardware	 abstraction	 layer	 for	 the	 Cortex-M	 processor	 series.	 The
CMSIS-RTOS	 API	 is	 a	 generic	 RTOS	 interface	 for	 Cortex-M	 processor-based
devices.	 You	 will	 find	 details	 of	 this	 standard	 as	 part	 of	 the	 Keil	 installation	 at
Keil\ARM\CMSIS\Documentation\RTOS\html.	 CMSIS-RTOS	 provides	 a
standardized	API	for	software	components	that	require	RTOS	functionality	and	gives
therefore	serious	benefits	to	the	users	and	the	software	industry.

CMSIS-RTOS	provides	basic	features	that	are	required	in	many	applications

or	technologies	such	as	UML	or	Java	(JVM).

The	 unified	 feature	 set	 of	 the	 CMSIS-RTOS	 API	 simplifies	 sharing	 of
software	components	and	reduces	learning	efforts.

Middleware	components	that	use	the	CMSIS-RTOS	API	are	RTOS	agnostic.
CMSIS-RTOS	compliant	middleware	is	easier	to	adapt.

Standard	project	templates	(such	as	motor	control)	of	the	CMSIS-RTOS	API
may	be	shipped	with	freely	available	CMSIS-RTOS	implementations.

5.5.4.	FreeRTOS
FreeRTOS	 is	 a	 class	 of	 RTOS	 that	 is	 designed	 to	 be	 small	 enough	 to	 run	 on	 a
microcontroller.	FreeRTOS	only	provides	the	core	real-time	scheduling	functionality,
inter-task	 communication,	 timing	 and	 synchronization	 primitives.	 This	 means	 it	 is
more	accurately	described	as	a	real-time	kernel,	or	real-time	executive.	FreeRTOS	is
available	for	35	processor	architectures,	with	millions	of	product	deployments.	For
more	 information	 on	 FreeRTOS,	 see	 their	 web	 site	 at
http://www.freertos.org/RTOS-Cortex-M3-M4.html.	 The	 starter	 project	 for	 the
LM3S811	can	be	easily	recompiled	to	run	an	any	of	the	Texas	Instruments	Cortex	M
microcontrollers.

FreeRTOS	 is	 licensed	 under	 a	 modified	 GPL	 and	 can	 be	 used	 in	 commercial
applications	under	 this	 license	without	 any	 requirement	 to	 expose	your	 proprietary
source	code.	An	alternative	commercial	license	option	is	also	available	in	cases	that:
You	wish	to	receive	direct	technical	support.	You	wish	to	have	assistance	with	your
development.	You	require	 legal	protection	or	other	assurances.	Program	5.10shows
the	PendSV	handler	that	implements	the	context	switch.	Notice	that	this	thread	switch
does	 not	 disable	 interrupts.	 Rather,	 the ISB instruction	 acts	 as	 an	 instruction
synchronization	 barrier.	 It	 flushes	 the	 pipeline	 of	 the	 processor,	 so	 that	 all
instructions	following	the ISB are	fetched	from	cache	or	memory	again,	after	the ISB
instruction	 has	 been	 completed.	 Similar	 to	Micrium	 μC/OS-II	 and	ARM	RTX,	 the
FreeRTOS	does	run	user	threads	with	the	process	stack	pointer	(PSP).

__asm	void	xPortPendSVHandler(void){
extern	uxCriticalNesting;
extern	pxCurrentTCB;
extern	vTaskSwitchContext;
PRESERVE8
mrs	r0,	psp
isb
ldr r3,	=pxCurrentTCB /*	Get	the	location	of	current	TCB.	*/
ldr r2,	[r3]
stmdb	r0!,	{r4-r11} /*	Save	the	remaining	registers.	*/
str	r0,	[r2] /*	Save	the	new	top	of	stack	into	the	TCB.	*/

stmdb	sp!,	{r3,	r14}
mov	r0,	#configMAX_SYSCALL_INTERRUPT_PRIORITY
msr	basepri,	r0
bl	vTaskSwitchContext
mov	r0,	#0
msr	basepri,	r0
ldmia	sp!,	{r3,	r14}
ldr	r1,	[r3]
ldr	r0,	[r1]	/*	first	item	in	pxCurrentTCB	is	task	top	of	stack.	*/
ldmia	r0!,	{r4-r11}	/*	Pop	registers	and	critical	nesting	count.	*/
msr	psp,	r0
isb
bx	r14
nop

}
Program	5.10.	Thread	switch	code	on	FreeRTOS	also	uses	PendSV	for	the
Cortex	M3.

5.5.5.	Other	Real	Time	Operating	Systems
Other	real	time	operating	systems	available	for	the	Cortex	M	are	listed	in	Table	5.3

Provider Product
CMX	Systems CMX-RTX,CMX-Tiny
Expresslogic ThreadX

Green	Hills Integrity®,	µVelOSity
Mentor	Graphics Nucleus+®
Micro	Digital SMX®
RoweBots Unison
SEGGER embOS

Table	5.3	Other	RTOS	for	the	Cortex	M	(http://www.ti.com/lsds/ti/tools-
software/rtos.page#arm)

Deployed	 in	 over	 1.5	 billion	 devices,	VxWorks®	 by	Wind	River®	 is	 the	world’s
leading	 real-time	 operating	 system	 (RTOS).	 It	 is	 listed	 here	 in	 the	 other	 category
because	it	is	deployed	on	such	architectures	as	the	X86,	ARM	Cortex-A	series,	and
Freescale	 QorIQ,	 but	 not	 on	 the	 Cortex	 M	 microcontrollers	 like	 the	 TM4C123.
VxWorks	delivers	hard	 real-time	performance,	determinism,	 and	 low	 latency	along
with	 the	 scalability,	 security,	 and	 safety	 required	 for	 aerospace	 and	 defense,
industrial,	 medical,	 automotive,	 consumer	 electronics,	 networking,	 and	 other
industries.	VxWorks	has	become	the	RTOS	of	choice	when	certification	is	required.
VxWorks	supports	the	space,	time,	and	resource	partitioning	required	for	IEC	62304,
IEC	 61508,	 IEC	 50128,	 DO-178C,	 and	 ARINC	 653	 certification.	 VxWorks

http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=91
http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=100
http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=164
http://www.ti.com/devnet/docs/catalog/companyfolder.tsp?actionPerformed=companyFolder&companyId=9098

customers	can	design	their	systems	to	the	required	level	of	security	by	picking	from	a
comprehensive	 set	 of	VxWorks	 security	 features.	VxWorks	 is	 an	 important	 play	 in
providing	solutions	for	 the	Internet	of	Things	(IoT),	where	connectivity,	scalability,
and	 security	 are	 required.	 For	 more	 information,	 see
http://www.windriver.com/products/vxworks/

5.6.	Exercises
5.1	For	each	of	the	following	terms	give	a	definition	in	16	words	or	less

a)	aging
b)	certification
c)	starvation

d)	least	slack	time	first
e)	exponential	queue
f)	maximum	latency

g)	rate	monotonic
h)	Kahn	Process
Network
i)	monitor

	
5.2	Select	the	best	term	from	the	book	that	describes	each	definition.

a)	A	technique	to	periodically	increase	the	priority	of	low-priority	threads	so	that
low	priority	threads	occasionally	get	run.	The	increase	is	temporary.
b)	A	situation	that	can	occur	in	a	priority	thread	scheduler	where	a	low-priority
thread	never	runs.
c)	The	condition	where	thread	1	is	waiting	for	a	unique	resource	held	by	thread	2,
and	thread	2	is	waiting	for	a	unique	resource	held	by	thread	1.
d)	The	condition	where	a	thread	is	not	allowed	to	run	because	it	needs	something
that	is	unavailable.
e)	The	condition	where	once	a	thread	blocks,	there	are	a	finite	number	of	threads
that	will	be	allowed	to	proceed	before	this	thread	is	allowed	to	proceed.
f)	An	operation	that	once	started	will	run	to	completion	without	interruption
g)	An	implementation	using	a	FIFO	or	mailbox	that	separates	data	input	from	data
processing.
h)	A	 technique	 that	 could	 be	 used	 to	 prevent	 the	 user	 from	 executing	 I/O	 on	 a
driver	until	after	the	user	calls	the	appropriate	initialization.
i)	A	 scheduling	 algorithm	 that	 assigns	 priority	 linearly	 related	 to	 how	 often	 a
thread	needs	to	run.	Threads	needing	to	run	more	often	have	a	higher	priority.
j)	An	OS	 feature	 that	 allows	 the	 user	 to	 run	 user-defined	 software	 at	 specific
places	within	the	OS.	These	programs	are	extra	for	the	user’s	convenience	and	not
required	by	the	OS	itself.
k)	An	OS	feature	that	allows	you	to	use	the	OS	in	safety-critical	applications.
l)	A	 scheduling	 algorithm	 with	 round	 robin	 order	 but	 varying	 time	 slice.	 If	 a
thread	blocks	on	I/O,	its	time	slice	is	reduced.	If	it	runs	to	completion	of	a	time
slice,	its	time	slice	is	increased.
m)	The	condition	where	at	most	one	thread	is	allowed	access	to	a	resource	that
cannot	be	shared.	If	a	second	thread	wishes	access	to	the	resource	while	the	first
thread	 is	 using	 it,	 the	 second	 thread	 is	 made	 to	 wait	 until	 the	 first	 thread	 is
finished.
n)	The	 condition	 a	 function	has	 that	 allows	 it	 to	 be	 simultaneously	 executed	by
multiple	threads.
o)	A	thread	scheduling	algorithm	that	has	the	threads	themselves	decide	when	the
thread	switches	should	occur.
p)	A	situation	that	can	occur	in	a	priority	thread	scheduler	where	a	high-priority

thread	is	waiting	on	a	resource	owned	by	a	low-priority	thread.
q)	A	type	of	semaphore	implemented	with	a	busy-wait	loop.
r)	A	type	of	thread	scheduler	where	each	thread	has	equal	priority	and	all	threads
are	executed	in	a	circular	sequence.

	
5.3	In	this	problem	you	will	extend	the	preemptive	scheduler	to	support	priority.	This
system	should	support	three	levels	of	priority	"1"	will	be	the	highest.	You	can	solve
this	problem	using	either	assembly	or	C.
a)	Redesign	the	TCB	to	include	a	32-bit	integer	for	the	priority	(although	the	values
will	be	restricted	to	1,2,3).		Show	the	static	allocation	for	the	three	threads	from	the
example	in	this	chapter	assuming	the	first	two	are	priority	2	and	the	last	is	priority	3.
There	are	no	priority	1	threads	in	this	example,	but	there	might	be	in	the	future.
b)	Redesign	the	scheduler	to	support	this	priority	scheme.
c)	 In	 the	 book	 it	 said	 "Normally,	 we	 add	 priority	 to	 a	 system	 that	 implements
blocking	 semaphores	 and	 not	 to	 one	 that	 uses	 spinlock	 semaphores."	 What
specifically	will	happen	here	if	the	system	is	run	with	spinlock	semaphores?
d)	Even	when	the	system	supports	blocking	semaphores,	starvation	might	happen	to
the	low	priority	threads.	Describe	the	sequence	of	events	that	cause	starvation.
e)	Suggest	a	solution	to	the	starvation	problem.
	
5.4	 This	 problem	 investigates	 the	 design	 of	 an	 adaptive	 priority	 scheduler	 with
exponential	 time	 slices.	 This	 is	 also	 called	 an	 exponential	 Queue	 or	multi-level
feedback	 queue.	 The	 CTSS	 system	 (MIT,	 early	 1960's)	 was	 the	 first	 to	 use
exponential	queues.	One	of	the	difficulties	in	a	priority	scheduler	is	the	assignment	of
priority.	Typically,	one	wishes	to	assign	a	high	priority	to	threads	doing	I/O	(which
block	a	lot)	so	that	the	response	to	I/O	is	short,	and	assign	a	low	priority	to	threads
not	doing	I/O	(which	do	not	block	a	lot).	However,	in	a	complex	system	a	particular
thread	 may	 sometimes	 exhibit	 I/O	 bound	 behavior,	 but	 later	 exhibit	 CPU	 bound
behavior.	 An	 adaptive	 scheduler	 will	 adjust	 the	 priority	 according	 to	 the	 current
activity	of	 the	 thread.	 	Priority	1	 threads	will	 run	with	a	 time	slice	of	4000	(1ms),
priority	2	 threads	will	 run	with	 a	 time	 slice	of	8000	 (2ms),	 and	priority	3	 threads
will	 run	 with	 a	 time	 slice	 of	 16000	 (4ms).	 Consider	 this	 blocking	 round-robin
scheduler,	with	two	new	entries,	shown	in	bold,	added	to	the	TCB.
struct	TCB{
		struct	TCB	*Next;				//	Link	to	Next	TCB
		int32_t	*StackPt;				//	Stack	Pointer
		Sema4Type	*BlockPt;		//	0	if	not	blocked,	pointer	if	blocked
		int16_t	Priority;				//	1	(highest),	2,	or	3	(lowest)
		uint16_t	TimeSlice;	//	4000,8000,	or	16000
		int32_t	Stack[100];	//	stack,	size	determined	at	runtime
};
typedef	struct	TCB	TCBType;
typedef	TCBType	*	TCBPtr;
a)	Rewrite	the	OS_Wait	function	so	that	if	a	priority	2	or	3	thread	blocks,	its	priority

will	 be	 raised	 (decrement	 by	 1)	 and	 its	 time	 slice	will	 be	 halved.	No	 changes	 to
OS_Signal	will	be	needed.
	
b)	Rewrite	the threadSwitch 	ISR	so	that	if	a	priority	1	or	2	thread	runs	to	the	end	of
its	time	slice	without	blocking,	its	priority	will	be	lowered	(increment	by	1)	and	its
time	slice	will	be	doubled.	In	addition,	implement	priority	scheduling	with	variable
time	slices.
	
5.5Consider	 the	 implementation	 ofOS_AddThreads ,	 shown	 in	 Program	 3.4.
Redesign	 the	 system	 so	 that	 if	 the	 user	 program	 finishes,	 the	OS	will	 run	 the	 user
program	 again.	 For	 example,	 this	 user	 function	 executes stuff1 , stuff2 and stuff3
once	and	quits.
void	user(void){	stuff1();	stuff2();	stuff3();}
If	the	user	calls	this	system	function	to	activate user ,
				OS_AddThreads(&user);
then	with	 your	 updated	 system stuff1 , stuff2 and stuff3 will	 be	 repeated	 over	 and
over	again.	You	are	allowed	to	make	changes	to	the struct 	and	to	OS_AddThreads ,
but	not	to user or	other	OS	functions.	You	can	however	add	additional	OS	functions.
In	 particular,	 show	 changes	 to	 the struct and	 rewrite	 OS_AddThreads 	 in	 its
entirety.

	
	

6.	Digital	Signal	Processing
Chapter	6	objectives	are	to:
• Introduce	basic	principles	involved	in	digital	filtering

• Define	the	Z	Transform	and	use	it	to	design	and	analyze	digital	filters

•	 Present	 the	 discrete	 Fourier	 Transform	 and	 use	 it	 to	 design	 digital
filters

• Develop	digital	filter	implementations

•	Present	an	audio	input/output	example
	 The	 goal	 of	 this	 chapter	 is	 to	 provide	 a	 brief	 introduction	 to	 digital	 signal
processing	 (DSP).	 DSP	 includes	 a	 wide	 range	 of	 operations	 such	 as	 digital
filtering,	 event	 detection,	 frequency	 spectrum	 analysis	 and	 signal
compression/decompression.	 Similar	 to	 the	 goal	 of	 analog	 filtering,	 a	 digital
filter	 will	 be	 used	 to	 improve	 the	 signal	 to	 noise	 ratio	 in	 our	 data.	 The
difference	 is	 that	 a	 digital	 filter	 is	 performed	 in	 software	 on	 the	 digital	 data
sampled	by	the	ADC	converter.	The	particular	problem	addressed	in	a	couple
of	 ways	 in	 this	 chapter	 is	 removing	 60	 Hz	 noise	 from	 the	 signal.	 	 Like	 the
control	 systems	 and	 communication	 systems	 discussed	 elsewhere	 in	 these
volumes,	 we	 will	 provide	 just	 a	 brief	 discussion	 to	 the	 richly	 developed
discipline	of	DSP.	Again,	this	chapter	focuses	mostly	on	the	implementation	on
the	embedded	microcomputer.	Event	detection	is	the	process	of	identifying	the
presence	or	absence	of	particular	patterns	in	our	data.	Examples	of	this	type	of
processing	 include	 optical	 character	 readers,	 waveform	 classification,	 sonar
echo	detection,	 infant	 apnea	monitors,	 heart	 arrhythmia	 detectors	 and	burglar
alarms.	 Frequency	 spectrum	 analysis	 requires	 the	 calculation	 of	 the	Discrete
Fourier	Transform	(DFT).	A	fast	algorithm	to	calculate	 the	DFT	is	called	the
Fast	 Fourier	 Transform,	 FFT.	 Like	 the	 regular	 Fourier	 Transform,	 the	 DFT
converts	a	 time-dependent	signal	 into	 the	frequency	domain.	The	difference	a
regular	 Fourier	 Transform	 and	 the	 DFT	 is	 that	 the	 DFT	 performs	 the
conversion	on	a	finite	number	of	discrete	time	digital	samples	to	give	a	finite
number	of	points	at	discrete	frequencies.	We	will	use	the	DFT	in	this	chapter
as	 a	 flexible	 way	 to	 design	 digital	 filters.	 Data	 compression	 and
decompression	 are	 important	 aspects	 in	 high-speed	 communication	 systems.
Although	 we	 will	 not	 specifically	 address	 the	 problems	 of	 event	 detection,
DFT	and	compression/decompression	 in	 this	book,	 these	DSP	operations	 are
implemented	using	similar	techniques	as	the	digital	filters	that	are	presented	in
this	 chapter.	 The	 goal	 of	 this	 chapter	 is	 to	 demonstrate	 that	 fairly	 powerful
digital	 signal	 processing	 techniques	 can	 be	 implemented	 on	 most
microcontrollers.

6.1.	Basic	Principles
	

The	 objective	 of	 this	 section	 is	 to	 introduce	 simple	 digital	 filters.	 Let	 xc(t)	 be	 the
continuous	 analog	 signal	 to	 be	 digitized.	 xc(t)	 is	 the	 analog	 input	 to	 the	 ADC
converter.	 If	 fs	 is	 the	 sample	 rate,	 then	 the	 computer	 samples	 the	 ADC	 every	 T
seconds.	(T	=	1/fs).	Let	...,x(n),...	be	the	ADC	output	sequence,	where

x(n)	=	xc(nT) with -∞	< n 	<	+∞.
	

There	 are	 two	 types	 of	 approximations	 associated	 with	 the	 sampling	 process.
Because	 of	 the	 finite	 precision	 of	 the	 ADC,	 amplitude	 errors	 occur	 when	 the
continuous	signal,	xc(t),	 is	sampled	to	obtain	the	digital	sequence,	x(n).	The	second
type	of	error	occurs	because	of	the	finite	sampling	frequency.	The	Nyquist	Theorem
states	 that	 the	 digital	 sequence,	 x(n),	 properly	 represents	 the	DC	 to	½fs	 frequency
components	of	the	original	signal,	xc(t).	There	are	two	important	assumptions	that	are
necessary	to	make	when	using	digital	signal	processing:

1.	We	assume	the	signal	has	been	sampled	at	a	fixed	and	known	rate,
fs

2.	We	assume	aliasing	has	not	occurred.
	

We	can	guarantee	the	first	assumption	by	using	a	hardware	clock	to	start	the	ADC	at	a
fixed	and	known	rate.	A	less	expensive	but	not	as	reliable	method	is	to	implement	the
sampling	routine	as	a	high	priority	periodic	interrupt	process.	If	the	time	jitter	is	δt
then	we	can	estimate	the	voltage	error	by	multiplying	the	time	jitter	by	the	slew	rate
of	the	input,	∂V∂t*δt.	By	establishing	a	high	priority	of	the	interrupt	handler,	we	can
place	 an	 upper	 bound	 on	 the	 interrupt	 latency,	 guaranteeing	 that	 ADC	 sampling	 is
occurring	at	an	almost	fixed	and	known	rate.	We	can	observe	the	ADC	input	with	a
spectrum	 analyzer	 to	 prove	 there	 are	 no	 significant	 signal	 components	 above	 ½fs.
“No	 significant	 signal	 components”	 is	 defined	 as	 having	 an	ADC	 input	 voltage	 |Z|
less	than	the	ADC	resolution,	∆z,

|Z|	≤	∆z					for	all	f	≥	½fs
	

A	causal	digital	filter	calculates	y(n)	from	y(n-1),	y(n-2),...	and	x(n),	x(n-1),	x(n‑2),...
Simply	put,	 a	 causal	 filter	 cannot	have	a	nonzero	output	until	 it	 is	given	a	nonzero
input.		The	output	of	a	causal	filter,	y(n),	cannot	depend	on	future	data	(e.g.,	y(n+1),
x(n+1)	etc.)

A	linear	filter	is	constructed	from	a	linear	equation.	A	nonlinear	filter	is	constructed
from	 a	 nonlinear	 equation.	 An	 example	 of	 a	 nonlinear	 filter	 is	 the	 median.	 To

calculate	 the	 median	 of	 three	 numbers,	 one	 first	 sorts	 the	 numbers	 according	 to
magnitude,	 then	 chooses	 the	 middle	 value.	 Other	 simple	 nonlinear	 filters	 include
maximum,	minimum,	and	square.

A	 finite	 impulse	 response	 filter	 (FIR)	 relates	 y(n)	 only	 in	 terms	 of	 x(n),	 x(n-1),
x(n‑2),...	 If	 the	 sampling	 rate	 is	 360	Hz,	 this	 simple	FIR	 filter	will	 remove	60	Hz
noise:

y(n)	=	(x(n)+x(n-3))/2
	

An	infinite	impulse	response	filter	(IIR)	relates	y(n)	in	terms	of	both	x(n),	x(n-1),...,
and	y(n‑1),	y(n-2),...	This	simple	IIR	filter	has	averaging	or	low-pass	behavior:

y(n)	=	(x(n)+y(n-1))/2
One	 way	 to	 analyze	 linear	 filters	 is	 the	 Z-Transform.	 The	 definition	 of	 the	 Z-
Transform	is:

X(z)		=		Z[x(n)]		≡	sum(x(n)*z-n)	for	n=	-∞	to	+∞
		

The	 Z-transform	 is	 similar	 to	 other	 transforms.	 In	 particular,	 consider	 the	 Laplace
Transform,	which	converts	a	continuous	time-domain	signal,	x(t),	 into	the	frequency
domain,	X(s).	In	the	same	manner,	the	Z-Transform	converts	a	discrete	time	sequence,
x(n),	into	the	frequency	domain,	X(z).	See	Figure	6.1.

Figure	6.1.	A	transform	is	used	to	study	a	signal	in	the	frequency	domain.

The	 input	 to	 both	 the	 Laplace	 and	 Z	 Transforms	 are	 infinite	 time	 signals,	 having
values	 at	 times	 from	 -∞	 to	 +	∞.	 The	 frequency	 parameters,	 s	 and	 z,	 are	 complex
numbers,	 having	 real	 and	 imaginary	parts.	 In	both	 cases	we	 apply	 the	 transform	 to
study	linear	systems.	In	particular,	we	can	describe	the	behavior	(gain	and	phase)	of
an	analog	system	using	its	transform,	H(s)	=	Y(s)/X(s).	In	this	same	way	we	will	use
the	H(z)	 transform	of	 a	 digital	 filter	 to	determine	 its	 gain	 and	phase	 response.	See
Figure	6.2.

Figure	6.2.	A	transform	can	also	be	used	to	study	a	system	in	the	frequency
domain.

For	an	analog	system	we	can	calculate	the	gain	by	taking	the	magnitude	of	H(s)	at	s	=
j	2πf,	for	all	frequencies,	f,	from	-∞	to	+∞.	The	phase	will	be	the	angle	of	H(s)	at	s	=
j	2πf.	If	we	were	to	plot	the	H(s)	in	the	s	plane,	the	s	=	j	2πf	curve	is	the	entire	y-axis.
For	a	digital	system	we	will	calculate	the	gain	and	phase	by	taking	the	magnitude	and
angle	of	H(z).	Because	of	the	finite	sampling	interval,	we	will	only	be	able	to	study
frequencies	from	DC	to	½fs	in	our	digital	systems.		If	we	were	to	plot	the	H(z)	in	the
z	plane,	the	z	curve	representing	the	DC	to	½fs	frequencies	will	be	the	unit	circle,	z	≡
ej2πf/fs.

We	will	begin	by	developing	a	simple,	yet	powerful	rule	that	will	allow	us	to	derive
the	H(z)	transforms	of	most	digital	filters.	Let	m	be	an	integer	constant.		We	can	use
the	definition	of	the	Z-Transform	to	prove	that:

Z[x(n-m)]		=	sum(x(n-m)*z-n)				for	n=	-∞	to	+∞
=		sum(x(p)*z-p-m)			 let	p=n-m,	n=p+m

=		z-m	* sum(x(p)*z-p) because	m	is	a	constant
=	z-m	Z[x(n)] by	definition	of	Z-Transform

	
For	example,	if	X(z)	is	the	Z-Transform	of	x(n),	then		z-3•X(z)	 is	 the	Z-Transform	of
x(n-3).	To	find	the	Z–Transform	of	a	digital	filter,	take	the	transform	of	both	sides	of
the	linear	equation	and	solve	for

H(z)	≡	Y(z)	/	X(z)
	

To	find	the	response	of	the	filter,	let	z	be	a	complex	number	on	the	unit	circle

z	=	ej2 π f/fs		= cos(2π f/fs) 	+	j	sin(2π f/fs) 								 for	0	≤	f	<	½fs
	

Let	H(f)	 =	 a	+	 bj,	 where	 a	 and	b	 are	 real	 numbers.	 The	 gain	 of	 the	 filter	 is	 the
complex	magnitude	of	H(z)	as	f	varies	from	0	to	½fs.

Gain	≡	|H(f)|	=	sqrt(a2	+	b2)		

	
The	phase	response	of	the	filter	is	the	angle	of	H(z)	as	f	varies	from	0	to	½fs.

Phase	≡	angle[H(f)]	=		tan-1	(b/a)
	

Another	way	to	analyze	digital	filters	is	to	consider	the	filter	response	to	particular
input	sequences.	Two	typical	sequences	are	the	step	and	the	impulse	(Figure	6.3).

step ...,	0,	0,	0,	1,	1,	1,	1,	...
impulse ...,	0,	0,	0,	1,	0,	0,	0,	...

The	impulse	is	defined	as:

i(n) ≡ 	 1 for	n	=	0
0 for	n	≠	0

	
The	step	is	defined	as:

s(n) ≡ 	 0 for	n	<	0
1 for	n	≥	0

Figure	6.3.	Step	and	impulse	inputs.

The	 step	 signal	 represents	 a	 sharp	 change	 (like	 an	 edge	 in	 a	photograph).	We	will
analyze	 three	 digital	 filters.	 The	 FIR	 is	 y(n)	 =	 (x(n)+x(n-1))/2.	 The	 IIR	 is	 y(n)	 =
(x(n)+y(n-1))/2.	 The	 nonlinear	 filter	 is	 y(n)	 =	 median(x(n),	 x(n-1),	 x(n-2)).	 	 The
median	can	be	performed	on	any	odd	number	of	data	points	by	sorting	the	data	and
selecting	 the	 middle	 value.	 	 The	 median	 filter	 can	 be	 performed	 recursively	 or
nonrecursively.	A	nonrecursive	3-wide	median	filter	is	implemented	in	Program	6.1.

uint8_t	Median(uint8_t	u1,uint8_t	u2,uint8_t	u3){
uint8_t	result;
		if(u1>u2)
				if(u2>u3)					result	=	u2;			//	u1>u2,u2>u3							u1>u2>u3
						else
								if(u1>u3)	result	=	u3;			//	u1>u2,u3>u2,u1>u3	u1>u3>u2
								else						result	=	u1;			//	u1>u2,u3>u2,u3>u1	u3>u1>u2
		else
				if(u3>u2)					result	=	u2;			//	u2>u1,u3>u2							u3>u2>u1
						else
								if(u1>u3)	result	=	u1;			//	u2>u1,u2>u3,u1>u3	u2>u1>u3
								else						result	=	u3;			//	u2>u1,u2>u3,u3>u1	u2>u3>u1
		return(result);
}

Program	6.1:	The	median	filter	is	an	example	of	a	nonlinear	filter.

For	 a	 nonrecursive	 median	 filter,	 the	 original	 data	 points	 are	 not	 modified.	 For
example,	a	5-wide	nonrecursive	median	filter	takes	as	the	filter	output	the	median	of
{x(n),	 x(n-1),	 x(n-2),	 x(n–3),	 x(n-4)}	 	On	 the	other	 hand,	 a	 recursive	median	 filter
replaces	 the	 sample	 point	with	 the	 filter	 output.	 	 For	 example,	 a	 5-wide	 recursive
median	filter	takes	as	the	filter	output	the	median	of	{x(n),	y(n-1),	y(n-2),	y(n-3),	y(n-
4)}	where	y(n-1),	 y(n-2),...	 are	 the	 previous	 filter	 outputs.	A	median	 filter	 can	 be
applied	in	systems	that	have	impulse	or	speckle	noise.	For	example,	the	noise	every
once	in	a	while	causes	one	sample	to	be	very	different	than	the	rest	(like	a	speck	on	a
piece	of	paper)	then	the	median	filter	will	completely	eliminate	the	noise.	Except	for
the	 delay,	 the	median	 filter	 passes	 a	 step	without	 error.	 The	 step	 responses	 of	 the
three	filters	are	(Figure	6.4):

FIR ...,	0,	0,	0,	0.5,	1,	1,	1,	...
IIR ...,	0,	0,	0,	0.5,	0.75,	0.88,	0.94,	0.97,	0.98,	0.99,	...
median ...,	0,	0,	0,	0,	1,	1,	1,	1,	1,	...

Figure	6.4.	Step	response	of	three	simple	digital	filters.

The	 impulse	 represents	 a	 noise	 spike	 (like	 spots	 on	 a	 Xerox	 copy).	 The	 impulse
response	 of	 a	 filter	 is	 defined	 as	 h(n).	 The	 median	 filter	 completely	 removes	 the
impulse.	The	impulse	responses	of	the	three	filters	are	(Figure	6.5):

FIR ...,	0,	0,	0,	0.5,	0.5,	0,	0,	0,	...
IIR ...,	0,	0,	0,	0.5,	0.25,	0.13,	0.06,	0.03,	0.02,	0.01,	...
median ...,	0,	0,	0,	0,	0,	0,	0,	0,	...

Figure	6.5.	Impulse	response	of	three	simple	digital	filters.

Note	 that	 the	 median	 filter	 preserves	 the	 sharp	 edges	 and	 removes	 the	 spike	 or
impulsive	 noise.	 The	median	 filter	 is	nonlinear,	 and	 hence	H(z)	 and	 h(n)	 are	 not

defined	 for	 this	 particular	 class	 of	 filters.	 For	 linear	 filters,	 the	 impulse	 response,
h(n),	 can	 also	 be	 used	 as	 an	 alternative	 to	 the	 transfer	 function	 H(z).	 h(n)	 is
sometimes	called	the	direct	form.	A	causal	filter	has	h(n)	=	0	for	n	less	than	0.	For	a
casual	filter.

						H(z)	=sum(h(n)*z-n)		for	n=0	to	+∞			
For	a	finite	impulse	response	(FIR)	filter,	h(n)	=	0	for	n	≥	N	for	some	finite	N.	Thus,

H(z)	=	sum(h(n)*z-n)		for	n=0	to	N-1		
	

The	output	of	a	filter	can	be	calculated	by	convolving	the	input	sequence,	x(n),	with
h(n).	For	an	infinite	impulse	response	filter:

y(n)	=		sum(h(n)*x(n-k))		for	n=0	to	+∞	
For	a	finite	impulse	response	(FIR)	filter:

y(n)	=		sum(h(n)*x(n-k))		for	n=0	to	N-1			

6.2.	Multiple	Access	Circular	Queue
A	multiple	access	circular	queue	(MACQ)	 is	used	for	data	acquisition	and	control
systems.	A	MACQ	is	a	fixed	length	order	preserving	data	structure,	see	Figure	6.6.
The	 source	 process	 (ADC	 sampling	 software)	 places	 information	 into	 the	MACQ.
Once	 initialized,	 the	MACQ	 is	 always	 full.	The	oldest	 data	 is	 discarded	when	 the
newest	data	is	Put	into	a	MACQ.		The	sink	process	can	read	any	of	the	data	from	the
MACQ.	 The	Read	 function	 is	 non-destructive.	 This	 means	 that	 the	MACQ	 is	 not
changed	by	the	Read	operation.	In	this	MACQ,	the	newest	sample,	x(n),	is	stored	in
element x[0] .	x(n-1),	is	stored	in	element x[1] .

Figure	6.6.	When	data	is	put	into	a	multiple	access	circular	queue,	the
oldest	data	is	lost.

To	Put	data	into	this	MACQ,	four	steps	are	followed,	as	shown	in	Figure	6.6.	First,
the	data	is	shifted	down	(steps	1,	2,	3),	and	then	the	new	data	is	entered	into	the	x[0]
position	(step	4).

The	drawing	in	Figure	6.6	shows	the	position	in	memory	of	x(n),	x(n-1),…	does	not
move	when	one	data	sample	is	added.	Notice	however,	the	data	itself	does	move.	As
time	passes	the	data	gets	older,	the	data	moves	down	in	the	MACQ.

A	simple	application	of	 the	MACQ	is	 the	 real-time	calculation	of	derivative.	Also
assume	 the	 ADC	 sampling	 is	 triggered	 every	 1	 ms.	 x(n)	 will	 refer	 to	 the	 current
sample,	 and	 x(n-1)	 will	 be	 the	 sample	 1	 ms	 ago.	 There	 are	 a	 couple	 of	 ways	 to
implement	a	discrete	time	derivative.	The	simple	approach	is

d(n)	=	(x(n)-x(n-1))/∆t

In	 practice,	 this	 first	 order	 equation	 is	 quite	 susceptible	 to	 noise.	 An	 approach
generating	less	noise	calculates	the	derivative	using	a	higher	order	equation	like

d(n)	=	(x(n)+3x(n-1)-3x(n-2)-x(n-3))/∆t

The	C	implementation	of	this	discrete	derivative	uses	a	MACQ	(Program	6.2).	Since
∆t	is	1	ms,	we	simply	consider	the	derivative	to	have	units	mV/ms	and	not	actually
execute	the	divide	by	∆t	operation.	Signed	arithmetic	is	used	because	the	slope	may
be	negative.

int32_t	x[4];	//	MACQ	(mV)
int32_t	d;				//	derivative(V/s)
void	ADC3_Handler(void){
		ADC_ISC_R	=	0x08;					//	acknowledge	ADC	sequence	3	completion
		x[3]	=	x[2];		//	shift	data
		x[2]	=	x[1];		//	units	of	mV
		x[1]	=	x[0];
		x[0]	=	(3000*ADC_SSFIFO3_R)>>12;	//	in	mV
		d	=	x[0]+3*x[1]-3*x[2]-x[3];					//	in	V/s
		Fifo_Put(d);		//	pass	to	foreground
}
Program	6.2.	Software	implementation	of	first	derivative	using	a	multiple
access	circular	queue.

When	the	MACQ	holds	many	data	points,	 it	can	be	 implemented	using	a	pointer	or
index	 to	 the	newest	data.	 In	 this	way,	 the	data	need	not	be	shifted	each	 time	a	new
sample	 is	 added.	 The	 disadvantage	 of	 this	 approach	 is	 that	 address	 calculation	 is
required	 during	 the	Read	 access.	 For	 example,	we	 could	 implement	 a	 16-element
averaging	 filter.	 More	 specifically,	 we	 will	 calculate	 the	 average	 of	 the	 last	 16
samples,	see	Program	6.3.

Entering	data	into	this	MACQ	is	a	three	step	process	(Figure	6.7).	First,	the	pointer
is	decremented.	If	necessary,	the	pointer	is	wrapped	such	that	it	is	always	pointing	to
elements x[0] through x[15] .	 Second,	 new	 data	 is	 stored	 into	 the	 location	 of	 the
pointer.	Third,	a	second	copy	of	 the	new	data	is	stored	16	elements	down	from	the
pointer.

Because	the	pointer	is	maintained	within	the	first	16	elements, *Pt to *(Pt+15) 	will
always	point	to	valid	data	within	the	MACQ.	Let	m	be	an	integer	from	0	to	15.	In	this
MACQ,	the	data	element	x(n-m)can	be	found	using *(Pt+m) .

	

Figure	6.7.	When	data	is	put	into	a	multiple	access	circular	queue,	the
oldest	data	is	lost.

Figure	 6.7	 shows	 the	 labels	 x(n),	 x(n-1),…	 moving	 from	 before	 to	 after.	 Notice
however,	the	data	itself	does	not	move.	What	moves	is	the	significance	(or	meaning)
of	the	data.	The	data	grows	older	as	time	passes.	The	passage	of	time	is	produced	by
decrementing	 the	 pointer.	 Having	 two	 copies	 of	 the	 data	 makes	 reading	 the	 data
faster,	because	the	operation	 *(Pt+m) 	never	needs	wrapping.

Observation:	It	is	possible	to	implement	a	pointer-based	MACQ	that	keeps	just
one	copy	of	the	data.	Time	to	access	data	would	be	slower,	but	half	as	much
storage	would	be	needed.	

uint16_t	x[32];					//	two	copies
uint16_t	*Pt;						//	pointer	to	current
uint16_t	Sum;							//	sum	of	the	last	16	samples
void	LPF_Init(void){
		Pt	=	&x[0];	Sum	=	0;
}

//	calculate	one	filter	output,	called	at	sampling	rate
//	Input:	new	ADC	data			Output:	filter	output,	DAC	data
uint16_t	LPF_Calc(uint16_t	newdata){
		Sum	=	Sum	-	*(Pt+16);					//	subtract	the	one	16	samples	ago
		if(Pt	==	&x[0]){
				Pt	=	&x[16];											//	wrap
		}	else{
				Pt--;																	//	make	room	for	data
		}
		*Pt	=	*(Pt+16)	=	newdata;	//	two	copies	of	the	new	data
		return	Sum/16;
}
Program	6.3.	Digital	low	pass	filter	implemented	by	averaging	the	previous
16	samples	(cutoff	=	fs/32).

6.3.	Using	the	Z-Transform	to	Derive	Filter	Response
In	 this	section,	we	will	use	 the	Z-Transform	to	determine	the	digital	filter	response
(gain	 and	 phase)	 given	 the	 filter	 equation.	 The	 first	 example	 is	 the	 average	 of	 the
current	sample	with	the	sample	3	times	ago.	Program	6.4	shows	the	implementation.

y(n)	=	(x(n)+x(n-3))/2
	

The	 first	 step	 is	 to	 take	 the	 Z-Transform	 of	 both	 sides	 of	 the	 equation.	 The	 Z-
Transform	of	y(n)	 is	Y(z),	 the	Z–Transform	of	x(n)	 is	X(z),	 and	 the	Z-Transform	of
x(n-3)	is	z-3X(z).	Since	the	Z-Transform	is	a	linear	operator,	we	can	write:

Y(z)	=	(X(z)	+	z-3X(z))/2
	

The	next	step	is	to	rewrite	the	equation	in	the	form	of	H(z)≡Y(z)/X(z).

H(z)		≡		Y(z)/X(z)		=	½	(1	+	z-3)
	

We	plug	in	z	≡	ej2πf/fs	calculate	the	gain	and	phase	response,	see	Figures	6.8	and	6.9.

H(f)	=	½	(1	+	e-j6πf/fs)	=		½	(1	+	cos(6πf/fs)	-	j	sin(6πf/fs))
	

Gain	≡	|H(f)|	=		½	sqrt((1	+	cos(6πf/fs))2	+	sin(6πf/fs)2))
Phase	≡		angle(H(f))	=		tan-1(-sin(6πf/fs)/(1	+	cos(6πf/fs))

int32_t	x[4];	//	MACQ
void	ADC3_Handler(void){	int32_t	y;
		ADC_ISC_R	=	0x08;					//	acknowledge	ADC	sequence	3	completion
		x[3]	=	x[2];		//	shift	data
		x[2]	=	x[1];		//	units,	ADC	sample	0	to	4095
		x[1]	=	x[0];		//	see	chapter	1	for	details	on	the	ADC
		x[0]	=	ADC_SSFIFO3_R;	//	0	to	4095
		y	=	(x[0]+x[3])/2;				//	filter	output
		Fifo_Put(y);										//	pass	to	foreground
}
Program	6.4.	If	the	sampling	rate	is	360	Hz,	this	filter	rejects	60	Hz.

Checkpoint	6.1:	If	the	sampling	rate	in	Program	6.4	is	360	Hz,	use	the	Z
transform	to	prove	the	60	Hz	gain	is	zero.

Observation:	Program	6.4	is	double	notch	filter	rejecting	1/6	and	1/2	fs.

The	 second	 example	 is	 the	 average	 of	 the	 current	 sample	 with	 the	 previous	 filter
output.	Program	6.5	shows	the	implementation

y(n)	=	(x(n)+y(n-1))/2

	
The	 first	 step	 is	 to	 take	 the	 Z-Transform	 of	 both	 sides	 of	 the	 equation.	 The	 Z-
Transform	of	y(n)	 is	Y(z),	 the	Z–Transform	of	x(n)	 is	X(z),	 and	 the	Z-Transform	of
y(n-1)	is	z-1Y(z).	Since	the	Z-Transform	is	a	linear	operator,	we	can	write:

Y(z)	=	(X(z)	+	z-1Y(z))/2
	

The	next	step	is	to	rewrite	the	equation	in	the	form	of	H(z)	≡	Y(z)/X(z).

H(z)	≡	Y(z)/X(z)	=	1/(2	-	z-1)
	

We	 plug	 in	 z	≡	 ej2πf/fs	 calculate	 the	 gain	 and	 phase	 response,	 see	 Figures	 6.8	 and
6.9.													

H(f)	=	1/(2	–	e-j2πf/fs)	=		1/(2	-	cos(2πf/fs)	+	j	sin(2πf/fs))
Gain	≡	|H(f)|
Phase	≡	angle(H(f))

int32_t	y;
void	ADC3_Handler(void){	int32_t	x;
		ADC_ISC_R	=	0x08;		//	acknowledge	ADC	sequence	3	completion
		x	=	ADC_SSFIFO3_R;	//	0	to	4095
		y	=	(x+y)/2;							//	filter	output
		Fifo_Put(y);							//	pass	to	foreground
}
Program	6.5.	Implementation	of	an	IIR	low	pass	digital	filter.

Checkpoint	6.2:	For	f	between	0	and	0.2	fs,	the	filter	in	Program	6.5	has	a	gain
larger	than	1	(see	Figure	6.8).	What	does	that	mean?

The	gain	of	four	linear	digital	filters	is	plotted	in	Figure	6.8	and	the	phase	response
is	plotted	in	Figure	6.9.

Figure	6.8.	Gain	versus	frequency	response	for	four	simple	digital	filters.

Figure	6.9.	Phase	versus	frequency	response	for	four	simple	digital	filters.

A	linear	phase	versus	frequency	response	is	desirable	because	a	linear	phase	causes
minimal	waveform	 distortion.	 Conversely,	 a	 nonlinear	 phase	 response	will	 distort
shape	 or	 morphology	 of	 the	 signal.	 In	 general,	 if	 fs	 is	 2•k•fc	 Hz	 (where	 k	 is	 any
integer	k≥2),	then	the	following	is	a	fc	notch	filter:
y(n)	=(x(n)	+	x(n-k))/2	

	
Averaging	the	last	k	samples	will	perform	a	low-pass	filter	with	notches.	Let	fc	be	the
frequency	we	wish	to	reject.	We	will	choose	the	sampling	at	a	multiple	of	this	notch.
I.e.,	 we	 choose	 fs	 to	 be	 k•fc	 Hz	 (where	 k	 is	 any	 integer	 k≥2),	 then	 the	 k-sample
average	filter	will	 reject	 fc	and	 its	harmonics:	2fc,	3fc...	 If	 the	number	of	 terms	k	 is
large,	 the	 straight	 forward	 implementation	 of	 average	will	 run	 slowly.	 Fortunately,
this	 averaging	 filter	 can	 be	 rewritten	 as	 a	 function	 of	 the	 current	 sample	 x(n),	 the
sample	k	times	ago	x(n-k),	and	the	last	filter	output	y(n-1).	This	filter	with	k=16	was
implemented	in	Program	6.3.

y(n)	=	(1/k)*sum(x(n	–	i))	for	i	=	0	to	k-1	

=	(x(n)	–	x(n-k))/k	+	y(n-1)

The	 second	 formulation	 looks	 like	 an	 IIR	 filter,	 but	 it	 is	 a	 FIR	 filter	 because	 the
equations	are	identical.	The	H(z)	transfer	function	for	this	k-term	averaging	filter	is

H(z)	=	(1/k)*(1-z-k)/(1-z-1)
This	class	of	digital	low-pass	filters	can	be	implemented	with	a	k+1	multiple	access
circular	queue,	and	a	simple	calculation.	The	gain	of	this	class	of	filter	is	shown	in
Figure	6.10	for	a	sampling	rate	of	100	Hz.

Figure	6.10.	Gain	versus	frequency	plot	of	four	averaging	low-pass	filters.

6.4.	IIR	Filter	Design	Using	the	Pole-Zero	Plot
The	objective	of	this	section	is	to	show	the	IIR	filter	design	method	using	pole-zero
plots.	One	starts	with	a	basic	shape	in	mind,	and	places	poles	and	zeros	to	generate
the	desired	filter.	Consider	again	the	analogy	between	the	Laplace	and	Z	Transforms.
When	the	H(s)	transform	is	plotted	in	the	s	plane,	we	look	for	peaks	(places	where
the	 amplitude	H(s)	 is	 high)	 and	 valleys	 (places	 where	 the	 amplitude	 is	 low.)	 In
particular,	we	usually	can	identify	zeros	(H(s)=0)	and	poles	 (H(s)=∞).	A	zero	 is	a
place	where	H(s)=0.	A	pole	is	a	place	where	H(s)=∞.	In	the	same	way	we	can	plot
the	H(z)	 in	 the	 z	 plane	 and	 identify	 the	 poles	 and	 zeros.	 Table	 6.1	 lists	 the	 filter
design	strategies.

Analog	condition Digital	condition Consequence
zero	near	s=j2πf	line zero	near	z=ej2πf/fs low	gain	at	 the	f	near

the	zero
pole	near	s=j2πf	line pole	near	z=ej2πf/fs high	gain	at	the	f	near

the	pole
zeros	 in	 complex
conjugate	pairs

zeros	 in	 complex
conjugate	pairs

the	output	y(t)	is	real

poles	 in	 complex
conjugate	pairs

poles	 in	 complex
conjugate	pairs

the	output	y(t)	is	real

poles	in	left	half	plane poles	inside	unit	circle stable	system
poles	in	right	half	plane poles	 outside	 unit

circle
unstable	system

pole	near	a	zero pole	near	a	zero high	Q	response
pole	away	from	a	zero pole	away	from	a	zero low	Q	response
Table	6.1.	Analogies	between	the	analog	and	digital	filter	design	rules.

	

Once	the	poles	and	zeros	are	placed,	the	transform	of	the	filter	can	be	written

where	zi	are	the	zeros	and	pi	are	the	poles

The	 first	 example	 of	 this	 method	 will	 be	 a	 digital	 notch	 filter.	 60	 Hz	 noise	 is	 a
significant	problem	in	most	data	acquisition	systems.	The	60	Hz	noise	reduction	can
be	accomplished:

1)	Reducing	the	noise	source,	e.g.,	shut	off	large	motors
2)	Shielding	the	transducer,	cables,	and	instrument
3)	Implement	a	60	Hz	analog	notch	filter

4)	Implement	a	60	Hz	digital	notch	filter
	

The	 digital	 notch	 filter	 will	 be	 more	 effective	 and	 less	 expensive	 than	 an	 analog
notch	filter.	The	signal	is	sampled	at	fs.	We	wish	to	place	the	zeros	(gain=0)	at	60	Hz,
thus

θ 	=	±	2π	•	60/fs
The	zeros	are	located	on	the	unit	circle	at	60	Hz

z1	=	cos(θ)	+	j	sin(θ) z2	=	cos(θ)	-	j	sin(θ)
To	 implement	 a	 flat	 pass	 band	 away	 from	 60	Hz	 the	 poles	 are	 placed	 next	 to	 the
zeros,	just	inside	the	unit	circle.	Let	α	define	the	closeness	of	the	poles	where	0	<	α
<1	(Figure	6.11).

p1	=	α	z1 p2	=	α	z2
	

Figure	6.11.	Pole-zero	plot	of	a	60	Hz	digital	notch	filter.

The	transfer	function	is

	

which	can	be	put	in	standard	form	(i.e.,	with	terms	1,	z-1,	z-2	...)

	

The	 digital	 filter	 can	 be	 derived	 by	 taking	 the	 inverse	 Z-transform	 of	 the	 H(z)
equation

y(n)	=	x(n)	-	2cos(θ)x(n-1)	+	x(n-2)	+	2αcos(θ)y(n-1)	-	α2y(n-2)													
	

Sometimes	 we	 can	 choose	 fs	 and/or	 α	 to	 simplify	 the	 digital	 filter	 equation.	 For
example,	 if	 we	 choose	 fs	 =	 240	 Hz,	 then	 the	 “cos(θ)”	 terms	 become	 zero.	 If	 we
choose	α	=	7/8	then	the	fixed-point	digital	filter	becomes:

y(n)	=	x(n)	+	x(n-2)		-(49*y(n-2))/64
	

Another	consideration	for	this	type	of	filter	is	the	fact	that	the	gain	in	the	pass	bands
is	greater	than	one.	The	DC	gain	can	be	determined	two	ways.	The	first	method	is	to
use	the	H(z)	transfer	equation	and	set	z=1.	The	H(z)	transfer	equation	for	the	filter	is

H(z)	=	(1+z-2)(1	+	(49/64)z-2)
	

At	z=1	this	reduces	to

DC	Gain		=(2)(1	+	(49/64))			=			128/113
	

The	second	method	 to	calculate	DC	gain	operates	on	 the	filter	equation	directly.	 In
the	first	step,	we	set	all	x(n-k)	terms	in	the	filter	to	a	single	variable	“x”	and	all	y(n-
k)	terms	in	the	filter	to	a	single	variable	“y”.	Next	we	solve	for	the	DC	gain,	which	is
y/x.	

y	=	x		+	x	–	(49y)/64
	

This	method	 also	 calculates	 the	DC	 gain	 to	 be	 128/113.	We	 can	 adjust	 the	 digital
filter	so	that	the	DC	gain	is	exactly	1,	by	prescaling	the	input	terms	(x(n),	x(n-1),	x(n-
2),...)	by	113/128.

y(n)	=	(113•x(n)	+	113•x(n-2)		-		98•y(n-2))/128
	
int32_t	x[3];	//	MACQ	for	the	ADC	input	data
int32_t	y[3];	//	MACQ	for	the	digital	filter	output
void	ADC3_Handler(void){
		ADC_ISC_R	=	0x08;			//	acknowledge	ADC	sequence	3	completion
		x[2]	=	x[1];	x[1]	=	x[0];		//	shift	data
		y[2]	=	y[1];	y[1]	=	y[0];	
		x[0]	=	ADC_SSFIFO3_R;																	//	0	to	4095
		y[0]	=	(113*(x[0]+x[2])-98*y[2])/128;	//	filter	output
		Fifo_Put((int16_t)y[0]);													//	pass	to	foreground
}
Program	6.6.	If	the	sampling	rate	is	240	Hz,	this	filter	rejects	60	Hz.

Since	the	gain	of	this	filter	is	always	less	than	or	equal	to	one,	the	filter	outputs	will
fit	into	16-bit	variables.However	the	intermediate	term 113*(x[0]+x[2]) 	could	be	as
large	as	113*(1023+1023)	=	231,198,	so	32-bit	calculations	are	performed.	The	gain
of	this	filter	is	shown	in	Figure	6.12.

The	“Q”	of	a	digital	notch	filter	is	defined	to	be

Q		≡	fc/Δf		

where	 fc	 is	 the	 center	or	notch	 frequency,	 and	∆f	 frequency	 range	where	 is	 gain	 is
below	0.707	of	the	DC	gain.	For	the	filter	in	Figure	6.12	the	gains	at	55	and	65	Hz

are	about	0.707,	so	its	Q	is	6.

Checkpoint	6.3:	Use	Figure	6.12	to	compare	the	filter	Q	of	Program	6.4	with	the
filter	Q	of	Program	6.6.	Next,	compare	the	execution	speed	of	the	two
implementations.	If	you	wished	to	remove	60	Hz	and	pass	all	other	frequencies,
which	filter	would	you	choose?

	

Figure	6.12.	Gain	versus	frequency	response	of	two	60	Hz	digital	notch
filters.

In	this	second	example,	we	will	design	a	band-pass	filter	that	passes	50	to	100	Hz.	In
this	example,	 signals	exist	 from	0	 to	240	Hz,	so	 the	sampling	rate	will	be	480	Hz.
Figure	6.13	 shows	one	possible	pole-zero	plot.	First,	we	place	 the	 zeros	 so	50	 to
100	Hz	is	passed	and	other	frequencies	are	rejected.	As	we	increase	the	number	of
zeros,	 we	 can	 reduce	 the	 gain	 in	 places	 we	 wish	 to	 make	 the	 gain	 low,	 but	 the
complexity	of	the	filter	increases.	This	filter	with	8	zeros	will	have	8	x(n-k)	terms	in
the	equation.	The	idea	is	not	to	place	any	zeros	in	50	to	100	Hz	range,	but	place	them
around	in	the	0	to	50,	and	100	to	240	regions.	On	the	web	site,	there	is	a	spreadsheet
(DigitalFilterDesign.xls)	 that	 you	 can	 manipulate	 to	 see	 how	 the	 filter	 shape
responds	to	the	placement	of	poles	and	zeros.

Figure	6.13.	Pole-zero	plot	of	a	50	to	100	Hz	digital	band-pass	filter.

Next,	we	place	the	poles.	In	this	example,	there	will	also	be	8	poles.	Placing	the	pole
near	a	zero	causes	the	gain	to	rise	and	fall	quickly.	Placing	the	pole	away	from	a	zero
flattens	the	response.	In	this	example,	the	zeros	near	50	and	100	Hz	have	poles	near
them,	and	the	others	are	away.	The	farthest	away	will	be	to	place	the	poles	at	z=0.
The	transfer	function	is

The	steps	to	derive	the	filter	are	the	same	as	the	last	example.	First,	we	multiply	out
the	top	and	bottom	expressions.	Because	the	zeros	are	either	at	z=1,	z=-1,	or	occur	in
complex	 conjugate	 pairs,	 the	 numerator	 will	 have	 real	 coefficients.	 Similarly,
because	 the	 poles	 are	 either	 at	 z=0	 or	 occur	 in	 complex	 conjugate	 pairs,	 the
denominator	will	also	have	real	coefficients.	Next,	we	multiply	the	top	and	bottom	by
z-8,	placing	the	transfer	function	in	standard	form.	Next,	we	take	the	inverse	transform
to	get	the	digital	filter:

y(n)	=	a0 • x(n)	+	a1 • x(n-1)	+	a2 • x(n-2)	+	a3 • x(n-3)	+	a4 • x(n-4)	+	a5 • x(n-5)
+	a6 • x(n-6)	+	a7 • x(n-7)	+	a8 • x(n-8)		+	b0 • y(n-1)	+	b1 • y(n-2)	+	b2 • y(n-

3)	+	b3 • y(n-4)

Figure	6.14	plots	the	gain	of	this	filter.	The	details	of	these	calculations	can	be	found
in	the	spreadsheet	DigitalFilterDesign.xls.	The	coefficients	are	converted	to	binary
fixed-point	and	implemented	in	Program	6.7.

Figure	6.14.	Gain	versus	frequency	of	a	50	to	100	Hz	digital	band-pass
filter.

Typically,	we	design	an	IIR	filter	with	an	equal	number	of	poles	and	zeros.	If	 there
are	more	zeros	than	poles,	then	filter	is	noncausal.	For	example,	H(z)=z	has	one	zero
and	no	poles.	The	filter	will	be	y(n)	=	x(n+1),	which	is	noncausal.	If	there	are	more
poles	than	zero,	then	filter	will	have	a	time	delay	or	a	very	large	gain.	For	example,
H(z)=z-1	has	one	pole	and	no	zeros.	The	filter	will	be	y(n)	=	x(n-1).

const	int32_t	a[9]={2521,-1589,-617,-2296,0,2296,617,1589,-2521};

const	int32_t	b[4]={20220,-14068,9908,-3934};
int32_t	x[9];	//	MACQ	for	the	ADC	input	data
int32_t	y[5];	//	MACQ	for	the	digital	filter	output
	
void	ADC3_Handler(void){
		ADC_ISC_R	=	0x08;			//	acknowledge	ADC	sequence	3	completion
		x[8]	=	x[7];	x[7]	=	x[6];	x[6]	=	x[5];	x[5]	=	x[4];
		x[4]	=	x[3];	x[3]	=	x[2];	x[2]	=	x[1];	x[1]	=	x[0];		//	shift	data
		y[4]	=	y[3];	y[3]	=	y[2];	y[2]	=	y[1];	y[1]	=	y[0];	
		x[0]	=	ADC_SSFIFO3_R;					//	0	to	4095
		y[0]	=	(a[0]*x[0]+	a[1]*x[1]+	a[2]*x[2]+	a[3]*x[3]+	/*	a[4]*x[4]+	*/
										a[5]*x[5]+	a[6]*x[6]+	a[7]*x[7]+	a[8]*x[8]+
										b[0]*y[1]+	b[1]*y[2]+	b[2]*y[3]+	b[3]*y[4])/16384;
		Fifo_Put((int16_t)y[0]);							//	pass	to	foreground
}
Program	6.7.	If	the	sampling	rate	is	480	Hz,	this	bandpass	filter	passes	50
to	100	Hz.

6.5.	Discrete	Fourier	Transform
The	Discrete	Fourier	Transform	(DFT)	converts	data	in	the	time	domain	to	data	in
the	frequency	domain.	We	can	use	the	DFT	to	measure	SNR,	to	identify	noise	type,
and	to	design	FIR	digital	filters.	In	fact,	the	spectrum	analyzer	is	simply	a	high-speed
data	acquisition	system	followed	by	a	DFT.	The	Fast	Fourier	Transform	(FFT)	is	a
technique	 to	calculate	 the	DFT	with	fewer	additions	and	multiplications.	There	are
four	important	parameters	when	employing	the	DFT.	The	first	parameter	is	sampling
rate,	fs.	While	 the	DFT	deals	only	with	samples	and	bins	with	no	concept	of	volts,
seconds,	and	Hz,	when	applying	 it	 to	 real	data,	we	assume	 the	samples	have	units,
are	 bound	 by	 physical	 limits,	 and	 are	 evenly	 spaced	 at	 time	 intervals	T=1/fs.	 The
second	 parameter	 is	 sequence	 length,	 N.	 The	 other	 two	 parameters	 are	 input
resolution	and	range.	In	real	systems,	input	data	come	from	the	ADC	or	input	capture,
and	the	output	data	go	to	the	DAC	or	PWM.	Therefore,	the	performance	of	the	DFT
will	be	affected	by	the	range	and	resolution	of	the	input.	The	input	to	the	DFT	will	be
N	samples	versus	time,	and	the	output	will	be	N	points	in	the	frequency	domain.

Input:	{an}	=	{a0,a1,a2,…,aN-1}
Output:	 {Ak}	=	{A0,A1,A2,…,AN-1}

	
The	definition	of	the	DFT	is

where	

and		k=0,1,2,…,N-1

The	 DFT	 output	Ak	 at	 index	 k	 represents	 the	 amplitude	 and	 phase	 of	 the	 input	 at
frequency	k*fS/N	(in	Hz).	The	DFT	resolution	in	Hz/bin	is	the	reciprocal	of	the	total
time	 spent	 gathering	 time	 samples;	 i.e.,	 1/(N*T).	 The	 Inverse	 Discrete	 Fourier
Transform	(IDFT)	converts	data	in	the	frequency	domain	to	data	in	the	time	domain.
The	input	to	the	IDFT	will	be	N	points	in	the	frequency	domain,	and	the	output	will
be	N	samples	in	the	time	domain.

Input: {Ak}={A0,A1,A2,…,AN-1}
Output:{an}={a0,a1,a2,…,aN-1}

	
The	definition	of	the	IDFT	is

where

and		n=0,1,2,…,N-1

When	presenting	frequency	data,	we	can	use	a	log	scale,	making	it	easier	to	visualize
frequency	 components	 with	 widely	 varying	 amplitudes.	 Because	 the	 system	 has
physical	limits,	we	use	those	limits	to	define	full	scale.	Assume	the	audio	system	in
Section	5.1.3	samples	sound	as	a	voltage	from	0	to	3	V.	For	this	system,	we	would
define	 full	 scale	VFS	 as	 3	 V.	 In	 particular,	 if	V	 is	 a	 DFT	 output	 in	 volts,	 we	 can
convert	it	to	dB	full	scale	using

dBFS	=	20*log10(V/VFS)
	

STMicroelectronics	 published	 integer	 FFT	 code	 has	 part	 of	 their
STM32F10x_DSP_Lib	 library.	 There	 are	 three	 separate	 FFT	 implementations	 for
sizes	64,	256	or	1024	optimized	for	the	Cortex	M.	The	input	to	the	FFT	is	64,	256	or
1024	 complex	 samples.	Each	 input	 is	 16-bit	 signed	 integer	 containing	 the	 real	 and
imaginary	parts.	For	most	applications	we	will	 set	 the	ADC	data	 into	 the	 real	part
and	we	will	write	zeros	into	the	imaginary	part.	In	Program	6.8	and	Table	6.2	assume
we	will	 fill	 the	 input	 array	with	 constant	 data	 from	 an	 array.	After	 calculating	 the
DFT,	the	program	will	calculate	the	magnitude	at	each	frequency.	Let	N	be	the	size	of
the	array,	and	assume	the	sampling	rate	is	fs,	then	the	meaning	of	index	k	is	fs/N.

typedef	struct{
		int16_t	real,imag;
}Complex_t;
//	data	for	FFT
Complex_t	x[1024],y[1024];	//	input	and	output	arrays	for	FFT
int32_t	mag[512];										//	magnitude	versus	frequency	of	the	output						
void	cr4_fft_1024_stm32(Complex_t	*,	Complex_t	*,	unsigned	short);
int	main(void){	int32_t	t,k,	real,	imag;
		for(t=0;	t<1024;	t=t+1){			//	t	means	1/fs
				x[t].imag	=	0;											//	imaginary	part	is	zero
				x[t].real	=	sinewave[t];	//	fill	real	part	with	data
		}
		cr4_fft_1024_stm32(y,	x,	1024);	//	complex	FFT	of	1024	values
		for(k=0;	k<512;	k=k+1){									//	k	means	fs/1024
				real	=	y[k].real;													//	real	is	bottom	16	bits
				imag	=	y[k].imag;													//	imag	is	top	16	bits
				mag[k]	=	Sqrt(real*real+imag*imag);
		}
		while(1){};
}
Program	6.8.	Calculation	of	the	FFT	(ProfileFFTxxx).

N Cycles Time(ms)
64 3535 0.22
256 20072 1.25
1024 97870 6.12

Table	6.2.	Execution	time	of	the	FFT	varies	with	N*log2(N)

6.6.	FIR	Filter	Design
In	this	section	we	will	use	the	DFT	as	a	general	tool	to	design	FIR	filters.	We	begin
by	choosing	the	sampling	rate,	which	must	be	larger	than	two	times	the	largest	signal
frequency	we	wish	to	process.	After	we	have	chosen	the	sampling	rate	(e.g.,	10	kHz),
we	will	choose	a	FIR	filter	length	(e.g.,	N=51).	The	ratio	fs/N	(e.g.,	10	kHz/51	=	196
Hz)	will	determine	the	frequency	resolution	of	the	FIR	filter	design.	The	larger	the	N,
the	more	gain	points	we	can	specify	 in	 the	 filter	 response,	but	 the	slower	 the	 filter
will	 execute.	 Next,	 we	 plot	 or	 print	 the	 desired	 gain/phase	 versus	 frequency
response.	 The	magnitude	 of	H(k)	 is	 selected	 to	 implement	 the	 desired	 gain	 versus
frequency	response.	I.e.,	|H(k)|	will	be	the	filter	gain	at	k*fS/N.	The	angle	of	H(k)	 is
selected	to	implement	the	desired	phase	versus	frequency	response.	I.e.,	angle[H(k)]
will	be	the	filter	phase	at	k*fS/N.	For	frequencies	above	½fs,	we	must	make	H(k)	be
the	complex	conjugate	of	 the	N-k	 term.	This	will	guarantee	 that	 the	 inverse	DFT	of
H(k)	will	yield	real	results.		Let	x(n)	be	the	input	(read	from	the	ADC)	and	X(k)	be
the	input	in	the	frequency	domain.	Let	y(n)	be	the	FIR	filter	output,	and	let	Y(k)	be	the
FIR	filter	output	in	the	frequency	domain.

		 Y(k)	=	H(k)	X(k)
		 y(n)	=	IDFT	{	H(z)	DFT{x(t)}	}
	

We	 take	 IDFT	 of	 the	H(k)	 to	 get	 N	 FIR	 filter	 coefficients.	 Multiplication	 in	 the
frequency	domain	is	equivalent	to	convolution	in	the	time	domain.	The	FIR	filter	is
the	convolution	of	the	data	with	the	inverse	transform	of	the	desired	filter.

		 y(n)	=	h(n)	*	x(n)		=	x(n)	*	h(n)			 ;			*			means	convolution	here

		 y(n)	=	sum(h(i)	·	x(n-i))	for	i=-∞	to	+∞;				·			means	multiplication	here

	
Because	there	are	a	finite	number	of	h(n)	terms,	the	convolution	is	a	finite	sum

y(n)	=	sum(h(i)	·	x(n-i))	for	i=0	to	N-1;				·			means	multiplication	here

	
Example	 6.1.	 Design	 a	 digital	 filter	 for	 a	 hearing	 aid	 that	 accentuates	 high
frequencies.	The	input	is	audio	with	frequency	components	from	100	Hz	to	5	kHz.	In
particular,	make	the	gain	equal	to	5	for	frequencies	2	to	5	kHz.	For	the	lower	audio
frequencies	make	the	gain	equal	to	1.

Solution:	We	choose	the	sampling	rate	at	twice	the	maximum	frequency	of	the	input
or	fs	=	10	kHz.	Next	we	choose	a	filter	size.	The	larger	N,	the	better	the	actual	filter
will	match	our	desired	response,	but	the	slower	it	will	execute.	For	this	solution,	we
could	have	chosen	any	size	 from	32	 to	64	and	obtained	similar	 results.	 In	order	 to
preserve	the	shape	of	the	audio	signals,	we	will	implement	linear	phase.	The	desired

filter	 gain	 is	 shown	 as	 Figure	 6.15	 and	 Table	 6.3.	 The	 lines	 in	 the	 figure	 are	 the
desired	filter	gain,	and	the	dots	will	be	the	actual	gain	as	implemented	by	the	fixed-
point	math	in	Program	6.9.

Figure	6.15.	Desired	and	actual	filter	responses.	This	is	H.

The	H(N-k)	 values	must	 be	 the	 complex	 conjugates	 of	H(k).	 Because	 the	 negative
frequencies	 in	 Table	 6.3	 are	 complex	 conjugates	 of	 the	 positive	 frequencies,	 h(n)
will	 be	 real.	 Next,	 we	 scale	 the	 h(n)values	 to	 make	 51	 fixed-point
coefficients h[51] .	 For	 example,	 the	 first	 term	 h(1)	 is	 -0.000457,	 which	 will	 be
approximated	in	fixed-point	as	-7/16384.	In	summary,	the h[51] 	coefficients	are	the
IDFT	of	the	values	in	Table	6.2	multiplied	by	16384	and	rounded	to	an	integer.

const	int32_t	h[51]={0,-7,-45,-64,5,78,-46,-355,-482,-138,329,
					177,-722,-1388,-767,697,1115,-628,-2923,-2642,1025,4348,1820,-8027,
					-19790,56862,-19790,-8027,1820,4348,1025,-2642,-2923,-628,1115,697,
					-767,-1388,-722,177,329,-138,-482,-355,-46,78,5,-64,-45,-7,0};
	
k f	(Hz) Mag(H(k)) Angle(H(k)) 	 k f	(Hz) Mag(H(k)) Angle(H(k))
0 0.00 0.00 0.00 	 13 2549.02 5.00 -40.04
1 196.08 0.50 -3.08 	 14 2745.10 5.00 -43.12
2 392.16 1.00 -6.16 	 15 2941.18 5.00 -46.20
3 588.24 1.00 -9.24 	 16 3137.25 5.00 -49.28
4 784.31 1.00 -12.32 	 17 3333.33 5.00 -52.36
5 980.39 1.00 -15.40 	 18 3529.41 5.00 -55.44
6 1176.47 1.00 -18.48 	 19 3725.49 5.00 -58.52
7 1372.55 1.00 -21.56 	 20 3921.57 5.00 -61.60
8 1568.63 1.00 -24.64 	 21 4117.65 5.00 -64.68
9 1764.71 2.00 -27.72 	 22 4313.73 5.00 -67.76
10 1960.78 4.00 -30.80 	 23 4509.80 5.00 -70.84
11 2156.86 5.00 -33.88 	 24 4705.88 5.00 -73.92
12 2352.94 5.00 -36.96 	 25 4901.96 5.00 -77.00

Table	6.3.	Desired	filter	response.	This	is	H.
	

Program	6.9	shows	an	 implementation	of	 this	FIR	filter.	There	are	100	µs	for	each
sample	(ADC,	filter,	and	DAC).	We	will	implement	the	MACQ	using	two	copies	of
the	 data,	 similar	 to	 Program	 6.3.	 We	 could	 add	 this	 filter	 to	 the	 audio	 system
developed	in	Program	5.1.

int16_t	Data[102];		//	two	copies
int16_t	*Pt;		//	pointer	to	current
void	Filter_Init(void){
		Pt	=	&Data[0];
}
//	calculate	one	filter	output
//	called	at	sampling	rate
//	Input:	new	ADC	data
//	Output:	filter	output,	DAC	data
int16_t	Filter_Calc(int16_t	newdata){
int	i;	int32_t	sum;	int16_t	*pt,*apt;
		if(Pt	==	&Data[0]){
					Pt	=	&Data[50];	//	wrap
		}	else{
				Pt--;												//	make	room	for	data
		}
		*Pt	=	*(Pt+51)	=	newdata;	//	two	copies
		pt	=	Pt;		//	copy	of	data	pointer
		apt	=	h;		//	pointer	to	coefficients
		sum	=	0;
		for(i=51;	i;	i--){
				sum	+=	(*pt)*(*apt);
				apt++;
				pt++;
		}
		return	sum/16384;
}
Program	6.9.	51-term	FIR	filter
	

Checkpoint	6.4:	How	can	we	prove	the	software	in	Program	6.9	cannot
overflow?

Checkpoint	6.5:	Can	you	think	of	a	way	to	reduce	the	number	of	multiplies	in
Program	6.9	while	still	performing	the	exact	same	filter?

6.7.	Direct-Form	Implementations.
The	general	form	for	the	transfer	function	for	an	IIR	filter	is

	
This	converts	to	the	standard	difference	equation

y(n)	=	a0x(n)	+		a1x(n-1)	+		a2x(n-2)	+	...+		aMx(n-M)		-	b1y(n-1)		-	b2y(n-2)	...	-bNy(n-N)
	

The	direct-form	calculation	of	 this	filter	requires	with	two	multiple	access	circular
queues	with	lengths	M	and	N.	There	are	(M+N-1)	multiplies	and	(M+N-2)	additions.
Figure	6.16	flow	picture	illustrates	the	standard	implementation.

Figure	6.16.	General	filter	design	using	a	direct-form	calculation.

For	the	next	implementation	we	specify	the	filter	with	N=M.	We	can	do	this	without
loss	 of	 generality	 by	 letting	 some	 of	 the	 coefficients	 be	 zero.	 An	 alternative
implementation,	 called	 the	 direct-form	 II	 realization,	 requires	 only	 one	 multiple
access	 circular	 queue	 of	 length	 N.	 There	 are	 still	 (2N-1)	 multiplies	 and	 (2N-2)
additions.	Figure	6.17	illustrates	the	implementation.

Figure	6.17.	General	filter	design	using	a	direct-form	II	calculation.

6.8.	Exercises
6.1	For	each	term	give	a	definition	in	32	words	or	less.
		a)	Aliasing
		b)	Filter	Q
		c)	Impulse	response	of	a	digital	filter
		d)	Complex	conjugate
		e)	MACQ
		f)	Overflow
	
6.2	For	each	term	give	the	equation	definition
		a)	Z	transform
		b)	DFT
		c)	IDFT
		d)	Relationship	between	time	jitter	and	voltage	error
		e)	Filter	gain	given	input	frequency	f
		f)	Convolution	between	x	and	h
	
6.3.	Consider	the	use	of	the	Z-transform	in	the	design	and	analysis	of	digital	filters.
		a)	State	the	definition	of	the	Z-transform.
		b)	Why	can’t	we	use	the	Z-transform	on	a	median	filter?	
		c)	Use	the	Z-transform	to	determine	the	DC	gain	and	phase	of	the	following	digital
filter:
y(n)	=x(n)-x(n-2)+y(n-1)

	
6.4	List	the	four	parameters	we	need	to	decide	when	implementing	a	DFT.
	
6.5	For	each	pair	of	terms	compare	and	contrast	in	32	words	or	less.
		a)	Causal	versus	noncausal	filter
		b)	Linear	versus	nonlinear	filter
		c)	FIR	versus	IIR	filter
		d)	Laplace	transform	versus	the	Z	transform
		e)	A	pole	versus	a	zero
		f)	A	complex	versus	an	imaginary	number
	
6.6	256	data	points	are	sampled	at	10	kHz	with	a	12-bit	ADC.	The	ADC	range	is	0	to
3.0	V.	A	DFT	is	performed	on	the	data.	What	is	the	frequency	resolution?	What	range
of	frequencies	is	represented	in	the	DFT	output?
	
6.7	For	each	situation,	specify	whether	you	expect	the	gain	at	frequency	f	to	increase,
decrease	or	not	change	much	at	all.
		a)	A	zero	is	moved	closer	to	frequency	f	on	the	z-plane.

		b)	A	pole	is	moved	closer	to	frequency	f	on	the	z-plane.
		c)	A	zero	already	near	frequency	f	on	the	z-plane	is	replaced	with	a	double	zero.
		d)	A	pole	already	near	frequency	f	on	the	z-plane	is	replaced	with	a	double	pole.
		e)	A	pole	currently	near	frequency	f	on	the	z-plane	is	moved	to	the	origin.
		f)	A	pole	currently	near	frequency	f	on	the	z-plane	is	outside	the	unit	circle.
	
	
6.8	For	 each	 filter	 specify	whether	 it	 is	 linear	 or	 nonlinear.	 If	 it	 is	 linear	 specify
whether	it	is	FIR	or	IIR.
		a)	y(n)	=	x(n)2	+	2x(n)	+1
		b)	y(n)	=	x(n)/4	+	y(n-1)	–x(n-4)/4
		c)	y(n)	=	min{x(n),x(n-1)}
		d)	y(n)	=	(x(n+1)+x(n-1))/2
	
6.9	Let	 the	 input	be	 the	 sum	of	 two	 sine	waves:	 x(t)	=	A1sin(2πf1t)	+	A2sin(2πf2t).
Assume	the	digital	filter	will	pass	both	these	frequencies	with	a	gain	of	1.	This	filter
implements	a	linear	phase	response.	What	can	you	say	about	the	output	of	the	filter?	
I.e.,	derive	an	equation	describing	the	output	as	a	function	of	time.
	
6.10	Consider	the	following	digital	filter:	y(n)	=	(x(n)	–	x(n-2))/2
	 	a)	Using	 the	Z-transform	derive	general	expressions	for	 the	gain	and	phase	of	 the
filter.
	 	b)	Using	the	general	expressions	from	part	a),	calculate	 the	gain	and	phase	of	 the
filter	at	DC	and	60	Hz	if	the	sampling	rate	is	240	Hz.
	
6.11	Design	a	10	Hz	digital	low	pass	filter	with	a	sampling	rate	of	1000Hz.	Make	the
gain	at	DC	equal	to	one,	and	the	gain	at	10Hz	0.707.
		a)	Show	the	pole/zero	plot	of	your	filter.
		b)	Show	the	H(z)	transform.
		c)	Show	the	floating-point	version	of	the	digital	filter.
		d)	Show	the	fixed-point	version	of	the	digital	filter.

6.12	Design	a	digital	filter	that	rejects	both	60	Hz	and	120Hz	assuming	the	sampling
rate	is	480	Hz.	Apply	gain	scaling	so	the	DC	gain	is	1.	Give	the	filter	in	a	form	that
can	be	implemented	with	fixed-point	math.
	
6.13	Consider	 the	simple	sliding	average	filter	for	a	general	sampling	rate	of	1000
Hz.	This	filter	is	a	low-pass	filter,	as	shown	in	Figure	6.10

What	value	of	k	should	we	use	to	make	a	gain	of	about	0.7	at	10	Hz?
	
6.14	We	 defined	 time-jitter,	δt,	 as	 the	 difference	 between	when	 a	 periodic	 task	 is
supposed	 to	be	 run,	and	when	 it	 is	actually	 run.	The	goal	of	a	 real-time	DAS	is	 to

start	 the	ADC	 at	 a	 periodic	 rate,	Δt.	Let	 tn	 be	 the	 nth	 time	 the	ADC	 is	 started.	 In
particular,	the	goal	to	make	tn–tn-1	=	Δt.	The	jitter	is	defined	as	the	constant,	δt,	such
that
Δt-δt	<	ti	–	ti-1	<	Δt+δt		 for	all	i.

Assume	the	ADC	input	can	be	described	as	V(t)	=	A+Bsin(2πft),	where	A,	B,	 f	are
constants.
	 	 a)	 Derive	 an	 estimate	 of	 the	 maximum	 voltage	 error,	 δV,	 caused	 by	 time-jitter.
Basically,	solve	for	the	largest	possible	value	of	δV	as	a	function	of	δt,	A,	B,	and	f
	 	 b)	 Consider	 the	 situation	 where	 this	 time	 jitter	 is	 unacceptably	 large.	 Which
modification	to	the	system	will	reduce	the	error	the	most?		Justify	your	selection.

A)	Run	the	ADC	in	continuous	mode
B)	Convert	from	spinlock	semaphores	to	blocking	semaphores
C)	Change	from	round	robin	to	priority	thread	scheduling
D)	Reduce	the	amount	of	time	the	system	runs	with	interrupts	disabled.
E)		Increase	the	size	of	the	DataFifo

7.	High-Speed	Interfacing
Chapter	7	objectives	are	to:
•	Discuss	applications	requiring	high	bandwidth

•	Present	concepts	related	to	high-speed	interfacing

•	List	fundamental	approaches	to	high-speed	interfacing

•	 Introduce	 and	 describe	 direct	 memory	 addressing	 (DMA)	 on	 the
TM4C123

	
Embedded	 system	designers	will	 not	 need	 direct	memory	 accessing	 to	 solve
most	of	their	problems.	However,	future	trends	point	to	systems	with	increased
memory,	 multiple	 processors	 and	 higher	 bandwidth.	 Therefore,	 it	 is
appropriate	 to	 learn	 these	 advanced	 topics.	 Latency,	 bandwidth,
synchronization,	 and	 reliability	 are	 important	 factors	 for	 all	 types	 of
interfacing.	 In	 this	chapter	we	will	discuss	 shared	memory,	hardware	FIFOs,
and	direct	memory	addressing	(DMA).	DMA	is	an	 important	yet	complicated
interfacing	process.	As	the	performance	requirements	of	our	embedded	system
grow,	there	comes	a	point	when	the	simple	methods	of	I/O	interfacing	are	not
adequate.	 This	 chapter	 introduces	 a	 number	 of	 techniques	 that	 produce	 high
bandwidth	and	low	latency.

7.1.	The	Need	for	Speed
Bandwidth,	 latency,	and	priority	are	quantitative	parameters	we	use	 to	evaluate	 the
performance	of	an	I/O	interface.	The	basic	function	of	an	input	interface	is	to	transfer
information	about	 the	external	 environment	 into	 the	computer.	 In	a	 similar	way,	 the
basic	function	of	an	output	 interface	 is	 to	 transfer	 information	from	the	computer	 to
the	 external	 environment.	 The	 bandwidth	 is	 the	 number	 of	 bytes	 transferred	 per
second.	The	bandwidth	can	be	expressed	as	a	maximum	or	peak	that	involves	short
bursts	 of	 I/O	 communication.	 On	 the	 other	 hand,	 the	 overall	 performance	 can	 be
represented	as	 the	average	bandwidth.	The	 latency	of	 the	hardware/software	 is	 the
response	 time	 of	 the	 interface.	 It	 is	 measured	 in	 different	 ways	 depending	 on	 the
situation.	For	an	input	device,	the	 interface	latency	is	 the	 time	between	when	new
input	is	available,	and	the	time	when	the	data	is	transferred	into	memory.	We	can	also
define	device	latency	as	the	response	time	of	the	external	I/O	device.	For	example,	if
we	 request	 that	a	certain	 sector	be	 read	 from	a	disk,	 then	 the	device	 latency	 is	 the
time	it	take	to	find	the	correct	track	and	spin	the	disk	(seek)	so	the	proper	sector	is
positioned	under	the	read	head.	For	an	output	device,	the	interface	latency	is	the	time
between	when	the	output	device	is	idle,	and	the	time	when	the	interface	writes	new
data.	 	 A	 real-time	 system	 is	 one	 that	 can	 guarantee	 worst	 case	 interface	 latency.
Table	 7.1	 illustrates	 specific	 ways	 to	 calculate	 latency.	 In	 each	 case,	 however,
latency	is	the	time	between	when	the	need	arises	to	the	time	the	need	is	satisfied.

The	 time	 a	 need
arises

The	 time	 the	 need	 is
satisfied

New	 input	 is
available

The	input	data	is	read

New	 input	 is
available

The	 input	 data	 is
processed

Output	 device	 is
idle

New	 output	 data	 is
written

Sample	 time
occurs

ADC	is	triggered,	input
data

Periodic	 time
occurs

Output	 data,	 DAC	 is
triggered

Control	 point
occurs

Control	 system
executed

Table	7.1.	Interface	latency	is	a	measure	of	the	response	time	of	the	computer	to	a
hardware	event.
	

If	we	consider	the	busy/done	I/O	states,	the	latency	is	the	time	from	busy	to	done	state
transition	 to	 the	 time	 of	 the	 done	 to	 busy	 state	 transition.	 	 Sometimes	 we	 are

interested	in	the	worst	case	(maximum)	latency	and	sometimes	in	the	average.	If	we
can	 put	 an	 upper	 bound	 on	 the	 latency,	 then	we	 define	 the	 system	 as	 real-time.	A
number	of	applications	involve	performing	I/O	functions	on	a	fixed	interval	basis.	In
a	data	acquisition	system,	 the	ADC	is	 triggered	 (a	new	sample	 is	 requested)	at	 the
desired	sampling	rate.

Checkpoint	7.1:	What	is	the	difference	between	bandwidth	and	latency?	

7.2.	High-Speed	I/O	Applications
Before	introducing	the	various	solutions	to	a	high-speed	I/O	interface,	we	will	begin
by	presenting	some	typical	applications.

Mass	Storage.	The	first	application	is	mass	storage	including	flash	disk,	hard	disk,
CD,	and	DVD.	Writing	data	to	disk	with	these	systems	involves

1.	 Establishing	 the	 physical	 location	 to	 write,	 record	 head	 at	 the	 proper	 block,
sector,	track	etc.

2.	 Specifying	the	block	size
3.	 Waiting	for	the	physical	location	to	arrive	under	the	record	head
4.	 Transmitting	the	data

Reading	data	from	disk	with	these	systems	is	similar	and	involves

1.	 Establishing	the	physical	 location	to	read,	read	head	at	 the	proper	block,	sector,
track	etc.

2.	 Specifying	the	block	size
3.	 Waiting	for	the	physical	location	to	arrive	under	the	read	head
4.	 Receiving	the	data

Under	most	situations	the	size	of	the	data	block	transferred	is	fixed.	The	bandwidth
depends	on	the	rotation	speed	of	the	disk	and	the	information	density	on	the	medium.
A	 10,000	 RPM	 SATA	 hard	 drive	 can	 sustain	 about	 157	 Mebibyte/sec.	 However,
drives	 costing	 less	 than	 $100	 typically	 generate	 100	 Mebibytes/sec.	 The	 time	 to
locate	 the	 physical	 location	 is	 called	 the	 seek	 time.	 Although	 seek	 time	 has	 a
significant	impact	on	the	disk	performance,	it	does	not	affect	the	latency	or	bandwidth
parameters.	An	nX	CD-ROM	has	a	peak	bandwidth	of	n*150	kibibytes/sec.	There	is
a	wide	range	of	disk	speeds,	but	 it	 is	 important	 to	note	 that	 for	most	situations,	 the
disk	bandwidth	will	 be	 less	 than	 the	 computer	 bus	 bandwidth,	 but	 greater	 than	 the
maximum	 bandwidth	 that	 a	 software-controlled	 interface	 can	 achieve.	 If	 the	 disk
interface	 is	not	buffered,	 then	the	 interface	must	respond	to	each	data	byte	at	a	rate
faster	 than	 the	 peak	 disk	 bandwidth.	 For	 example,	 in	 a	 disk	 read,	 once	 the	 data
becomes	 available,	 the	 interface	must	 capture	 it	 and	 store	 it	 in	memory	 before	 the
next	data	becomes	available.	If	we	do	not	meet	the	response	time	requirement	in	the
disk	interface,	the	rotation	speed	will	have	to	be	reduced.	Notice	because	of	the	seek
time	(time	for	the	physical	location	to	arrive	under	the	head),	 the	average	and	peak
bandwidth	will	 be	quite	different.	Also	notice	 that	without	buffering,	 the	maximum
interface	latency	will	be	inversely	related	to	the	peak	bandwidth.

Checkpoint	7.2:	What	happens	if	we	are	reading	data	off	a	hard	drive	but	do	not
satisfy	the	latency	requirement?	In	other	words,	the	read	data	is	ready,	but	we	do
not	capture	it	in	time.

High-Speed	 Data	 Acquisition.	 Examples	 of	 high-speed	 data	 acquisition	 are	 CD-

quality	 sound	 recording	 (16-bit,	 2	 channel,	 44	 kHz),	 real-time	 digital	 image
recording	and	digital	scopes	(8-bit	1	GHz).	Sound	recording	actually	has	two	high-
speed	 data	 channels:	 one	 for	 recording	 into	memory,	 and	 a	 second	 for	 storing	 the
memory	 data	 on	 hard	 disk	 or	 CD.	 Similarly,	 a	 digital	 scope	 has	 two	 high-speed
channels:	 one	 for	 the	 recording	 of	 voltage	 versus	 time	 input,	 and	 a	 second	 for
displaying	 graphical	 results.	 A	 spectrum	 analyzer	 combines	 the	 high-speed	 data
acquisition	 of	 a	 digital	 scope	with	 the	 discrete	 Fourier	 Transform	 to	 visualize	 the
collected	data	in	the	frequency	domain.	In	the	context	of	this	chapter,	we	will	define	a
high-speed	 data	 acquisition	 as	 one	 that	 samples	 faster	 than	 a	 software-controlled
interface	 would	 allow.	 Typically,	 this	 will	 mean	 more	 than	 100,000	 samples	 per
second.

Checkpoint	7.3:	What	happens	to	the	sound	recording	if	data	is	missed?		Is	this
hard,	firm,	or	soft	real	time?

Video	displays.	Real-time	generation	of	TV	or	video	 images	 requires	an	enormous
data	bandwidth.	Consider	 the	 information	bandwidth	required	 to	maintain	an	 image
on	a	graphics	display.	A	VGA	image	is	256	colors	(8-bit),	480	rows,	640	columns
and	 is	 refreshed	 at	 about	 60	 Hz.	 Calculating	 the	 bandwidth	 in	 bytes/sec,	 we	 get
1*480*640*60,	 which	 is	 18,432,000	 bytes/sec.	 Luckily,	 we	 don’t	 have	 to
communicate	each	pixel	for	each	image,	but	rather	can	just	transmit	the	changes	from
the	 previous	 image.	 In	 order	 to	 achieve	 the	 necessary	 bandwidth,	 video	 interface
hardware	 will	 use	 a	 combination	 of	 DMA	 and	 dual	 port	 memories.	 With	 larger
displays	and	3-D	images	the	bandwidth	requirements	are	even	higher.

High	Speed	Signal	Generation.	Examples	of	high	speed	signal	generation	are	CD-
quality	 sound	 playback	 (16-bit,	 2	 channel,	 44	 kHz)	 and	 real-time	 waveform
generation.	Sound	playback	also	has	 two	high	speed	data	channels:	one	for	 loading
sound	data	into	memory	from	CD,	and	a	second	for	playing	the	memory	data	out	 to
the	speakers.

Network	Communications.	For	many	networks	the	communication	bandwidth	of	the
physical	 channel	 will	 exceed	 the	 ability	 of	 the	 software	 to	 accept	 or	 transmit
messages.	For	these	high	speed	applications,	we	will	look	for	ways	to	decouple	the
software	that	creates	outgoing	messages	and	processes	incoming	messages	from	the
hardware	 that	 is	 involved	 in	 the	 transmission	 and	 reception	 of	 individual	 bits.
Because	the	network	load	will	vary,	the	average	bandwidth	(determined	by	how	fast
the	 transmission	 software	can	create	outgoing	messages	and	 the	 reception	 software
can	process	 incoming	messages)	will	be	slower	 than	 the	peak/maximum	bandwidth
that	is	achieved	by	the	network	hardware	during	transmission.	This	mismatch	allows
one	network	to	be	shared	among	multiple	potential	nodes.

Checkpoint	7.4:	What	happens	in	a	communication	system	when	packets	are
lost?	

7.3.	General	Approaches	to	High-Speed	Interfaces

7.3.1.	Hardware	FIFO
If	 the	 software-controlled	 interface	 can	 handle	 the	 average	 bandwidth	 but	 fails	 to
satisfy	the	latency	requirements,	 then	a	hardware	FIFO	can	be	placed	between	 the
I/O	device	and	the	computer.	Assume	in	this	situation,	the	average	serial	bandwidth
is	 low	enough	for	 the	software	 to	 read	 the	data	 from	the	serial	port	and	write	 it	 to
memory.	Without	the	hardware	FIFO,	the	latency	requirement	of	a	serial	input	port	is
the	 time	 it	 takes	 to	 transmit	 one	 data	 frame.	 To	 reduce	 this	 latency	 requirement
(without	changing	the	average	bandwidth	requirement)	we	can	add	a	hardware	FIFO
between	 the	 receive	 shift	 register	 and	 the	 receive	 data	 register,	 as	 illustrated	 in
Figure	 7.1.	 Many	 of	 the	 I/O	 devices	 on	 the	 Texas	 Instruments	 microcontrollers
employ	hardware	FIFOs.

Figure	7.1.	High-speed	I/O	devices	employ	hardware	FIFOs	to	reduce	the
latency	requirement	of	the	interface.

Observation:	With	a	serial	port	that	has	a	shift	register,	a	FIFO	of	size	n,	and	one
data	register,	the	latency	requirement	of	the	input	interface	is	the	time	it	takes	to
transmit	n+1	data	frames.		

A	 hardware	 FIFO,	 placed	 between	 the	 output	 data	 register	 and	 the	 transmit	 shift
register,	allows	the	software	to	write	multiple	bytes	of	data	to	the	interface	and	then
perform	other	tasks	while	the	frames	are	being	sent.

7.3.2.	Dual	Port	Memory
One	approach	that	allows	a	large	amount	of	data	to	be	transmitted	from	the	software
to	 the	 hardware	 is	 the	 dual	 port	memory,	 Figure	 7.2.	 A	 dual	 port	memory	 allows
shared	access	to	the	same	memory	between	the	software	and	hardware.	For	example,
the	 software	 can	 create	 a	 graphics	 image	 in	 the	 dual	 port	 memory	 using	 standard
memory	write	 operations.	At	 the	 same	 time	 the	video	graphics	 hardware	 can	 fetch
information	out	of	 the	same	memory	and	display	 it	on	 the	computer	monitor.	 In	 this
way,	 the	 data	 need	 not	 be	 explicitly	 transmitted	 from	 the	 computer	 to	 the	 graphics
display	hardware.	To	implement	a	dual	port	memory,	there	must	be	a	way	to	arbitrate
the	 condition	 when	 both	 the	 software	 and	 hardware	 wish	 to	 access	 the	 device
simultaneously.	 One	 mechanism	 to	 arbitrate	 simultaneous	 requests	 is	 to	 halt	 the
processor	 using	 a	MRDY	 signal	 so	 that	 the	 software	 temporarily	 waits	 while	 the
video	hardware	fetches	what	it	needs.	Once	the	video	hardware	is	done,	the	MRDY
signal	is	released	and	the	software	resumes.	Most	microcontroller	memory	interfaces
do	 not	 support	 this	 sort	 of	 hardware	 initiated	 cycle	 stretching.	 If	 both	 processors
wish	to	access	the	memory	at	the	same	time,	one	of	the	processors	is	delayed.	Notice
that	 except	 for	 the	 access	 conflict,	 both	 the	 software	 and	 graphics	 hardware	 can
operate	simultaneously	at	full	speed.

Figure	7.2.	A	dual	port	memory	can	be	accessed	by	two	different	modules.

Checkpoint	7.5:	Explain	how	the	bidirectional	tristate	buffers	connected	to	the
memory	data	lines	in	Figure	7.2	work.	

	

7.3.3.	Bank-Switched	Memory
Another	approach	similar	to	the	dual	port	memory	is	the	bank-switched	memory,	see
Figure	7.3.	A	bank-switched	memory	also	allows	shared	access	to	the	same	memory
between	the	software	and	hardware.	The	difference	between	bank-switched	and	dual
port	is	the	bank-switched	memory	has	two	modes.	In	one	mode	(M=1),	the	computer
has	access	to	memory	bank	A,	and	the	I/O	hardware	has	access	to	memory	bank	B.	In
the	 other	 mode	 (M=0),	 the	 computer	 has	 access	 to	 memory	 bank	 B,	 and	 the	 I/O

hardware	 has	 access	 to	memory	 bank	A.	Because	 access	 is	 restricted	 in	 this	way,
there	are	no	conflicts	to	resolve.

Figure	7.3.	A	bank-switched		memory	can	be	accessed	by	two	different
modules,	one	at	a	time.	

Observation:	With	a	bank-switched	memory,	the	latency	requirement	of	the
software	is	the	time	it	takes	the	hardware	to	fill	(or	empty)	one	memory	bank.		

Graphics	controllers	use	bank	switching.	One	processor	transfers	data	from	the	front
buffer	and	displays	it	on	the	screen.	A	second	processor	builds	the	next	image	in	the
back	 buffer.	 To	 create	 the	 video	 output,	 the	 buffers	 are	 switched	 at	 a	 regular	 rate.
Many	 high	 speed	 data	 acquisition	 systems	 all	 employ	 bank	 switching.	 The	 ADC
hardware	can	write	into	one	bank	while	the	computer	software	processes	previously
collected	 data	 in	 the	 other.	 When	 the	 ADC	 sampling	 hardware	 fills	 a	 bank,	 the
memory	mode	is	switched,	and	the	software	and	hardware	swap	access	rights	to	the
memory	banks.	In	a	similar	way,	a	real-time	waveform	generator	or	sound	playback
system	can	use	the	bank-switched	approach.	The	software	creates	the	data	and	stores
it	 into	 one	 bank,	 while	 the	 hardware	 reads	 data	 from	 the	 other	 bank	 that	 was
previously	filled.	Again,	when	the	hardware	is	finished,	then	the	memory	bank	mode
is	switched.

Checkpoint	7.6:	How	would	you	redesign	the	bank-switched	memory	in	Figure
7.3	if	the	communication	channel	were	simplex	(data	flows	left	to	right	only)?	

7.4.	Fundamental	Approach	to	DMA
With	a	software-controlled	interface	(busy-wait	or	interrupts)	if	we	wish	to	transfer
data	 from	 an	 input	 device	 into	 RAM,	 you	 must	 first	 transfer	 it	 from	 input	 to	 the
processor,	 then	from	the	processor	into	RAM.	In	addition,	 this	transfer	is	explicitly
controlled	by	executing	software.	In	order	to	improve	performance,	we	will	transfer
data	 directly	 from	 input	 to	RAM	or	RAM	 to	 output	 using	Direct	Memory	Access,
DMA.		Because	DMA	bandwidth	can	be	as	high	as	the	bus	bandwidth,	we	will	use
this	method	to	interface	high	bandwidth	devices	like	disks,	digital	scopes,	cameras,
and	networks.	Similarly,	because	the	latency	of	this	type	of	interface	depends	only	on
hardware	and	is	usually	just	a	couple	of	bus	cycles,	we	will	use	DMA	for	situations
that	 require	a	very	 fast	 response.	On	 the	other	hand,	 software-controlled	 interfaces
have	 the	potential	 to	perform	more	complex	operations	 than	simply	 transferring	 the
data	 to/from	 memory.	 For	 example,	 the	 software	 could	 perform	 error	 checking,
convert	 from	 one	 format	 to	 another,	 implement	 compression/decompression,	 and
detect	events.	These	more	complex	I/O	operations	may	preclude	the	usage	of	DMA.

7.4.1.	DMA	Cycles
During	a	DMA	read	cycle,	 the	processor	 can	 still	 access	 flash	memory	and	ROM,
while	hardware	automatically	transfers	data	from	RAM	to	the	output	device	(Figure
7.4).	The	address	on	the	bus	specifies	the	RAM	location	from	which	to	read	the	data.
The	µDMA	controller	on	the	TM4C	has	many	different	configuration	options	to	burst
transfer	 data	 to	 and	 from	 arbitrary	 locations.	 For	 example,	 it	 may	 automatically
increment	the	RAM	source	address	to	stream	an	array	to	an	output	device.	The	TM4C
series	does	not	support	DMA	transfers	with	flash	memory	or	ROM	because	they	are
on	a	separate	internal	bus.

Figure	7.4.	A	DMA	read	cycle	copies	data	from	RAM	to	an	output	device.

During	a	DMA	write	cycle,	 the	processor	can	still	access	flash	memory	and	ROM,
while	hardware	automatically	 transfers	data	 from	the	 input	device	 to	RAM	(Figure
7.5).	The	address	on	the	bus	specifies	the	RAM	location	to	which	to	write	the	data.	A
useful	 configuration	 mode	 could	 be	 to	 have	 the	 µDMA	 controller	 automatically
increment	the	RAM	destination	address	to	stream	data	from	an	input	device.	In	some
DMA	interfaces,	 two	DMA	cycles	are	required	to	 transfer	 the	data.	The	first	DMA
cycle	brings	data	from	the	source	into	the	DMA	module,	and	the	second	DMA	cycle
sends	the	data	to	its	destination.

Figure	7.5.		A	DMA	write	cycle	copies	data	from	the	input	device	into	RAM.

7.4.2.	DMA	Initiation
We	can	classify	DMA	operations	according	to	the	event	that	initiates	the	transfer.	A
software	initiated	transfer	begins	with	the	program	setting	up	and	starting	the	DMA
operation.	 Using	DMA	 to	 transfer	 data	 from	 one	memory	 block	 to	 another	 greatly
speeds	up	the	function.	The	efficiency	of	memory	block	transfers	is	very	important	in
larger	computer	systems.	 	Benchmarks	on	most	computers	show	that	even	for	small
blocks,	it	is	faster	to	initialize	a	DMA	channel	and	perform	the	transfer	in	hardware
than	 it	 is	 to	 transfer	 the	data	block	using	 software.	As	 the	block	 size	 increases	 the
performance	advantage	of	DMA	hardware	over	 traditional	 software	becomes	more
dramatic.

Most	DMA	applications	 involve	 a	hardware	 initiated	DMA	 transfer.	 For	 an	 input
device,	the	DMA	is	triggered	on	new	data	available.	For	an	output	device,	the	DMA
is	 triggered	 on	 output	 device	 idle.	 For	 periodic	 events,	 like	 data	 acquisition	 and
signal	 generation,	 the	 DMA	 is	 triggered	 by	 a	 periodic	 timer.	 These	 are	 the	 exact
issues	involved	in	busy-wait	loop	and	interrupt	synchronization.	The	difference	with
DMA	is	that	the	servicing	of	the	I/O	need	will	be	performed	by	the	DMA	controller
hardware	 without	 software	 having	 to	 explicitly	 transfer	 each	 byte.	 An	 interrupt	 is
typically	triggered	at	the	end	of	the	block	transfer.

7.4.3.	Burst	versus	Single	Cycle	DMA
When	 the	 desired	 I/O	 bandwidth	 matches	 the	 computer	 bus	 bandwidth,	 then	 the
computer	can	be	completely	halted,	while	the	block	of	data	is	transferred	all	at	once,
see	Figure	7.6.	Once	an	 input	block	 is	 ready,	 a	burst	mode	DMA	 is	 requested,	 the
computer	is	halted,	and	the	block	is	transferred	into	memory.

Figure	7.6.	An	input	block	is	transferred	all	at	once	during	burst	mode
DMA.

Figure	 7.6	 describes	 an	 input	 interface,	 but	 the	 same	 timing	 occurs	 on	 an	 output
interface	using	burst	mode	DMA.	For	an	output	interface,	the	DMA	is	requested	when
the	interface	needs	another	block	of	data.	During	the	burst	mode	DMA,	the	computer
is	halted,	and	an	entire	block	is	transferred	from	memory	to	the	output	device.

If	 the	 I/O	 bandwidth	 is	 less	 than	 the	 computer	 bus	 bandwidth,	 then	 the	 DMA
hardware	will	steal	cycles	and	transfer	the	data	a	single	cycle	at	a	time,	see	Figure
7.7.	In	single	cycle	mode,	the	software	continues	to	run,	although	a	little	bit	slower.
In	either	case	the	processor	is	halted	during	the	DMA	cycles.

Figure	7.7.	Each	time	an	input	byte	is	ready	it	is	transferred	to	memory
using	single	cycle	DMA.

Figure	 7.7	 describes	 an	 input	 interface,	 but	 the	 same	 timing	 occurs	 on	 an	 output
interface	using	cycle	steal	mode	DMA.	For	an	output	interface,	the	DMA	is	requested
when	 the	 interface	 needs	 another	 byte	 of	 data.	 During	 the	 single	 cycle	 DMA,	 one
byte/halfword/word	is	transferred	from	RAM	to	the	output	device.

Observation:	Some	computers	must	finish	the	instruction	before	allowing	a	burst-
DMA.	In	this	situation,	the	latency	will	be	higher	than	single	cycle	DMA,	which
does	not	need	to	finish	the	current	instruction.		

Since	 most	 I/O	 bandwidths	 are	 indeed	 less	 than	 the	 memory	 bandwidth,	 one
technique	to	enhance	speed	is	I/O	buffering.	In	this	approach	a	dedicated	I/O	memory
buffer	 exists	 in	 the	 I/O	 interface	 hardware.	 This	 buffer	 is	 like	 the	 bank-switched
memory	 discussed	 earlier.	 For	 example,	 on	 a	 hard	 disk	 read	 block	 operation,	 raw
data	 comes	 off	 the	 disk	 and	 into	 the	 buffer.	 During	 this	 time	 the	 processor	 is	 not
halted.	When	the	buffer	is	full,	burst	DMA	is	used	to	transfer	the	data	into	the	system
memory.	 Similarly,	 on	 a	 hard	 disk	 write	 block	 operation,	 the	 software	 initiates	 a
burst	DMA	to	transfer	data	from	system	memory	into	the	I/O	buffer.	Once	full,	the	I/O

interface	can	write	the	data	onto	the	disk.

Checkpoint	7.7:	What	is	the	maximum	latency	in	a	single	cycle	DMA	system?	

7.4.4.	Single	Address	versus	Dual	Address	DMA
Some	 computer	 systems	 allow	 the	 transfer	 of	 data	 between	 the	 memory	 and	 I/O
interface	to	occur	in	one	bus	cycle,	while	others	need	two	bus	cycles	to	complete	the
transfer.

In	 a	 single	 address	 DMA	 cycle,	 the	 address	 and	 R/W	 line	 dictate	 the	 memory
function	 to	 be	 performed	 and	 the	 I/O	 interface	 is	 sophisticated	 enough	 to	 know	 it
should	participate	in	the	transfer.	In	this	single	address	example,	the	disk	interface	is
reading	 bytes	 from	 a	 disk,	 as	 shown	 in	 Figure	 7.8.	 During	 the	 transfer,	 the	 bus
address	is	the	memory	address,	Figure	7.9.

	

Figure	7.8.	Block	diagram	showing	the	modules	involved	in	a	disk	read.
	

Figure	7.9.	Timing	diagram	of	a	single	address	DMA-controlled	floppy	disk
read.

Single	cycle	mode	will	be	used	because	the	disk	bandwidth	is	slower	than	the	bus.
When	a	new	byte	is	available,	Request	will	be	asserted	and	this	will	request	a	DMA
cycle	 from	the	DMA	controller	 (Figure	7.9).	The	DMA	controller	will	 temporarily
suspend	 the	processor	 and	drive	 the	 address	bus	with	 the	memory	address	 and	 the
R/W	 to	 write.	 During	 this	 cycle	 the	 DMA	 controller	 will	 respond	 to	 the	 floppy
interface	by	asserting	the	Ack.	The	disk	uses	the	Ack	(ignoring	the	address	bus	and
R/W)	to	know	when	to	drive	its	data	on	the	bus.

Observation:	Most	microcontrollers	including	the	MSP432	and	the	TM4C	do	not
support	single	address	DMA.		

	

In	a	dual	address	DMA	cycle,	two	bus	cycles	are	required	to	achieve	the	transfer.	In
the	 first	 cycle,	 the	 data	 is	 read	 from	 the	 source	 address	 and	 copied	 in	 the	 DMA
controller.	 During	 the	 first	 cycle	 the	 address	 bus	 contains	 the	 source	 address	 and
R/W	signifies	read.	The	information	from	the	data	bus	is	saved	in	the	Temp	register
within	 the	 DMA	 controller.	 In	 the	 second	 cycle,	 the	 data	 is	 transferred	 to	 the
destination	address.	During	the	second	cycle,	the	address	bus	contains	the	destination
address,	the	data	bus	has	the	Temp	data,	and	R/W	signifies	write.	In	this	dual	address
example,	 the	 SPI	 interface	 is	 receiving	 bytes	 from	 a	 synchronous	 serial	 network
(Figure	7.10).	Single	cycle	mode	will	be	used	because	the	SPI	bandwidth	is	slower
than	the	bus.	When	a	new	byte	is	available,	Request	will	be	asserted	and	this	will
request	a	DMA	cycle	 from	the	DMA	controller	 (Figure	7.11).	The	DMA	controller
will	temporarily	suspend	the	processor	and	first	drive	the	address	bus	with	the	SPI
data	register	address	(R/W=read),	then	in	the	second	cycle	the	DMA	controller	will
drive	the	address	bus	with	the	memory	address	(R/W=write).	The	SPI	knows	it	has
been	serviced,	because	 its	data	register	has	been	read.	The	single	address	DMA	is
twice	as	fast	as	dual	address	DMA.

Figure	7.10.	Block	diagram	showing	the	modules	involved	in	a	SPI	read.
	

Observation:	The	dual	address	DMA	can	be	used	with	I/O	devices	not
configured	to	support	DMA.			Basically,	we	can	transfer	data	between	any	I/O
register	and/or	memory	location.

	

Figure	7.11.	Timing	diagram	of	a	dual	address	DMA-controlled	SPI	read.

7.4.5.	DMA	programming	on	the	TM4C123
Although	DMA	programming	varies	considerably	from	one	system	to	another,	 there
are	a	few	initialization	steps	that	most	require.	Example	projects	using	DMA	can	be
found	in	the	TivaWare	projects.	Table	7.2	lists	the	mode	parameters	that	must	be	set
to	utilize	DMA.	There	are	 two	categories	of	DMA	programming:	 initialization	and
completion.	During	initialization,	the	software	sets	the	DMA	parameters,	so	that	the
DMA	will	begin.

	
Parameter Possible	choices
What	initiates	the
DMA

Software	 trigger,	 input	 device,	 output	 device,
periodic	timer

Type Burst	versus	single
Autoinitialization
mode

Single	event	or	continuous	transfer

Precision 8-bit	byte,	16-bit	half-word	or	32-bit	word
Mode Single	address	or	dual	address
Priority Default	or	high	priority;	lower	channel	numbers	are

higher	priority	to	break	a	tie
Synchronization Set	 busy-wait	 flag,	 or	 interrupt	 on	 block	 transfer

complete
Table	7.2.	DMA	initialization	usually	involves	specifying	these	parameters.
	

At	the	end	of	a	block	transfer,	a	done	flag	is	set	and	a	number	of	additional	actions
may	occur.	If	the	system	is	armed,	an	interrupt	can	be	generated.	At	the	end	of	a	block
transfer	in	a	continuous	transfer	DMA,	the	controller	automatically	switches	between
the	primary	and	alternate	control	structures	and	continues	transferring.	At	this	point,	a

little	 bit	 of	 software	 attention	 is	 required	 to	 allow	 the	 DMA	 process	 to	 continue
indefinitely.	 An	 interrupt	 is	 requested,	 the	 DMA	 controller	 is	 finished	 with	 one
control	 structure	 so	 that	 one	 is	 stopped,	 and	 it	 has	moved	 on	 to	 the	 other	 control
structure,	which	is	running.In	this	case,	software	must	look	at	the XFERMODE 	field
of	the	DMA	Channel	Control	Word	register	of	both	the	primary	and	alternate	control
structures.	 If	 this	 field	 is	 zero,	 the	 corresponding	 control	 structure	 is	 stopped	 and
must	be	re-initialized	before	the	active	one	finishes.	The	TM4C	calls	this	ping-pong
mode.	Table	7.3	lists	additional	parameters	we	will	need	to	initialize.

	

Parameter Definition
Source	 address
end	pointer

Last	 address	 of	 the	 module	 (RAM	 or	 input)	 that
generates	the	data,	inclusive

Destination
address	end	ptr.

Last	 address	 of	 the	module	 (RAM	or	 output)	 that
accepts	the	data,	inclusive

Destination
address	incr.

Automatically	increment	the	destination	address	by
8,	16,	32,	or	0
The	 address	 increment	 bit	 field	 value	 must	 be	 ≥
data	size	bit	field	value

Destination	 data
size

8-,	16-,	or	32-bit	data	size
Destination	 data	 size	must	 be	 the	 same	 as	 source
data	size

Source	 address
increment

Automatically	 increment	 the	 source	 address	 by	8,
16,	32,	or	0
The	 address	 increment	 bit	 field	 value	 must	 be	 ≥
data	size	bit	field	value

Source	data	size 8-,	16-,	or	32-bit	data	size
Source	 data	 size	must	 be	 the	 same	 as	 destination
data	size

Arbitration	size Number	of	DMA	transfers	before	the	controller	re-
arbitrates	channel	priority
This	 arbitration	 is	 among	 DMA	 channels	 only;
DMA	never	blocks	processor
Size	can	be	thought	of	as	the	maximum	burst	size
Should	equal	what	peripheral	can	accommodate	on
burst	request
Must	be	a	power	of	2,	but	no	arbitration	occurs	if
≥	1,024

Transfer	 size
(minus	1)

Number	of	transfers	to	be	made
Maximum	 bit	 field	 value	 of	 1,023	 representing
maximum	of	1,024	transfers
Updated	 by	 hardware	 at	 arbitration	 to	 contain
number	of	transfers	remaining

Next	useburst If	the	number	of	transfers	remaining	is	less	than	the

arbitration	size,	setting	this	bit	uses	a	burst	transfer
to	get	all	of	them;	otherwise	use	single	transfers
Used	 exclusively	 for	 the	 peripheral	 scatter-gather
operation

Transfer	mode Configure	 the	 DMA	 transfer	 mode	 according	 to
desired	operation	of	system

Table	7.3.	DMA	initialization	parameters	from	the	control	structure	located	in	RAM.
	
Checkpoint	7.8:	What	is	the	maximum	latency	in	a	dual-address	burst	DMA
system?
	
Checkpoint	7.9:	What	is	the	maximum	bandwidth	in	a	dual-address	burst-DMA
system?

The	web	 site	 contains	 four	 examples	 of	DMA	 transfer:	RAM-RAM	block	 transfer
(DMASoftware_4C123),	continuous	output	 to	DAC	(DMASPI_4C123)	effectively
playing	 a	 continuous	 audio	 track,	 continuous	 input	 from	 a	 GPIO	 port
(DMATimer_4C123)	 creating	 a	 logic	 analyzer,	 and	 continuous	 output	 to	 a	 port
(DMATimerPortWrite_4C123.)

To	 illustrate	 the	 use	 of	 DMA	 a	 simple	memory	 to	memory	 block	 transfer	 will	 be
shown.	There	are	32	DMA	channels	available	on	 the	TM4C123,	and	channel	30	 is
dedicated	 to	 software	 triggered	 memory	 to	 memory	 transfers.	 There	 are	 some
configurations	that	occur	just	once,	and	can	be	placed	in	the	initialization	code.	See
Program	 7.1.	 The	 clock	 is	 enabled	 in	 the SYSCTL_RCGCDMA_R register.	 The
MASTENbit	 is	 turned	 on	 it	 the UDMA_CFG_R register	 to	 activate	 the	 μDMA
device.	Configuring	the	DMA	transfer	centers	around	the	Channel	Control	Structure,
see	 Table	 7.4.	 There	 is	 a	 3-word	 entry	 in	 this	 structurefor	 each	 of	 the	 32	 DMA
channels.	The UDMA_CTLBASE_R register	 is	 configured	 to	 point	 to	 the	Channel
Control	 Structures.	 The	 first	 half	 of	 the	 table	 contains	 32	 entries	 specifying	 the
primary	 command	 for	 each	 channel	 and	 the	 second	 half	 is	 another	 32	 entries
specifying	 the	 alternate	 commands.	 This	memory	 to	memory	 transfer	 only	 uses	 the
primary	command.	The	command	entry	for	channel	30	exists	in	words	120,	121,	and
122	within	 this	 table.	Each	entry	 is	 aligned	 to	a	4-word	boundary	by	 skipping	one
word.We	set	bit	30	in	the 	UDMA_PRIOCLR_R register	to	specify	default	priority.
Conversely,	if	we	were	to	set	bit	30	in	the UDMA_PRIOSET_R 	register,	then	this
channel	would	 have	 high	 priority	 over	 other	DMA	 channels.	We	 set	 bit	 30	 in	 the
UDMA_ALTCLR_R register	 to	 disable	 the	 alternate	 control	 table,	 using	 just	 the
primary	entries.	There	are	two	types	of	DMA	transfer	single	cycle	and	burst.	We	set
bit	30	in	the 	UDMA_USEBURSTCLR_R 	 register	 to	allow	both	single	cycle	and
burst	 DMA.	 This	 example	 will	 burst	 8	 transfers	 at	 a	 time.	 By	 setting	 bit	 30	 of
the UDMA_REQMASKCLR_R register	we	activate	channel	30.

Each	time	a	DMA	transfer	is	started,	the	software	must	configure	the	three	words	in
the	μDMA	Channel	Control	Structure.	For	each	channel	there	are	three	words:	source

address,	destination	address,	and	a	channel	control	word.	More	specifically,	we	will
place	the	addresses	of	the	last	memory	locations	to	be	transferred	into	the	source	and
destination	 fields.	 There	 are	 eight	 fields	 in	 the	 control	 word.	 The	DSTINC	 and
SRCINC	 specify	 if	 the	 source	and	destination	addresses	 should	be	 incremented	 (0
means	+1,	1	means	+2,	2	means	+4,	and	3	means	no	increment).	In	this	example	we
set	both	DSTINC	and	SRCINC	to	2	so	+4	is	added	to	the	addresses	after	each	word
is	transferred.	The	DSTSIZE	and	SRCSIZE	specify	the	data	size	of	the	source	and
destination	(0	means	byte,	1	means	halfword,	and	2	means	word).	In	this	example	we
set	 both	DSTSIZE	 and	SRCSIZE	 to	 2	 to	 specify	 the	 transfer	 of	 32-bit	 data.	 The
ARBSIZE	 field	specifies	 the	size	of	 the	bursts	used	during	 transfer.	By	setting	 this
field	to	3,	the	controller	will	burst	8	words	then	look	to	see	if	another	module	wishes
to	 use	 the	 bus.	 The	XFERSIZEfield	 specifies	 the	 number	 of	 items	 to	 transfer.	 By
setting	 this	 field	 to cnt-1 ,	 the	 controller	 will	 transfer cnt 	 words.	 The
NXTUSEBURST	 field	 is	 not	 used	 in	 memory	 to	 memory	 transfer.	 We	 set	 the
XFERMODE	 bits	 to	 2	 to	 select	 auto-request	 mode.	 We	 set	 bit	 30	 in	 the
UDMA_ENASET_R register	 to	 enable	 channel	 30.	 By	 setting	 bit	 30	 of
the UDMA_SWREQ_R register	 the	 transfer	 is	 initiated.	 There	 are	 three	 possible
mechanisms	to	determine	when	the	transfer	is	complete.	First,	when	complete,	bit	30
ofthe 	UDMA_ENASET_R 	 register	will	 become	 zero.	Alternately,	we	 could	 poll
the	XFERMODE	 bits	 in	 the	channel	 control	 structure;	 these	bits	will	 also	go	zero
when	the	transfer	is	complete.	A	third	mechanism	uses	interrupts.	If	we	arm	interrupt
number	46	in	the	NVIC,	which	is	vector	62	at	address	0x0000.00F8,	then	a	µDMA
Software	interrupt	will	be	generated	on	completion.

Address	of	the	last	byte	of	the	source	buffer
Address	of	the	last	byte	of	the	destination	buffer
DSTINC DSTSIZE SRCINC SRCSIZE 	 ARBSIZE XFERSIZE NXTUSE XFERMODE

	

Table	7.4.	Structure	of	an	entry	in	the	channel	control	structure.
//	The	ucControlTable	table	must	be	aligned	to	a	1024	byte	boundary.
uint32_t	ucControlTable[256]	__attribute__	((aligned(1024)));
#define	CH30	(30*4)
#define	BIT30	0x40000000
//	************DMA_Init*****************
//	Initialize	the	memory	to	memory	transfer
//	This	needs	to	be	called	once	before	requesting	a	transfer
//	Inputs:		none
//	Outputs:	none
void	DMA_Init(void){	
		volatile	uint32_t	delay;
		SYSCTL_RCGCDMA_R	=	0x01;			//	µDMA	Module	Run	Mode	Clock	Gating	Control
		delay	=	SYSCTL_RCGCDMA_R;		//	allow	time	to	finish
		UDMA_CFG_R	=	0x01;									//	MASTEN	Controller	Master	Enable

		UDMA_CTLBASE_R	=	(uint32_t)ucControlTable;
		UDMA_PRIOCLR_R	=	BIT30;				//	default,	not	high	priority
		UDMA_ALTCLR_R	=	BIT30;					//	use	primary	control
		UDMA_USEBURSTCLR_R	=	BIT30;	//	responds	to	both	burst	and	single
		UDMA_REQMASKCLR_R	=	BIT30;		//	allow	controller	to	recognize	requests
}
//	************DMA_Xfr	*****************
//	Called	to	transfer	words	from	source	to	destination
//	This	needs	to	be	called	once	before	requesting	a	transfer
//	Inputs:		src	is	a	pointer	to	the	first	element	of	the	original	data
//										dest	is	a	pointer	to	a	place	to	put	the	copy
//										cnt	is	the	number	of	words	to	transfer	(max	is	1024	words)
//	Outputs:	none
//	This	routine	does	not	wait	for	completion
void	DMA_Xfr(uint32_t	*src,	uint32_t	*dest,	uint32_t	cnt){
		ucControlTable[CH30]			=	(uint32_t)src+cnt*4-1;		//	last	address
		ucControlTable[CH30+1]	=	(uint32_t)dest+cnt*4-1;		//	last	address
		ucControlTable[CH30+2]	=	0xAA00C002+((cnt-1)<<4);						//	Control	Word
/*	DMACHCTL										Bits				Value	Description
			DSTINC												31:30			2					32-bit	destination	address	increment
			DSTSIZE											29:28			2					32-bit	destination	data	size
			SRCINC												27:26			2					32-bit	source	address	increment
			SRCSIZE											25:24			2					32-bit	source	data	size
			reserved										23:18			0					Reserved	
			ARBSIZE											17:14			3					Arbitrates	after	8	transfers
			XFERSIZE										13:4		cnt-1			Transfer	cnt	items
			NXTUSEBURST							3							0					N/A	for	this	transfer	type
			XFERMODE										2:0					2					Use	Auto-request	transfer	mode
		*/
		UDMA_ENASET_R	=	BIT30;		//	µDMA	Channel	30	is	enabled.
		UDMA_SWREQ_R	=	BIT30;			//	software	start,
}
Program	7.1.	Memory	to	memory	transfer	using	DMA
(DMASoftware_4C123).

In	 this	next	 example,	 the	user	 initializes	 the	SPI	port,	 initializes	 the	DMA,	enables
interrupts	 and	 starts	 the	 DMA	 transfer	 by	 passing	 a	 pointer	 to	 a	 data	 array.The
array SinTable 	 contains	 a	 256-entry	 12-bit	 sine	wave.	The	 data	must	 be	 stored	 in
RAM,	because	we	cannot	use	DMA	to	transfer	to	or	from	ROM.	The	main	program	is
shown	in	Program	7.2.

uint16_t	SinTable[256]	=	{	
2048,2097,2146,2195,2244,2293,2341,2390,2438,2486,2534,2581,2629,2675,2722,2768,
2813,2858,2903,2947,2991,3034,3076,3118,3159,3200,3239,3278,3317,3354,3391,3427,
3462,3496,3530,3562,3594,3625,3654,3683,3711,3738,3763,3788,3812,3834,3856,3876,
3896,3914,3931,3947,3962,3976,3988,3999,4010,4019,4026,4033,4038,4043,4046,4047,

4048,4047,4046,4043,4038,4033,4026,4019,4010,3999,3988,3976,3962,3947,3931,3914,
3896,3876,3856,3834,3812,3788,3763,3738,3711,3683,3654,3625,3594,3562,3530,3496,
3462,3427,3391,3354,3317,3278,3239,3200,3159,3118,3076,3034,2991,2947,2903,2858,
2813,2768,2722,2675,2629,2581,2534,2486,2438,2390,2341,2293,2244,2195,2146,2097,
2048,1999,1950,1901,1852,1803,1755,1706,1658,1610,1562,1515,1467,1421,1374,1328,
1283,1238,1193,1149,1105,1062,1020,978,937,896,857,818,779,742,705,669,634,600,
566,534,502,471,442,413,385,358,333,308,284,262,240,220,200,182,165,149,134,120,
108,97,86,77,70,63,58,53,50,49,48,49,50,53,58,63,70,77,86,97,108,120,134,149,165,
182,200,220,240,262,284,308,333,358,385,413,442,471,502,534,566,600,634,669,705,
742,779,818,857,896,937,978,1020,1062,1105,1149,1193,1238,1283,1328,1374,1421,
1467,1515,1562,1610,1658,1706,1755,1803,1852,1901,1950,1999};
int	main(void){		
		PLL_Init();										//	now	running	at	80	MHz
		DAC_Init(0x1000);				//	initialize	with	command:	Vout	=	Vref
		DMA_Init(625);							//	DMA	channel	8	for	Timer5A,	every	7.8125us
		EnableInterrupts();		//	Timer5A	interrupt	on	completion,	every	2ms
		DMA_Start(SinTable,	SSI0_DR,	256);	//7.8125us*256=	2ms	period	sine	wave
		while(1){
		}
}

Program	7.2.	Main	program	to	create	a	continuous	sin	wave	using	DMA
(DMASPI_4C123).

The	low-level	driver	is	presented	in	Program	7.3.	Every	7.8125	µs	16	bits	from	the
SinTable	are	copied	from	RAM	to	the	SSI0	data	register.	This	is	a	cycle-steal	DMA
with	one	bus	cycle	used	to	read	from	the SinTable and	a	second	bus	cycle	 to	write
to SSI0_DR .	After	 256	 transfers,	which	will	 be	 every	 2	ms,	 a	Timer	 5	 interrupts
occurs,	 and	 the	 process	 continues	 using	 ping-pong	mode.	 As	 long	 as	 the	 interrupt
Timer	5	ISR	is	run	within	2	ms	of	its	trigger,	this	system	is	real-time	with	virtually	no
output	 jitter.	DMA	requests	can	occur	 in	 the	middle	of	 instructions,	 and	will	occur
regardless	 of	 processor	 state.	 The	 only	 events	 that	 can	 stall	 a	 DMA	 are	 another
higher	priority	DMA	requests.

//	The	control	table	used	by	the	uDMA	controller.	
uint32_t	ucControlTable[256]	__attribute__	((aligned(1024)));
//	Timer5A	uses	uDMA	channel	8	encoding	3
//	channel	8	is	at	indices		32,	33,	34	(primary	source,destination,control)	and
//														at	indices	160,161,162	(alternate	source,destination,control)
#define	CH8	(8*4)
#define	CH8ALT	(8*4+128)
#define	BIT8	0x00000100
//	*****************	Timer5A_Init	****************
//	Activate	Timer5A	trigger	DMA	periodically
//	Inputs:		period	in	12.5nsec
//	Outputs:	none
void	Timer5A_Init(uint16_t	period){	volatile	uint32_t	Delay;
		SYSCTL_RCGCTIMER_R	|=	0x20;						//	0)	activate	timer5
		Delay	=	0;																							//	wait	for	completion
		TIMER5_CTL_R	&=	~0x00000001;					//	1)	disable	timer5A	during	setup
		TIMER5_CFG_R	=	0x00000004;							//	2)	configure	for	16-bit	timer	mode
		TIMER5_TAMR_R	=	0x00000002;						//	3)	configure	for	periodic	mode,
		TIMER5_TAILR_R	=	period-1;							//	4)	reload	value
		TIMER5_TAPR_R	=	0;															//	5)	12.5ns	timer5A
		TIMER5_ICR_R	=	0x00000001;							//	6)	clear	timer5A	timeout	flag
		TIMER5_IMR_R	|=	0x00000001;						//	7)	arm	timeout	interrupt
		NVIC_PRI23_R	=	(NVIC_PRI23_R&0xFFFFFF00)|0x00000040;	//	8)	priority	2

//	interrupts	enabled	in	the	main	program	after	all	devices	initialized
//	vector	number	108,	interrupt	number	92
}
//	************DMA_Init*****************
//	Initialize	the	buffer	to	port	transfer,	triggered	by	timer	5A
//	This	needs	to	be	called	once	before	requesting	a	transfer
//	The	source	address	increments	by	2,	destination	address	is	fixed
//	Call	DMA_Start	to	begin	continuous	transfer,	call	DMA_Stop	to	halt
//	Inputs:		period	in	12.5nsec Outputs:	none
void	DMA_Init(uint16_t	period){int	i;	volatile	uint32_t	delay;
		for(i=0;	i<256;	i++){
				ucControlTable[i]	=	0;
		}
		SYSCTL_RCGCDMA_R	=	0x01;				//	µDMA	Module	Run	Mode	Clock	Gating	Control
		delay	=	SYSCTL_RCGCDMA_R;			//	allow	time	to	finish
		UDMA_CFG_R	=	0x01;										//	MASTEN	Controller	Master	Enable
		UDMA_CTLBASE_R	=	(uint32_t)ucControlTable;
		UDMA_CHMAP1_R	=	(UDMA_CHMAP1_R&0xFFFFFFF0)|0x00000003;		//	timer5A
		UDMA_PRIOCLR_R	=	BIT8;					//	default,	not	high	priority
		UDMA_ALTCLR_R	=	BIT8;						//	use	primary	control
		UDMA_USEBURSTCLR_R	=	BIT8;	//	responds	to	both	burst	and	single	requests
		UDMA_REQMASKCLR_R	=	BIT8;		//	allow	the	µDMA	controller	to	recognize	requests
		Timer5A_Init(period);
}
uint16_t	*SourcePt;										//	last	address	of	source	buffer,	inc	by	2
volatile	uint32_t	*DestinationPt;		//	fixed	address
uint32_t	Count;																				//	number	of	halfwords	to	transmit
//	private	function	used	to	reprogram	regular	channel	control	structure
void	static	setRegular(void){
		ucControlTable[CH8]			=	(uint32_t)SourcePt;									//	first	and	last	address
		ucControlTable[CH8+1]	=	(uint32_t)DestinationPt;				//	last	address
		ucControlTable[CH8+2]	=	0xD5000003+((Count-1)<<4);		//	DMA	Channel	Control	Word
/*	DMACHCTL										Bits				Value	Description
			DSTINC												31:30			11				no	destination	address	increment
			DSTSIZE											29:28			01				16-bit	destination	data	size
			SRCINC												27:26			01				16-bit	source	address	increment,	+2
			SRCSIZE											25:24			01				16-bit	source	data	size
			reserved										23:18			0					Reserved	
			ARBSIZE											17:14			0					Arbitrates	after	1	transfer
			XFERSIZE										13:4		count-1	Transfer	count	items
			NXTUSEBURST							3							0					N/A	for	this	transfer	type
			XFERMODE										2:0					011			Use	ping-pong	transfer	mode		*/
}
//	private	function	used	to	reprogram	alternate	channel	control	structure
void	static	setAlternate(void){																								//	same	as	regular
		ucControlTable[CH8ALT]			=	(uint32_t)SourcePt;						//	first	and	last	address
		ucControlTable[CH8ALT+1]	=	(uint32_t)DestinationPt;		//	last	address
		ucControlTable[CH8ALT+2]	=	0xD5000003+((Count-1)<<4);	//	DMA	Channel	Control
}
//	************DMA_Start*****************
//	Called	to	transfer	halfwords	from	source	to	destination
//	The	source	address	is	incremented	by	two	each	16-bit	xfer,	destination	fixed
//	Inputs:		source	is	a	pointer	to	a	RAM	buffer	containing	waveform	to	output
//										destination	is	a	pointer	to	32-bit	DAC	device	(SSI0_DR_R),
//										count	is	the	number	of	halfwords	to	transfer	(max	is	1024	halfwords)
//	Outputs:	none
//	This	routine	does	not	wait	for	completion,	runs	continuously
void	DMA_Start(uint16_t	*source,	volatile	uint32_t	*destination,	uint32_t	count){
		SourcePt	=	source+count-1;		//	last	address	of	source	buffer

		DestinationPt	=	destination;
		Count	=	count;													//	number	of	halfwords	to	transmit
		setRegular();	
		setAlternate();	
		NVIC_EN2_R	=	0x10000000;									//	9)	enable	interrupt	92	in	NVIC
		//	vector	number	108,	interrupt	number	92
		TIMER5_CTL_R	|=	0x00000001;						//	10)	enable	timer5A
		UDMA_ENASET_R	|=	BIT8;		//	µDMA	Channel	8	is	enabled
		//	bits	2:0	ucControlTable[CH8+2]	become	clear	when	regular	structure	done
		//	bits	2:0	ucControlTable[CH8ALT+2]	become	clear	when	alternate	structure	done
}
uint32_t	NumberOfBuffersSent=0;
//	************DMA_Status*****************
//	Can	be	used	to	check	the	status	of	the	continuous	DMA	transfer
//	Inputs:		none
//	Outputs:	the	number	of	buffers	transferred
uint32_t	DMA_Status(void){
		return	NumberOfBuffersSent;
}
void	Timer5A_Handler(void){	//	interrupts	after	each	block	is	transferred
		TIMER5_ICR_R	=	TIMER_ICR_TATOCINT;	//	acknowledge	timer5A	timeout
		NumberOfBuffersSent++;
		if((ucControlTable[CH8+2]&0x0007)==0){					//	regular	buffer	complete
				setRegular();																												//	rebuild	channel	control	structure
		}
		if((ucControlTable[CH8ALT+2]&0x0007)==0){		//	Alternate	buffer	complete
				setAlternate();																										//	rebuild	channel	control	structure
		}
}
//	************DMA_Stop*****************
//	Stop	the	transfer	halfwords	from	source	to	destination
//	Inputs:		none Outputs:	none
void	DMA_Stop(void){
		UDMA_ENACLR_R	=	BIT8;		//	µDMA	Channel	8	is	disabled
		NVIC_DIS2_R	=	0x10000000;									//	9)	disable	interrupt	92	in	NVIC
		TIMER5_CTL_R	&=	~0x00000001;						//	10)	disable	timer5A
}

Program	7.3.	Memory	to	DAC	transfer	using	DMA	(DMASPI_4C123).

7.6.	Exercises
7.1	For	each	term	give	a	definition	in	32	words	or	less.
		a)	Latency
		b)	Real-time
		c)	DMA
		d)	Seek	time
		e)	Bandwidth
		f)	Dual-port	memory
		g)	Bank-switched	memory
		h)	Double	buffer
	
7.2	For	each	pair	of	 terms,	explain	 the	similarities	and	differences	 in	32	words	or
less
		a)	Burst	versus	cycle-steal	DMA
		b)	Single	address	versus	dual	address	DMA
		c)	Back	buffer	versus	front	buffer
		d)	Write	data	required	versus	write	data	available
	
7.3	The	 objective	 of	 this	 problem	 is	 to	 interface	 various	 devices	 to	 the	 computer
using	DMA	synchronization.	You	may	assume	the	bus	bandwidth	is	at	least	8	million
bytes/sec.	For	each	device	you	are	asked	to	select	the	most	appropriate	DMA	mode.
Assume	the	devices	support	single	address	DMA.	The	16-bit	address	of	the	memory
buffer	used	in	each	case	is	0x1234.	Fill	in	the	table	with	the	most	appropriate	mode
for	each	Device
Write	Tape	Drive	Each	 tape	 block	 is	 256	 bytes.	When	 a	 tape	 head	 is	 ready,	 the
controller	will	 signal	 that	 it	 is	 ready	 to	accept	all	256	bytes.	At	 this	 time,	 the	 tape
interface	chip	is	ready	to	transfer	as	fast	as	possible	all	256	bytes	from	the	memory
buffer	at	0x1234	to	the	tape.
Sound	 Input	 The	 sound	 waveform	 buffer	 is	 located	 in	 memory	 at	 0x1234.	 Your
interface	will	 read	 the	 8-bit	ADC	 1024	 times	 at	 22	 kHz	 and	 store	 the	 data	 in	 the
buffer.	Your	software	will	be	smart	enough	to	create	two	512	byte	buffers	out	of	the
1024	bytes	(double	buffer)	so	that	 it	can	process	one	buffer	while	 the	ADC	data	is
being	 stored	 automatically	 under	DMA	control	 into	 the	 other	 buffer.	 I.e.,	when	 the
1024	byte	wave	buffer	has	been	filled,	the	DMA	system	should	repeat	and	fill	it	up
again.
Read	Hard	Drive	There	is	a	256-byte	buffer	at	0x1234	that	your	DMA	system	will
fill	with	data	from	the	hard	disk.	When	a	hard	drive	read	head	is	ready,	the	controller
will	signal	that	it	has	the	next	byte	from	the	disk.	It	takes	10ms	for	the	read	head	to	be
ready,	 then	 the	 256	 bytes	 of	 data	 can	 be	 transferred	 from	 the	 disk	 to	memory	 at	 2
million	bytes/sec.

	 Tape Sound Disk

Cycle	Steal	or	Block	Transfer 	 	 	
Read	or	Write	Transfer 	 	 	
Autoinitialization	(Yes	or	No) 	 	 	
Address	increment	or	decrement 	 	 	
DMA	Address	register	value 	 	 	
DMA	Count	register	value 	 	 	

	
7.4	When	a	256-byte	block	is	written	to	a	floppy	disk,	there	are	256	separate	single-
address	DMA	cycles	in	cycle	steal	mode.	This	question	deals	with	just	one	of	these
DMA	transfers.	There	are	14	events	listed	below.	First	you	will	eliminate	the	events
that	do	not	occur	during	the	DMA	cycle	that	saves	one	byte	on	the	disk.	In	particular,
list	the	events	that	will	not	occur.	Second,	you	will	list	the	events	that	do	occur	in	the
proper	sequence.
a)	An	interrupt	is	requested.
b)	Registers	are	pulled	from	the	stack.
c)	Registers	are	pushed	on	the	stack.
d)	The	DMAC	asks	the	processor	to	halt	by	activating	its	Halt	signal.
e)	The	DMAC	deactivates	its	Halt	request	to	the	processor.
f)	The	DMAC	tells	the	FDC	interface	that	a	DMA	cycle	is	occurring	by	activating	its
Ack	 signal;	 the	DMA	Controller	drives	 the	address	bus	with	 the	FDC	address;	 the
DMAC	 drives	 the	 control	 bus	 to	 signify	 a	write	 cycle	 (e.g.,	 R/W=0);	 the	memory
drives	the	data	bus;	the	FDC	accepts	the	data.
g)	The	DMAC	tells	the	FDC	interface	that	a	DMA	cycle	is	occurring	by	activating	its
Ack	signal;	the	DMAC	drives	the	address	bus	with	the	memory	address;	the	DMAC
drives	 the	 control	 bus	 to	 signify	 a	memory	 read	 cycle	 (e.g.,	 R/W=1);	 the	memory
drives	the	data	bus;	the	FDC	accepts	the	data.
h)	The	FDC	deactivates	its	DMA	Request	signal	to	the	DMAC.
i)	The	FDC	requests	a	DMA	cycle	to	the	DMAC	by	activating	its	Request	signal.
j)	The	interrupt	service	routine	is	executed.
k)	The	write	head	is	properly	positioned	over	the	place	on	the	disk.
l)	 The	 processor	 address	 and	 control	 lines	 float;	 the	 processor	 responds	 to	 the
DMAC	that	it	is	halted	by	activating	its	HaltAck	signal.
m)	The	processor	resumes	software	execution.
n)	Wait	until	the	current	instruction	is	finished	executing.
	

	

8.	File	system	management
Chapter	8	objectives	are	to:
•	Present	the	fundamentals	of	file	system	management

•	Develop	a	detailed	solution	of	a	simple	file	system

•	Define	basic	components	of	a	FAT	system

•	Describe	how	to	program	internal	flash	memory

•	Present	interfacing	methods	to	a	secure	digital	card	(SDC)

	
	

In	this	chapter,	we	present	approaches	for	managing	large	amounts	of	data	on
an	 embedded	 system.	 We	 present	 two	 methods	 to	 save	 and	 retrieve	 data:
internal	flash	and	an	external	secure	digital	card.	In	particular,	we	will	define
data	as	abstract	elements	(files)	and	then	create	a	mapping	from	the	logical	to
the	 physical.	We	will	 present	methods	 for	 creating	 directory,	 accessing	 data,
and	managing	free	space.

We	will	begin	 this	chapter	with	an	 introduction	of	 file	 systems.	 In	particular,
we	briefly	present	what	is	a	file	system,	discuss	how	it	will	be	used,	develop
performance	metrics,	present	 fundamental	concepts,	and	 then	conclude	with	a
couple	of	simple	examples.

Embedded	 applications	 that	 might	 require	 disk	 storage	 include	 data
acquisition,	database	systems,	and	signal	generation	systems.	You	can	also	use
a	disk	in	an	embedded	system	to	log	debugging	information.

8.1.	Performance	Metrics

8.1.1.	Usage
A	file	system	allows	the	software	to	store	data	and	to	retrieve	previously	stored	data,
see	Figure	8.1.	Typically,	the	size	of	the	stored	data	exceeds	available	memory	of	the
computer.	In	general,	file	systems	allow	for	these	operations:

Create	a	new	file
Write	data	to	the	file	(append	to	end	or	insert	at	arbitrary
location)
Read	data	from	the	file	(read	sequential	or	read	at	arbitrary
location)
Erase	the	file

Each	file	will	have	a	name	or	a	number,	with	which	we	will	use	to	access	the	data	in
that	file.	In	general,	we	can	organize	files	into	directories.	However,	in	this	chapter,
we	will	restrict	our	file	system	implementations	to	a	single	directory	containing	all
files.

Figure	8.1.	A	file	system	is	used	to	store	data.

When	designing	a	file	system,	it	is	important	to	know	how	it	will	be	used.	We	must
know	if	files	will	be	erased.	In	particular,	we	can	simplify	how	the	disk	is	organized
if	we	know	files,	once	created,	will	never	be	destroyed.

For	example,	when	recording	and	playing	back	sound	and	 images,	 the	data	will	be
written	 and	 read	 in	 a	 sequential	 manner.	 We	 call	 this	 use	 pattern	 as	 sequential
access.	If	we	are	logging	or	recording	data,	then	we	will	need	to	append	data	at	the
end	of	a	file	but	never	change	any	data	once	logged.	Conversely,	an	editor	produces
more	of	a	random	access	pattern	for	data	reading	and	writing.	Furthermore,	an	editor
requires	data	insertion	and	removal	anywhere	within	the	file.	If	the	file	is	used	as	a
data	 base,	 then	 the	 positions	 in	 the	 file	 where	 we	 read	 will	 be	 random	 (random
access	reading).	However,	 the	data	base	may	be	static,	 in	other	words,	 it	may	only
need	to	be	written	once.

The	reliability	of	the	storage	medium	and	the	cost	of	lost	information	will	also	affect
the	design	of	a	file	system.	For	an	embedded	system	we	can	improve	reliability	by

selecting	a	more	reliable	storage	medium	or	by	deploying	redundancy.	For	example,
we	could	write	the	same	data	into	three	independent	disks,	and	when	reading	we	read
all	three	and	return	the	median	of	the	three	data	values.

So	in	general,	we	should	first	study	the	use	cases	in	our	system	before	choosing	or
designing	the	file	system.	In	this	chapter,	we	will	develop	in	detail	a	file	system	for
data	logging,	where	both	writing	and	reading	will	be	done	sequentially,	and	files	will
never	be	deleted.

8.1.2.	Specifications
There	are	many	organizational	approaches	when	designing	a	file	system.	As	we	make
design	 decisions,	 it	 is	 appropriate	 to	 consider	 both	 quantitative	 and	 qualitative
parameters.	We	can	measure	the	effectiveness	of	a	file	system	by

Maximum	file	size
Maximum	number	of	files
Speed	to	read	data	at	a	random	position	in	the	file
Speed	to	read	data	in	a	sequential	fashion
Speed	to	write	data	into	the	file

8.1.3.	Fragmentation
Internal	 fragmentation	 is	 storage	 that	 is	 allocated	 for	 the	 convenience	 of	 the
operating	system	but	contains	no	information.	This	space	is	wasted.	Often	this	space
is	wasted	in	order	to	improve	speed	or	to	provide	for	a	simpler	implementation.	The
fragmentation	is	called	"internal"	because	the	wasted	storage	is	inside	the	allocated
region,	 see	 Figure	 8.2.	 In	 most	 file	 systems,	 whole	 sectors	 (or	 even	 clusters	 of
sectors)	 are	 allocated	 to	 individual	 files,	 because	 this	 simplifies	 organization	 and
makes	it	easier	to	grow	files.	Any	space	left	over	between	the	last	byte	of	the	file	and
the	first	byte	of	the	next	sector	is	a	form	of	internal	fragmentation	called	file	slack	or
slack	space.	A	 small	 file	 holding	m	 bytes	 is	 allocated	 an	 entire	 sector	 capable	 of
storing	 n	 bytes	 of	 data.	 However,	 only	m	 of	 those	 locations	 contains	 data,	 so	 the
remaining	 n-m	 bytes	 can	 be	 considered	 internal	 fragmentation.	 The	 pointers	 and
counters	used	by	the	OS	to	manage	the	file	are	not	considered	internal	fragmentation,
because	 even	 though	 the	 locations	 do	 not	 contain	 data,	 the	 space	 is	 not	 wasted.
Whether	or	not	 to	count	 the	OS	pointers	and	counters	as	 internal	 fragmentation	 is	a
matter	of	debate.	As	is	the	case	with	most	definitions,	it	is	appropriate	to	document
your	working	definition	of	 internal	 fragmentation	whenever	presenting	performance
specifications	to	your	customers.

Figure	8.2.	The	large	block	is	the	entire	disk.	There	are	multiple	files
(rectangles)	on	this	disk.	The	rectangle	on	the	left	represents	one	file.	Within
the	allocated	space	for	this	file	there	is	data,	and	there	is	some	space	in	the
allocated	area	that	is	not	data.	The	space	within	the	allocated	area	not	used
for	data	is	internal	fragmentation.

Many	compilers	will	 align	variables	on	a	32-bit	boundary,	 even	 though	memory	 is
byte-addressable.	If	the	size	of	a	data	structure	is	not	divisible	by	32	bits,	it	will	skip
memory	 bytes	 so	 the	 next	 variable	 is	 aligned	 onto	 a	 32-bit	 boundary.	This	wasted
space	is	also	internal	fragmentation.

Checkpoint	8.1:	If	the	sector	size	is	n	and	the	size	of	the	files	is	randomly
distributed,	what	is	the	average	internal	fragmentation	per	file?

External	fragmentation	exists	when	the	largest	file	that	can	be	allocated	is	less	than
the	total	amount	of	free	space	on	the	disk.	External	fragmentation	occurs	in	systems
that	 require	 contiguous	 allocation,	 like	 a	 memory	 manager.	 External	 fragmentation
would	 occur	 within	 a	 file	 system	 that	 allocates	 disk	 space	 in	 contiguous	 sectors.
Over	time,	free	storage	becomes	divided	into	many	small	pieces,	see	Figure	8.3.	It	is
a	 particular	 problem	 when	 an	 application	 allocates	 and	 deallocates	 regions	 of
storage	of	 varying	 sizes.	The	 result	 is	 that,	 although	 free	 storage	 is	 available,	 it	 is
effectively	unusable	because	it	is	divided	into	pieces	that	are	too	small	to	satisfy	the
demands	of	 the	application.	The	 term	"external"	 refers	 to	 the	 fact	 that	 the	unusable
storage	is	outside	the	allocated	regions.

Figure	8.3.	There	are	four	files	on	this	disk,	and	there	are	five	sections	of	free
space.	The	largest	free	space	is	less	than	the	total	free	space,	which	is
defined	as	external	fragmentation,	assuming	the	file	system	requires
contiguous	allocation.

For	example,	assume	we	have	a	file	system	employing	contiguous	allocation.	A	new
file	with	five	sectors	might	be	requested,	but	the	largest	contiguous	chunk	of	free	disk
space	is	only	three	sectors	long.	Even	if	there	are	ten	free	sectors,	those	free	sectors
may	be	separated	by	allocated	files,	one	still	cannot	allocate	the	requested	file	with
five	 sectors,	 and	 the	 allocation	 request	 will	 fail.	 This	 is	 external	 fragmentation
because	 there	 are	 ten	 free	 sectors	but	 the	 largest	 file	 that	 can	be	allocated	 is	 three
sectors.

Checkpoint	8.2:	Consider	this	analogy.	You	are	given	a	piece	of	wood	that	is	10
meters	long,	and	you	are	asked	to	cut	it	because	you	need	one	piece	that	is	2
meters	long.	What	is	the	best	way	to	cut	the	wood	so	there	is	no	external
fragmentation?	Think	of	another	way	the	wood	could	have	been	cut	so	the	largest
piece	of	free	wood	is	smaller	than	the	total	free	wood,	creating	external
fragmentation?

8.2.	File	System	Allocation
There	 are	 three	 components	 of	 the	 file	system:	 the	 directory,	 allocation,	 and	 free-
space	management.	 This	 section	 introduces	 fundamental	 concepts	 and	 the	 next	 two
sections	present	 simple	 file	 systems.	 In	 this	 chapter,	we	define	 sector	 as	 a	 unit	 of
storage.	 Whole	 sectors	 will	 be	 allocated	 to	 a	 file.	 In	 other	 words,	 we	 will	 not
combine	data	from	multiple	files	into	a	single	sector.

We	 consider	 information	 in	 a	 file	 as	 a	 simple	 linear	 array	 of	 bytes.	 The	 “logical”
address	is	considered	as	the	index	into	this	array.	However,	data	must	be	placed	at	a
“physical”	location	on	the	disk.	 	An	important	 task	of	 the	file	system	is	 to	translate
the	logical	address	to	the	physical	address	(Figure	8.4).

Figure	8.4.	A	file	system	must	translate	from	a	logical	address	to	the
physical	address.

8.2.1.	Contiguous	allocation
Contiguous	 allocation	 places	 the	 data	 for	 each	 file	 at	 consecutive	 sectors	 on	 the
disk,	as	shown	in	Figure	8.5.	Each	directory	entry	contains	the	file	name,	the	sector
number	of	the	first	sector,	the	length	in	sectors.	This	method	has	similar	theory	as	a
memory	 manager.	 You	 could	 choose	 first-fit,	 best-fit,	 or	 worst-fit	 algorithms	 to
manage	storage.	First	 fit	 is	an	algorithm	that	searches	 the	available	 free	space	and
selects	 the	 first	 area	 it	 fits	 that	 is	 large	 enough	 for	 the	 file	 needs.	 This	 algorithm
executes	quickly.	Best	 fit	 is	an	algorithm	that	 looks	at	all	available	 free	space	and
chooses	 the	 smallest	 area	 that	 is	 large	enough	 for	 the	 file	needs.	Best-fit	may	 limit
external	fragmentation	for	contiguous	allocation	schemes.		Worst	fit	 is	an	algorithm
that	looks	at	all	available	free	space	and	chooses	the	largest	area,	assuming	that	area
is	large	enough	for	the	file	needs.

If	the	file	can	increase	in	size,	either	you	can	leave	no	extra	space,	and	copy	the	file
elsewhere	 if	 it	 expands,	 or	 you	 can	 leave	 extra	 space	 when	 creating	 a	 new	 file.
Assuming	the	directory	is	in	memory,	it	takes	only	one	disk	sector	read	to	access	any
data	in	the	file.	A	disadvantage	of	this	method	is	you	need	to	know	the	maximum	file
size	when	a	 file	 is	created,	and	 it	will	be	difficult	 to	grow	 the	 file	 size	beyond	 its
initial	allocation.

Figure	8.5.	A	simple	file	system	with	contiguous	allocation.	Notice	all	the
sectors	of	a	file	are	physically	next	to	each	other.

Checkpoint	8.3:	The	disk	in	Figure	8.5	has	32	sectors	with	the	directory
occupying	sector	0.	The	disk	sector	size	is	512	bytes.	What	is	the	largest	new	file
that	can	be	created?	

Checkpoint	8.4:	You	wish	to	allocate	a	new	file	requiring	1	sector	on	the	disk	in
Figure	8.5.	Using	first-fit	allocation,	where	would	you	put	the	file?		Using	best-fit
allocation,	where	would	you	put	the	file?	Using	worst-	fit	allocation,	where
would	you	put	the	file?

One	of	 the	 tasks	 the	file	system	must	manage	 is	 free	space.	One	simple	scheme	for
free	space	management	is	a	bit	table.	If	the	disk	has	n	sectors,	then	we	will	maintain
a	table	with	n	bits,	assigning	one	bit	for	each	sector.	If	the	bit	is	1,	the	corresponding
sector	is	free,	and	if	the	bit	is	0,	the	sector	is	used.	Figure	8.5	shows	a	simple	disk
with	32	sectors.	For	this	disk	we	could	manage	free	space	with	one	32-bit	number.

Checkpoint	8.5:	Assume	the	sector	size	is	4096	bytes	and	the	disk	is	one
gibibyte.	How	many	bytes	would	it	take	to	maintain	a	bit	table	for	the	free	space?

8.2.2.	Linked	allocation
Linked	allocation	places	a	sector	pointer	in	each	data	sector	containing	the	address
of	the	next	sector	in	the	file,	as	shown	in	Figure	8.6.	Each	directory	entry	contains	a
file	name	and	the	sector	number	of	the	first	sector.		There	needs	to	be	a	way	to	tell	the
end	 of	 a	 file.	 The	 directory	 could	 contain	 the	 file	 size,	 each	 sector	 could	 have	 a
counter,	or	there	could	be	an	end-of-file	marker	in	the	data	itself.	Sometimes,	there	is
also	 a	 pointer	 to	 the	 last	 sector,	 making	 it	 faster	 to	 add	 to	 the	 end	 of	 the	 file.
Assuming	the	directory	is	 in	memory	and	the	file	 is	stored	in	N	 sectors,	 it	 takes	on
average	N/2	 disk-sector	 reads	 to	 access	 any	 random	 piece	 of	 data	 on	 the	 disk.
Sequential	reading	and	writing	are	efficient,	and	it	also	will	be	easy	to	append	data
at	the	end	of	the	file.	Linked	allocation	has	no	external	fragmentation.

Figure	8.6.	A	simple	file	system	with	linked	allocation.

Checkpoint	8.6:	If	the	disk	holds	2	Gibibytes	of	data	broken	into	512-byte
sectors,	how	many	bits	would	it	take	to	store	the	sector	address?

Checkpoint	8.7:	If	the	disk	holds	2	Gibibytes	of	data	broken	into	32k-byte
sectors,	how	many	bits	would	it	take	to	store	the	sector	address?

Checkpoint	8.8:	The	disk	in	Figure	8.6	has	32	sectors	with	the	directory
occupying	sector	0.	The	disk-sector	size	is	512	bytes.	What	is	the	largest	new	file
that	can	be	created?		Is	there	external	fragmentation?

Checkpoint	8.9:	How	would	you	handle	the	situation	where	the	number	of	bytes
stored	in	a	file	is	not	an	integer	multiple	of	the	number	of	data	bytes	that	can	be
stored	in	each	sector?	

We	can	also	use	 the	 links	 to	manage	 the	 free	 space,	 as	 shown	 in	Figure	8.7.	 If	 the
directory	 were	 lost,	 then	 all	 file	 information	 except	 the	 filenames	 could	 be
recovered.	Putting	the	number	of	the	last	sector	into	the	directory	with	double-linked
pointers	 improves	 recoverability.	 If	 one	data	 sector	were	damaged,	 then	 remaining
data	sectors	could	be	rechained,	limiting	the	loss	of	information	to	the	one	damaged
sector.

Figure	8.7.	A	simple	file	system	with	linked	allocation	and	free	space
management.

8.2.3.	Indexed	allocation
Indexed	allocation	uses	an	index	table	to	keep	track	of	which	sectors	are	assigned	to

which	files.	Each	directory	entry	contains	a	 file	name,	an	 index	for	 the	first	sector,
and	 the	 total	 number	 of	 sectors,	 as	 shown	 in	 Figure	 8.8.	 One	 implementation	 of
indexed	allocation	places	all	pointers	for	all	files	on	the	disk	together	in	one	index
table.	Another	 implementation	allocates	a	 separate	 index	 table	 for	each	 file.	Often,
this	 table	 is	so	 large	 it	 is	stored	 in	several	disk	sectors.	For	example,	 if	 the	sector
number	is	a	16-bit	number	and	the	disk	sector	size	is	512	bytes,	then	only	256	index
values	can	be	stored	in	one	sector.	Also	for	reliability,	we	can	store	multiple	copies
of	the	index	on	the	disk.	Typically,	the	entire	index	table	is	loaded	into	memory	while
the	disk	is	in	use.	The	RAM	version	of	the	table	is	stored	onto	the	disk	periodically
and	when	the	system	is	shut	down.	Indexed	allocation	is	faster	than	linked	allocation
if	we	employ	random	access.	If	the	index	table	is	in	RAM,	then	any	data	within	the
file	 can	 be	 found	with	 just	 one	 sector	 read.	 One	 way	 to	 improve	 reliability	 is	 to
employ	 both	 indexed	 and	 linked	 allocation.	 The	 indexed	 scheme	 is	 used	 for	 fast
access,	 and	 the	 links	 can	 be	 used	 to	 rebuild	 the	 file	 structure	 after	 a	 disk	 failure.
Indexed	allocation	has	no	external	fragmentation.

Checkpoint	8.10:	If	the	sector	number	is	a	16-bit	number	and	the	sector	size	is
512	bytes,	what	is	the	maximum	disk	size?	

Checkpoint	8.11:	A	disk	with	indexed	allocation	has	2	GiB	of	storage.	Each	file
has	a	separate	index	table,	and	that	index	occupies	just	one	sector.	The	disk	sector
size	is	1024	bytes.	What	is	the	largest	file	that	can	be	created?	Give	two	ways	to
change	the	file	system	to	support	larger	files.	

Checkpoint	8.12:	This	disk	in	Figure	8.8	has	32	sectors	with	the	directory
occupying	sector	0	and	the	index	table	in	sector	1.	The	disk-sector	size	is	512
bytes.	What	is	the	largest	new	file	that	can	be	created?		Is	there	external
fragmentation?

	

Figure	8.8.	A	simple	file	system	with	indexed	allocation.

8.2.4.	File	allocation	table	(FAT)
The	 file	 allocation	 table	 (FAT)	 is	 a	 mixture	 of	 indexed	 and	 linked	 allocation,	 as
shown	in	Figure	8.9.	Each	directory	entry	contains	a	file	name	and	the	sector	number
of	the	first	sector.	

Figure	8.9.	A	simple	file	system	with	a	file	allocation	table.

The	FAT	 is	 just	 a	 table	 containing	a	 linked	 list	of	 sectors	 for	 each	 file.	Figure	8.9
shows	file	A	in	sectors	10,	3,	and	12.	The	directory	has	sector	10,	which	is	the	initial
sector.	 The	 FAT	 contents	 at	 index	 10	 is	 a	 3,	 so	 3	 is	 the	 second	 sector.	 The	 FAT
contents	at	index	3	is	a	12,	so	12	is	the	third	sector.	The	FAT	contents	at	index	12	is	a
NULL,	which	means	there	are	no	more	sectors	in	the	file.	A	FAT	allocation	schemes
have	no	external	fragmentation.

Many	scientists	classify	FAT	as	a	“linked”	scheme,	because	 it	has	 links.	However,
other	scientists	call	it	an	“indexed”	scheme,	because	it	has	the	speed	advantage	of	an
“indexed”	scheme	when	 the	 table	 for	 the	entire	disk	 is	kept	 in	main	memory.	 If	 the
directory	and	FAT	are	in	memory,	it	takes	just	one	disk	read	to	access	any	data	in	a
file.	If	the	disk	is	very	large,	the	FAT	may	be	too	large	to	fit	in	main	memory.	If	the
FAT	is	stored	on	 the	disk,	 then	 it	will	 take	2	or	3	disk	accesses	 to	find	an	element
within	 the	file.	The	-	 	 	 in	Figure	8.9	 represent	 free	sectors.	 In	Figure	8.10,	we	can
chain	them	together	in	the	FAT	to	manage	free	space.

Checkpoint	8.13:	This	disk	in	Figure	8.10	has	32	sectors	with	the	directory
occupying	sector	0	and	the	FAT	in	sector	1.	The	disk	sector	size	is	512	bytes.
What	is	the	largest	new	file	that	can	be	created?	Is	there	an	external
fragmentation?	

Figure	8.10.	The	simple	file	system	with	a	file	allocation	table	showing	the
free-space	management.

Observation:	In	this	section	we	use	0	to	mean	null	pointer.	Later	in	the	chapter
we	will	use	255	to	mean	null	pointer.	We	use	0	in	this	section	because	this
discussion	is	similar	to	the	standard	FAT16.	However,	for	EEPROM-based
systems,	we	need	to	use	255	because	255	is	the	value	that	occurs	when	the	flash
memory	is	erased.

	

8.3.	Solid	State	Disk

8.3.1.	Flash	memory
In	general,	we	can	divide	memory	into	volatile	and	nonvolatile	categories.	Volatile
means	it	loses	its	data	when	power	is	removed	and	restored.		Nonvolatile	means	it
retains	 its	 data	 when	 power	 is	 removed	 and	 restored.	 There	 are	 many	 types	 of
memory,	but	here	are	four	of	them

	Volatile	memory
Static	random	access	memory,	SRAM
Dynamic	random	access	memory,	DRAM

	Nonvolatile	memory
Flash	electrically	erasable	programmable	read	only

memory,	EEPROM
Ferroelectric	random	access	memory,	FRAM

	
As	you	know	data	and	the	stack	are	allocated	in	RAM,	because	it	needs	read/write
access.	DRAM	has	fewer	transistors/bit	compared	to	SRAM	because	it	does	require
periodic	 refreshing.	 Most	 Cortex	 M	 microcontrollers	 use	 SRAM	 because	 of	 its
simple	 technology	 and	 ability	 to	 operate	 on	 a	wide	 range	 of	 bus	 frequencies.	 For
random	access	memories,	there	is	a	size	above	which	DRAM	is	more	cost	effective
than	SRAM.	Dynamic	random	access	memory	(DRAM)	is	the	type	of	memory	found
in	most	personal	computers.	Embedded	devices	like	the	Beaglebone	and	Raspberry
Pi	also	use	DRAM.

Ferroelectric	RAM	(FRAM)	is	a	random	access	memory	similar	to	DRAM	but	uses
a	ferroelectric	layer	instead	of	a	dielectric	layer.	The	ferroelectric	layer	provides	the
non-volatility	needed	 for	program	storage.	Some	new	 lines	of	microcontrollers	use
FRAM	instead	of	 flash	EEPROM	for	 their	non-volatile	 storage.	The	MSP430FRxx
microcontrollers	 from	Texas	 Instruments	 use	 FRAM	 to	 store	 programs	 and	 data	 in
one	 shared	memory	 object.	Other	 companies	 that	 produce	 FRAM	microcontrollers
include	 Fujitsu	 and	 Silicon	 Labs.	 	 FRAM	 requires	 less	 power	 usage,	 has	 a	 faster
write,	and	provides	a	greater	maximum	number	of	write-erase	cycles	when	compared
to	 flash.	 When	 compared	 to	 flash,	 FRAMs	 have	 lower	 storage	 densities,	 smaller
sizes,	and	higher	cost.

Solid-state	disks	can	be	made	from	any	nonvolatile	memory,	such	as	battery-backed
RAM,	FRAM,	or	flash	EEPROM.	Personal	computers	typically	use	disks	made	with
magnetic	storage	media	and	moving	parts.	While	 this	magnetic-media	 technology	 is
acceptable	for	the	personal	computer	because	of	its	large	storage	size	(>	1	Tibibyte)

and	low	cost	(<$100	OEM),	it	is	not	appropriate	for	an	embedded	system	because	of
its	physical	dimensions,	electrical	power	requirements,	noise,	sensitivity	to	motion,
and	weight.

Secure	digital	(SD)	cards	use	Flash	EEPROM	together	with	interface	logic	to	read
and	write	data.	For	an	embedded	system	we	could	create	a	file	system	using	an	SD
card	or	using	the	internal	flash	of	the	microcontroller	itself.	SD	cards	are	an	effective
approach	when	file	storage	needs	exceed	128	kibibytes,	because	of	the	low	cost	and
simple	 synchronous	 serial	 interface.	 If	 we	 use	 the	 internal	 flash	 of	 the
microcontroller	 itself,	 there	 will	 be	 no	 additional	 costs	 to	 developing	 this	 file
system.

Smart	 phones,	 tablets,	 and	 cameras	 currently	 employ	 solid-state	 disks	 because	 of
their	 small	 physical	 size	 and	 low	 power	 requirements.	 Unfortunately,	 solid-state
disks	 have	 smaller	 storage	 sizes	 and	 higher	 cost/bit	 than	 the	 traditional	 magnetic
storage	 disk.	 A	 typical	 64-Gibibyte	 SD	 card	 costs	 less	 than	 $20.	 The	 cost/bit	 is
therefore	about	$300/Tibibyte.	In	contrast,	an	8-Tibibyte	hard	drive	costs	about	$200
or	 $25/Tibibyte.	 The	 cost/bit	 of	 flash	 storage	 is	 expensive	 as	 compared	 to	 a
traditional	 hard	 drive.	 However,	 there	 is	 a	 size	 point	 (e.g.,	 below	 128	Gibibyte),
below	 which	 the	 overall	 cost	 of	 flash	 will	 be	 less	 than	 a	 traditional
magnetic/motorized	drive.

A	 flash	 memory	 cell	 uses	 two	 transistors;	 the	 gates	 of	 the	 two	 transistors	 are
positioned	 gate	 to	 gate	 separated	 by	 an	 insulation	 layer	 as	 shown	 in	 Figure	 8.11.
Because	each	 flash	bit	has	only	 two	 transistors,	 the	microcontroller	can	pack	more
flash	bits	into	the	chip	as	compared	to	SRAM	or	FRAM	bits.	A	normal	transistor	has
an	 input	 gate	 that	 is	 used	 to	 control	 conductance	 between	 the	 source	 and	 drain.
However,	in	a	flash	memory	cell,	one	of	the	gates	is	floating,	which	means	it	is	not
connected	to	anything.		If	we	trap	charge	on	this	floating	gate,	we	define	this	state	as
value	 0.	 If	 there	 is	 no	 trapped	 charge,	we	 define	 the	 state	 as	 a	 1.	 There	 are	 three
operations	we	can	perform	on	the	cell.

Figure	8.11.	The	floating	gate	in	a	flash	memory	cell	creates	the	storage.

If	we	place	a	large	voltage	on	the	control	gate	(Vcg),	we	can	get	all	the	trapped	charge
to	flow	from	the	floating	gate	to	the	source	below,	hence	erasing	the	cell,	making	its
value	equal	to	1.

Conversely	if	we	place	a	large	voltage	of	the	opposite	polarity	on	the	control	gate,

we	 can	 add	 charge	 to	 the	 floating	 gate,	programming	 its	 value	 equal	 to	 0.	On	 the
TM4C123	 the	 smallest	 granularity	with	which	we	 can	 erase	 is	 1024	bytes.	On	 the
MSP432	 we	 erase	 flash	 in	 blocks	 of	 4096	 bytes.	 However,	 we	 can	 program
individual	 words	 on	 most	 flash	 memories	 including	 the	 TM4C123	 and	 MSP432.
Once	erased	to	a	1	or	programmed	to	a	0,	the	charge	or	lack	of	charge	remains	on	the
floating	 gate	 even	 if	 power	 is	 removed	 from	 the	 system.	 Hence,	 this	 memory	 is
nonvolatile.	Data	in	the	TM4C123	and	MSP432	flash	memories	will	remain	valid	for
20	years,	and	the	memory	will	operate	up	to	100,000	erase/program	cycles.	Erasing
and	programming	operations	take	a	very	long	time	compared	to	writing	static	RAM
(SRAM).	For	example,	it	takes	8	to	15	ms	to	erase	an	entire	1024-byte	page	on	the
TM4C123.	In	contrast,	writing	256	words	in	RAM	on	an	80-MHz	Cortex-M	takes	5
cycles/loop,	which	adds	up	to	1280	cycles	or	16	µs.

To	 read	 the	 value	 from	 flash,	 the	 control	 gate	 is	 activated.	 There	 is	 a	 threshold
voltage	for	the	control	gate	at	which	source-drain	current	(Id)	flows	if	the	bit	is	0	and
will	not	 flow	if	 the	bit	 is	1.	The	 threshold	voltage	 is	depicted	as	 the	dotted	 line	 in
Figure	8.12.

Figure	8.12.	The	trapped	charge	in	the	floating	gate	affects	the	relationship
between	control	gate	voltage	and	drain	current.

For	 more	 information	 on	 flash	 see	 http://computer.howstuffworks.com/flash-
memory.htm

For	information	on	RAM	memory	see	http://computer.howstuffworks.com/ram.htm

In	summary:

Flash	memory	cells	have	two	transistors,	so	it	is	has	very	high
density
Nonvolatile	behavior	implemented	as	trapped/no	charge	on	the
floating	gate
We	can	erase	an	entire	block	(1k	or	4k),	making	all	bits	1
We	can	program	individual	bytes/words,	making	bits	0	as
needed
Both	erasing	and	programming	are	very	slow	compared	to
reading

8.3.2.	Flash	device	driver
One	 inexpensive	 approach	 to	 developing	 a	 file	 system	 is	 to	 use	 the	 internal	 flash
storage	of	the	microcontroller.	Both	the	TM4C123	and	MSP432	have	256	kibibytes
of	 internal	 flash,	 existing	 from	 addresses	 0	 to	 0x0003FFFF.	Normally,	we	 use	 the
internal	flash	to	save	the	machine	code	of	our	software.	However,	in	this	chapter	we
will	allocate	half	of	the	flash,	which	is	128	kibibytes,	to	create	a	solid	state	disk.	We
divide	 the	disk	 into	sectors	 and	operate	on	a	sector	by	sector	basis.	Typically,	 the
sector	size	is	a	power	of	2;	let	each	sector	be	2p	bytes.	This	means	we	will	partition
the	 217-byte	 disk	 into	 2m	 sectors,	 where	 m+p=17.	 In	 general,	 there	 are	 three
operations:	 we	 can	 erase	 (set	 bits	 to	 1),	 program	 (set	 bits	 to	 0),	 and	 read.	 The
physical	 layer	 functions	 provide	 these	 basic	 operations.	 Program	 8.1	 shows	 the
prototypes	 for	 the	 TM4C123.	We	 do	 not	 need	 physical	 layer	 functions	 to	 read	 the
flash,	because	once	erased	and	programmed,	software	simply	reads	from	the	memory
address	in	the	usual	manner.	The	TM4C123	is	optimized	for	programming	up	to	128-
byte	(32-word)	aligned	“mass	writes”	or	“fast	writes”.	The	MSP432	implements	this
feature	for	up	to	64-byte	(16-word)	arrays.	The	smallest	block	that	we	can	erase	on
the	TM4C123	is	1024	bytes.	On	the	MSP432	we	erase	flash	in	blocks	of	4096	bytes.

	
//------------Flash_Erase------------
//	Erase	1	KB	block	of	flash	on	TM4C123,	4KB	on	MSP432
//	Input:	addr	1-KB	aligned	flash	memory	address	to	erase
//	Output:	0	if	successful,	1	if	fail
int	Flash_Erase(uint32_t	addr);
	
//------------Flash_Write------------
//	Write	32-bit	data	to	flash	at	given	address.
//	Input:	addr	4-byte	aligned	flash	memory	address	to	write
//								data	32-bit	data
//	Output:	0	if	successful,	1	if	fail
int	Flash_Write(uint32_t	addr,	uint32_t	data);
	
//------------Flash_WriteArray	(TM4C123	only)	------------
//	Write	an	array	of	32-bit	data	to	flash	starting	at	given	address.
//	Input:	source	pointer	to	array	of	32-bit	data
//								addr			4-byte	aligned	flash	memory	address	to	start	writing
//								count		number	of	32-bit	writes
//	Output:	number	of	successful	writes;	return	value	==	count	if	ok
//	Note:	at	80	MHz,	it	takes	678	usec	to	write	10	words
int	Flash_WriteArray(uint32_t	*source,	uint32_t	addr,	uint16_t	count);
Program	8.1.	Prototypes	for	the	physical	layer	functions	to	manage	the	flash
(4-k	erase	for	MSP432).

8.3.3.	eDisk	device	driver
We	will	 add	 an	 abstraction	 level	 above	 the	 physical	 layer	 to	 create	 an	 object	 that
behaves	 like	 a	 disk.	 In	 particular,	we	will	 use	 128	kibibytes	 of	 flash	 at	 addresses
0x00020000	to	0x0003FFFF	to	create	the	solid	state	disk	and	partition	the	disk	into
512-byte	sectors.	This	abstraction	will	allow	us	to	modify	the	physical	layer	without
modifying	the	file	system	code.	For	example,	we	might	change	the	physical	layer	to	a
secure	 digital	 card,	 to	 a	 battery-backed	 RAM,	 to	 an	 FRAM,	 or	 even	 to	 network
storage.

On	most	 disks,	 there	 is	 physical	 partitioning	of	 the	 storage	 into	blocks	 in	 order	 to
optimize	 for	 speed.	 For	 example,	 the	 smallest	 block	 on	 the	MSP432	 that	 we	 can
erase	is	4	kibibytes,	and	on	the	TM4C123	the	block	size	is	1	kibibyte.	We	will	use
the	term	block	to	mean	a	physical	partition	created	by	the	hardware,	and	use	the	term
sector	 (which	 can	 be	 1	 or	 more	 blocks)	 as	 a	 logical	 partition	 defined	 by	 the
operating	system.	In	a	file	system,	we	will	partition	the	disk	into	sectors	and	allocate
whole	sectors	to	a	single	file.	In	other	words,	we	will	not	store	data	from	two	files
into	 the	 same	 sector.	 This	 all	 or	 nothing	 allocation	 scheme	 is	 used	 by	 most	 file
systems,	because	it	simplifies	implementation.

If	we	were	to	implement	a	file	system	that	allows	users	to	erase,	move,	insert	(grow)
or	remove	(shrink)	data	in	the	files,	then	we	would	need	to	erase	blocks	dynamically.
Because	 the	 smallest	 block	 on	 the	MSP432	 that	 we	 can	 erase	 is	 4096	 bytes,	 we
would	 have	 to	 choose	 a	 sector	 size	 that	 is	 an	 integer	 multiple	 of	 4k.	 	 On	 the
TM4C123	 smallest	 sector	 size	 would	 be	 1k.	 Unfortunately,	 a	 disk	 made	 from	 the
128k	 of	 the	 flash	with	 4k-sectors	would	 only	 have	 32	 sectors.	 32	 is	 such	 a	 small
number	the	file	system	would	be	quite	constrained.

The	 philosophy	 of	 this	 book	 has	 been	 to	 implement	 the	 simplest	 system	 that	 still
exposes	 the	 fundamental	 concepts.	 Therefore,	 in	 this	 chapter	 we	 will	 develop	 a
simple	file	system	that	does	not	allow	the	user	to	delete,	move,	grow,	or	shrink	data
in	 the	 files.	 It	 does	however	 allow	users	 to	 create	 files	 and	write	data	 to	 a	 file	 in
increments	of	sectors.	More	specifically,	when	writing	we	will	always	append	data
to	the	end	of	the	file.	We	call	this	simple	approach	as	a	write-once	file	system.	We
will	 erase	 the	 128k	 flash	 once,	 and	 then	 program	 0’s	 into	 the	 flash	 memory
dynamically	 as	 it	 runs.	 Data	 logging	 and	 storage	 of	 debug	 information	 are
applications	of	a	write-once	file	system.	For	this	simple	file	system,	we	can	choose
the	 sector	 size	 to	 be	 any	 size,	 because	 the	 flash	 is	 erased	 only	 once,	 and	 data	 is
programmed	as	the	user	creates	and	writes	sectors	to	the	file.	The	size	of	the	disk	is
128	kibibytes,	i.e.,		217	bytes.	If	the	sector	size	is	2n,	then	there	will	be	217-n	 sectors.
For	 this	 system,	 if	we	were	 to	use	 the	 fast	write	 capabilities	 of	 the	TM4C123	we
could	partition	the	128	kibibyte	disk	as	1024	sectors	with	128	bytes	in	each	sector.
Conversely,	if	we	use	the	regular	write	function	(Flash_WriteArray)	then	we	could
choose	 any	 sector	 size.	 In	 Section	 8.5,	we	will	 partition	 the	 disk	 into	 256	 sectors
with	512	bytes	per	sector	creating	a	file	system	where	the	sector	address	is	an	8-bit
number.

Program	8.2	 shows	 the	prototypes	of	 the	disk-level	 functions. eDisk_Init() 	 has	 no
operations	to	perform	in	this	system.	It	was	added	because	other	disks,	 like	the	SD
card,	will	 need	 initialization.	You	 shouldhave 	eDisk_Init 	 return	 zero	 if	 the	 drive
parameter	is	0	and	return	1	if	the	drive	parameter	is	not	zero,	because	there	is	only
one	drive.

Reading	 a	 sector	 requires	 an	 address	 translation.	The	 function eDisk_ReadSector
will	 copy	 512	 bytes	 from	 flash	 to	 RAM.	 The	 start	 of	 the	 disk	 is	 at	 flash	 address
0x00020000.	Each	sector	 is	512	bytes	 long,	so	 the	starting	address	of	 the	sector	 is
simply

0x00020000	+	512*sector

Writing	 a	 sector	 requires	 the	 same	 address	 translation.	 The
function eDisk_WriteSector	 will	 program	 512	 bytes	 from	 RAM	 into	 flash.	 In
particular,	it	will	do	the	address	translation	and	call	the	function Flash_WriteArray .
512	bytes	is	128	words,	so	the	count	parameter	will	be	128.

	
//***************	eDisk_Init	***********
//	Initialize	the	interface	between	microcontroller	and	disk
//	Inputs:	drive	number	(only	drive	0	is	supported)
//	Outputs:	status
//		RES_OK								0:	Successful
//		RES_ERROR					1:	Drive	not	initialized
enum	DRESULT	eDisk_Init(uint32_t	drive);
	
	
//***************	eDisk_ReadSector	***********
//	Read	1	sector	of	512	bytes	from	the	disk,	data	goes	to	RAM
//	Inputs:	pointer	to	an	empty	RAM	buffer
//									sector	number	of	disk	to	read:	0,1,2,...255
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
enum	DRESULT	eDisk_ReadSector(
				uint8_t	*buff,					//	Pointer	to	a	RAM	buffer	into	which	to	store
				uint8_t	sector);			//	sector	number	to	read	from
	
//***************	eDisk_WriteSector	***********
//	Write	1	sector	of	512	bytes	of	data	to	the	disk,	data	comes	from	RAM
//	Inputs:	pointer	to	RAM	buffer	with	information
//									sector	number	of	disk	to	write:	0,1,2,...,255

//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
enum	DRESULT	eDisk_WriteSector(
				const	uint8_t	*buff,		//	Pointer	to	the	data	to	be	written
				uint8_t	sector);						//	sector	number			
Program	8.2.	Header	file	for	the	solid	state	disk	device	driver.

8.3.4.	Secure	digital	card	interface
The	Secure	Digital	Memory	Card	(SDC)	is	a	popular	standard	for	data	storage	in
embedded	systems.	The	SDC	is	an	example	of	a	high-speed	I/O	device,	and	normally
we	would	interface	the	SDC	using	DMA	synchronization.	However,	when	interfacing
to	the	TM4C/MSP432,	we	will	use	busy-wait	synchronization	with	the	understanding
that	 peak	 bandwidth	will	 be	 limited	 by	 software	 and	 not	 SDC	performance.	 If	we
wished	to	improve	performance,	then	DMA	synchronization	could	be	used.	The	SDC
is	upward-compatible	to	MULTI-MEDIA	CARD	(MMC)	so	that	the	SDC-compliant
interfaces	can	also	use	an	MMC	with	an	appropriate	adapter.	There	are	also	smaller
versions,	such	as	MINISD	and	MICROSD,	where	the	differences	are	in	the	connector
rather	than	the	electrical	specification.	The	card	itself	has	a	microcontroller	in	it.	The
flash	memory	operations,	such	as	erasing,	reading,	and	writing,	are	performed	on	this
microcontroller.	 The	 data	 is	 transferred	 between	 the	 memory	 card	 and	 the	 host
controller	 as	 512-byte	 blocks.	 In	 this	way,	 the	 SDC	 can	 be	 viewed	 like	 a	 generic
hard	 disk	 drive.	 In	 other	 words,	 the	 low-level	 drivers	 perform	 block	 reads	 and
writes.	A	2-gibibyte	SDC	will	have	over	4	million	(231/29)	blocks,	and	the	low-level
driver	will	 allow	 you	 to	 read	 or	write	 any	 of	 these	 blocks.	 Program	 8.3	 shows	 a
possible	header	file	for	such	a	low-level	software	interface.	The	implementation	of
this	SDC	driver	 can	be	 found	on	 the	book	web	 site	 as	SDC_xxx.	The	 file	 system,
written	 as	 a	 higher	 level	 driver,	will	 format	 and	 partition	 this	 storage	 in	 a	 logical
manner.	You	can	download	from	the	internet	full-functioning	SDC	drivers	and	FAT16
file	 system	 for	 most	 microcontrollers.	 The	 FAT16	 file	 system	 will	 allow	 data
exchange	 between	 the	 microcontroller	 and	 a	 personal	 computer.	 The	 FAT32	 is
defined	for	only	high	capacity	(>=	4G)	cards.	However,	this	section	will	serve	as	an
introduction	 providing	 the	 basic	 ideas	 and	 fundamental	 theories.	 The	 file	 systems
described	in	the	next	section	will	be	a	lot	simpler	than	FAT16.

The	 SDC	 software	 driver	 is	 similar	 to	 the	 driver	 for	 the	 internal	 flash	 memory
presented	 in	 the	 last	 section.	 The eDisk_Init function	 must	 be	 called
once. eDisk_ReadBlock is	 used	 to	 read	 512	 bytes	 of	 data	 from	 the	 SDC	 into
RAM.	 eDisk_WriteBlock 	 is	 used	 to	write	 512	 bytes	 of	 data	 from	RAM	 into	 the

SDC.	 	The	write	block	function	will	perform	the	 two	step	operating	of	erasing	and
then	programming.

//***************	eDisk_Init	***********
//	Initialize	the	interface	between	microcontroller	and	the	SD	card
//	Inputs:	drive	number	(only	drive	0	is	supported)
//	Outputs:	status
//		STA_NOINIT			0x01			Drive	not	initialized
//		STA_NODISK			0x02			No	medium	in	the	drive
//		STA_PROTECT		0x04			Write	protected
//	since	this	program	initializes	the	disk,	it	must	run	with
//				the	disk	periodic	task	operating
DSTATUS	eDisk_Init(BYTE	drive);
	
//***************	eDisk_ReadBlock	***********
//	Read	1	block	of	512	bytes	from	the	SD	card		(write	to	RAM)
//	Inputs:	pointer	to	an	empty	RAM	buffer
//									sector	number	of	SD	card	to	read:	0,1,2,...
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
DRESULT	eDisk_ReadBlock	(
				BYTE	*buff,						//	Pointer	to	the	data	buffer	into	which	to	store
				DWORD	sector);			//	sector	number	to	read	from
	
//***************	eDisk_WriteBlock	***********
//	Write	1	block	of	512	bytes	of	data	to	the	SD	card	(read	from	RAM)
//	Inputs:	pointer	to	RAM	buffer	with	information
//									sector	number	of	SD	card	to	write:	0,1,2,...
//	Outputs:	result
//		RES_OK								0:	Successful
//		RES_ERROR					1:	R/W	Error
//		RES_WRPRT					2:	Write	Protected
//		RES_NOTRDY				3:	Not	Ready
//		RES_PARERR				4:	Invalid	Parameter
DRESULT	eDisk_WriteBlock	(
				const	BYTE	*buff,			//	Pointer	to	the	data	to	be	written
				DWORD	sector);						//	sector	number			
Program	8.3.	Header	file	for	the	SDC	driver	(SDC_xxx).

With	a	32-bit	sector	number	we	could	support	disk	up	to	232*29	bytes	or	2	tibibytes.

Figure	8.13	shows	the	connector	pin-out	and	interface.	The	SDC	has	9	to	12	contact
pads,	 including	 four	 pins	 that	 comprise	 the	 synchronous	 serial	 interface.	MOSI
MISO	and	Sclk	are	the	usual	SPI	signals,	and	CS	line	can	be	implemented	with	any
regular	 output	 pin.	 	 The	 three	 contacts	 are	 assigned	 for	 power	 supply.	 The	 SDC
works	at	supply	voltages	from	2.7	to	3.6	V,	The	current	consumption	can	reach	up	to
15	mA	in	standby	and	50	mA	during	operation.	Some	SD	card	connectors	provide	an
additional	pin	to	let	the	software	know	whether	or	not	a	SDC	is	inserted	into	the	slot.

Figure	8.13.	MicroSD	connector(Digikey	WM3288CT-ND)	and	TM4C
interface.

There	are	 three	possible	modes	 to	 interface	 the	SD	card:	SD	4-bit	mode,	SD	1-bit
mode,	 and	 SPI	 mode.	 The	 communication	 protocol	 for	 the	 SPI	 mode	 is	 simple
compared	to	the	native	SD	modes.	Therefore,	the	SPI	mode	is	suitable	for	low-cost
embedded	applications.	In	SPI	mode,	the	pin	7	DO	is	always	an	output	of	the	SDC,
and	pin	2	DI	is	always	an	input.	Data	are	transferred	in	a	byte-oriented	synchronous
serial	fashion.	The	command	frame	from	the	microcontroller	to	the	SDC	is	a	fixed-
length,	six-byte	packet	shown	in	Figure	8.14.	When	a	command	frame	is	transmitted
to	the	card,	a	response	to	the	command	(R1,	R2,	or	R3)	will	eventually	come	from
the	card.	The	microcontroller	must	continue	to	send	0xFF	frames	to	DI	and	receive
frames	from	DO,	until	it	receives	a	valid	response.	The	command	response	time	is	0
to	8	SPI	frames	(labeled	as	NCR	 in	Figure	8.14).	The	CS	signal	must	be	held	low
during	the	entire	transaction	(command,	response,	and	data	transfer	if	exist).	The	7-
bit	CRC	field	is	optional	in	SPI	mode,	but	it	is	required	as	a	bit	field	to	compose	a
command	frame.	The	DI	signal	must	be	kept	high	during	read	transfer.

Figure	8.14.	SDC	command	frame.

In	SPI	mode,	 data	 shift	 and	data	 latch	 are	done	opposite	 clock	 edges	 respectively.
There	 is	 an	 advantage	 that	 when	 shift	 and	 latch	 operations	 are	 separated,	 critical
timing	between	two	operations	can	be	avoided.	Therefore,	 timing	consideration	for
IC	design	and	board	design	can	be	relieved.	The	SD	card	uses	CPOL=0,	CPHA=0
mode	as	shown	in	Figure	8.15.

Figure	8.15.	SPI	CPOL=	0,	SPHA=0	mode.

There	are	many	SD	commands,	some	of	which	are	shown	in	Table	8.1.	For	details	on
all	 commands,	 please	 refer	 to	 the	 SDA	 -	 SD	 Card	 Association	 at
http://www.sdcard.org/.	There	are	three	command	response	formats:	R1,	R2,	and	R3,
depending	on	the	command	index.	Response	R1	is	8	bits	long	and	is	returned	for	most
commands.	 The	 R1	 response	 has	 seven	 status	 bits,	 and	 a	 value	 of	 0x00	 means
successful.	 Bit	 6	 is	 a	 parameter	 error,	 bit	 5	 is	 an	 address	 error,	 bit	 4	 is	 an	 erase
sequence	error,	bit	3	is	a	communication	CRC	error,	bit	2	is	an	illegal	command,	bit
1	is	an	erase	reset,	and	bit	0	means	the	SDC	is	in	the	idle	state.	Most	cards	cannot
change	the	block	size,	and	it	is	fixed	at	512	bytes.

	
Index Argument Response Data Description
0 None R1 No Software	reset
1	or
41

None R1 No Initiate	initialization
process

16 Block
length[31:0]

R1 No Change	R/W	block	size

17 Address[31:0] R1 Yes Read	a	block
18 Address[31:0] R1 Yes Read	multiple	blocks
24 Address[31:0] R1 Yes Write	a	block
25 Address[31:0] R1 Yes Write	multiple	blocks

58 None R3 No Read	OCR
Table	8.1.	SD	commands.
	

After	power	on	reset,	 the	SDC	enters	 its	native	operating	mode.	To	put	 the	SDC	in
SPI	 mode,	 the	 following	 procedure	 must	 be	 performed.	 After	 the	 supply	 voltage
reaches	at	least	2.2	V,	wait	at	least	one	more	millisecond.	To	initialize	we	need	to	set
DI	and	CS	high	and	send	74	or	more	clock	pulses	to	Sclk.	After	 this,	 the	card	will
become	ready	to	accept	native	commands.	We	set	the	SPI	clock	rate	between	100	and
400	kHz	and	then	send	an	Index=0	command	with	CS	low	to	reset	the	card.	The	card
samples	 the	CS	 signal	when	an	Index=0	command	 is	 received.	 If	 the	CS	 signal	 is
low,	the	card	enters	SPI	mode.	Since	the	Index=0	command	must	be	sent	as	a	native
command,	the	CRC	field	must	have	a	valid	value.	Once	the	card	enters	SPI	mode,	the
CRC	 feature	 is	 disabled,	 and	 the	 CRC	 is	 not	 checked,	 so	 that	 the	 command
transmission	routine	can	be	written	with	 the	hardcoded	CRC	value	that	 is	valid	for
only	this	command.	When	the	Index=0	is	accepted,	the	card	will	enter	idle	state	and
sends	an	R1	response	with	the	idle	bit	(0x01).

In	idle	state,	the	card	accepts	only	commands	with	index	values	of	0,	1,	41,	and	58.
Any	other	commands	will	be	rejected.	Command	Index=58	allows	you	to	check	the
working	 voltage	 range.	 Response	 R3	 is	 an	 R1	 plus	 information	 about	 the	 supply
voltage.	 If	 the	 supply	 voltage	 is	 out	 of	 range,	 the	 card	must	 be	 rejected.	 The	 card
initiates	 initialization	when	a	command	with	Index=41	 is	 received.	To	poll	end	of
the	initialization,	the	host	controller	must	repeatedly	send	commands	with	Index=41
until	the	idle	bit	goes	low.	When	the	card	is	initialized	successfully,	the	idle	bit	in	the
R1	response	is	cleared.	That	is,	the	R1	response	will	change	from	0x01	to	0x00.	The
initialization	process	 can	 take	hundreds	of	milliseconds	 and	 large	 cards	make	 take
longer.	 After	 the	 idle	 bit	 is	 cleared,	 read/write	 commands	 can	 be	 sent.	 Command
Index=41	is	recommended	instead	of	Index=1	for	SDC.	Index=1	initiation	can	be
tried	if	Index=41	is	rejected.	After	initialization,	the	SPI	clock	rate	can	be	increased
to	optimize	 the	 read/write	performance.	Most	SD	cards	can	handle	SPI	 rates	of	25
MHz.	The	speed	will	be	dominated	by	software	transferring	data	with	the	SPI	port.
To	 achieve	 higher	 bandwidth,	 you	 could	 use	 a	 DMA	 interface	 available	 on	 many
high-performance	microcontrollers.

Figure	8.15.	SD	data	packets.

In	 a	 transaction	with	data	 transfer,	 one	or	more	data	packets	will	 be	 sent/received
after	 command	 response.	 See	 Figure	 8.16.	 The	 data	 block	 is	 transferred	 as	 a	 data
packet	that	consists	of	Token,	Data	Block,	and	CRC.	The	token	for	command	indices

17,	18,	 and	24	 is	 $FE.	The	 token	 for	 command	 index	25	 is	 $FC.	A	 logic	 analyzer
trace	for	a	single-block	read	is	shown	in	Figure	8.16.	The	resolution	on	the	plot	 is
not	enough	to	see	all	the	Sclk	pulses.	However,	we	see	the	CS	line	(labeled	PA4	SS)
goes	low	and	remains	low	for	the	entire	transaction.	The	microcontroller	begins	by
sending	an	Index=17	read	block	command.	The	argument	for	this	command	will	be
the	 sector	 address	 from	which	 to	 read.	The	 command	 response	will	 be	R1	with	 a
value	of	0x00,	which	means	okay.	Next,	the	microcontroller	sends	many	frames	(300
µs	on	this	system)	waiting	for	the	SDC.	The	last	half	of	the	transfer	is	a	data	packet
being	sent	 from	 the	SDC	 to	 the	microcontroller	containing	 the	512	bytes	 read	 from
that	 sector.	On	 this	 system,	 it	 took	535	µs	 to	 read	one	block.	 If	any	error	occurred
during	the	read	operation,	an	error	token	will	be	returned	instead	of	data	packet.

Figure	8.16.	Single	block	read	packet.

To	write	a	block,	the	controller	sends	a	write	command.	If	the	response	R1	is	0x00,
the	microcontroller	 sends	a	data	packet	 to	 the	card	after	 an	eight-clock	pause.	The
write	data	packet	has	the	same	format	as	read	data	packet.	The	CRC	field	can	have
any	value	unless	the	CRC	function	is	enabled.	When	a	data	packet	has	been	sent,	the
card	responds	a	Data	Response	immediately	following	the	data	packet.

Original	CD	drives	could	read	data	at	150	kilobytes	per	second,	and	as	faster	drives
arrived,	 manufacturers	 referred	 to	 their	 read	 speeds	 as	 a	 multiple	 of	 the	 original
speed,	referred	to	as	X.	Therefore,	a	2X	CD	drive	reads	data	at	300	kilobytes/sec.
For	DVDs	the	speeds	are	9	times	faster	than	CDs.	I.e.,	a	1X	DVD	can	read/write	at
1,385,000	bytes/sec.	Therefore,	a	16X	DVD	can	transfer	at	16	times	faster	than	a	1X
DVD.	 SD	 Cards	 and	 SDHC	 Cards	 have	 Speed	 Class	 Ratings	 defined	 by	 the	 SD
Association.	 The	 SD	 Speed	 Class	 Ratings	 specify	 the	 following	 minimum	 write
speeds	 based	 on	 "the	 best	 fragmented	 state	 where	 no	 memory	 unit	 is	 occupied":
(www.	SDCard.org).	Because	of	 the	 software	overhead	 in	 the	microcontroller,	 the
transfer	rates	 to	 the	SDC	will	be	much	slower	 than	 the	maximum.	Table	8.2	shows
example	 transfer	 rates	or	bandwidth	 for	various	mass-storage	devices.	Under	most
situations	 the	 size	 of	 the	 data	 block	 transferred	 is	 fixed.	 The	 time	 to	 locate	 the
physical	location	is	called	the	seek	time.	Although	seek	time	has	a	significant	impact
on	the	disk	performance,	it	does	not	affect	the	latency	or	bandwidth	parameters.	The
bandwidth	depends	on	the	rotation	speed	of	the	disk	and	the	information	density	on
the	medium.	The	transfer	rates	vary	according	to	the	physics	of	the	drive.

Drive	type Bandwidth	in
mebibytes/sec

SATA	channel 300

7200	 RPM	 hard
drive

70

16X	DVD 22
52X	CD-ROM 7.8
Class	2	SD	card 2
Class	4	SD	card 4
Class	6	SD	card 6
1X	CD-ROM 0.15

Table	8.2.	Bandwidth	for	various	mass	storage	devices.
Because	 the	 SDC	 driver	 functions	 posted	 on	 the	 book	 web	 site	 use	 busy-wait
synchronization,	 actually	 speeds	 for	 this	 systems	 using	 these	 drivers	will	 be	much
slower	than	the	transfer	rates	presented	in	the	above	table.

8.4.	Simple	File	System
In	 this	 section,	 we	 develop	 a	 file	 system	 that	 would	 be	 appropriate	 for
implementation	with	 an	 SD	 card	 used	 for	 storage.	 	 In	 order	 to	 implement	 this	 file
system,	 you	would	 need	 to	 have	 physical	 layer	 eDisk	 driver	 functions	 for	 the	 SD
card.	There	are	a	couple	of	projects	for	the	TM4C123	that	have	implementations	for
this	physical	layer.	The	second	example	includes	both	a	low-level	eDisk	and	a	high-
level	FAT16	file	system	for	the	SD	card.

http://users.ece.utexas.edu/~valvano/arm/SDC_4C123.zip
http://users.ece.utexas.edu/~valvano/arm/SDCFile_4C123.zip

8.4.1.	Directory
The	first	component	of	the	file	system	is	the	directory,	as	shown	in	Figure	8.17.	In
this	 system,	 the	 sector	 size	 is	 512	 bytes.	 In	 order	 to	 support	 disks	 larger	 than	 32
Mebibytes,	 32-bit	 sector	 pointers	 will	 be	 used.	 The	 directory	 contains	 a	mapping
between	 the	 symbolic	 filename	 and	 the	 physical	 address	 of	 the	 data.	 Specific
information	contained	in	the	directory	might	include	the	filename,	the	number	of	the
first	 sector	 containing	 data,	 and	 the	 total	 number	 of	 bytes	 stored	 in	 the	 file.	 One
possible	 implementation	places	 the	directory	 in	 sector	0.	 In	 this	 simple	 system,	all
files	are	listed	in	this	one	directory	(there	are	no	subdirectories).	There	is	one	fixed-
size	directory	entry	for	each	file.	A	filename	is	stored	as	an	ASCII	string	in	an	8-byte
array.	A	null-string	(first	byte	0)	means	no	file.	Since	the	directory	itself	is	located	in
sector	0,	zero	can	be	used	as	a	null-sector	pointer.	In	this	simple	scheme,	the	entire
directory	must	 fit	 into	 sector	0,	 the	maximum	number	of	 files	 can	be	calculated	by
dividing	 the	 sector	 size	 by	 the	 number	 of	 bytes	 used	 for	 each	 directory	 entry.	 In
Figure	8.17,	each	directory	entry	is	16	bytes,	so	there	can	be	up	to	512/16	=	32	files.
We	will	need	one	directory	entry	to	manage	the	free	space	on	the	disk,	so	this	disk
format	can	have	up	to	31	files.

Figure	8.17.	Linked	file	allocation	with	512-byte	sectors.

Other	 information	 that	one	often	 finds	 in	a	directory	entry	 includes	a	pointer	 to	 the
last	sector	of	 the	file,	access	 rights,	date	of	creation,	date	of	 last	modification,	and

file	type.

8.4.2.	Allocation
The	 second	 component	 of	 the	 file	 system	 is	 the	 logical-to-physical	 address
translation.	Logically,	 the	data	 in	 the	file	are	addressed	in	a	simple	 linear	fashion.
The	logical	address	ranges	from	the	first	to	the	last.	There	are	many	algorithms	one
could	 use	 to	 keep	 track	 of	 where	 all	 the	 data	 for	 a	 file	 belongs.	 This	 simple	 file
system	uses	linked	allocation	as	illustrated	in	Figure	8.17.	Recall	that	the	directory
contains	the	sector	number	of	the	first	sector	containing	data	for	the	file.	The	start	of
every	sector	contains	a	link	(the	sector	number)	of	the	next	sector,	and	a	byte	count
(the	number	of	data	bytes	in	this	sector).	If	the	link	is	zero,	this	is	last	sector	of	the
file.	If	the	byte	count	is	zero,	this	sector	is	empty	(contains	no	data).	Once	the	sector
is	full,	the	file	must	request	a	free	sector	(empty	and	not	used	by	another	file)	to	store
more	data.	Linked	allocation	is	effective	for	systems	that	employ	sequential	access.
Sequential	 read	 access	 involves	 two	 functions	 similar	 to	 a	magnetic	 tape:	 rewind
(start	at	beginning)	and	read	the	next	data.	Sequential	write	access	simply	involves
appending	data	to	the	end	of	the	file.	Figure	8.17	assumes	the	sector	size	is	512	bytes
and	the	filename	has	up	to	7	characters.	The	null-terminated	ASCII	string	is	allocated
8	bytes	regardless	of	the	size	of	the	string.	The	sector	pointer	and	the	size	entry	(e.g.,
file	‘Ramesh’	has	519	bytes)	each	require	4	bytes	(32	bits).	Since	each	data	sector
has	a	4-byte	link	and	a	2-byte	counter,	each	sector	can	store	up	to	506	bytes	of	data.

8.4.3.	Free	space	management
The	 third	 component	 of	 the	 file	 system	 is	 free-space	 management.	 Initially,	 all
sectors	except	the	one	used	for	the	directory	are	free	and	available	for	files	to	store
data.	To	store	data	 into	a	 file,	 sectors	must	be	allocated	 to	 the	 file.	When	a	 file	 is
deleted,	 its	 sectors	 must	 be	 made	 available	 again.	 One	 simple	 free-space
management	 technique	 uses	 linked	 allocation,	 similar	 to	 the	 way	 data	 is	 stored.
Assume	there	are	N	sectors	numbered	from	0	to	N-1.	An	empty	file	system	is	shown
in	Figure	8.18.	Sector	0	 contains	 the	directory,	 and	 sectors	1	 to	N-1	 are	 free.	You
could	assign	the	last	directory	entry	for	free-space	management.	This	entry	is	hidden
from	 the	 user.	 E.g.,	 this	 free-space	 file	 cannot	 be	 opened,	 printed,	 or	 deleted.	 It
doesn't	use	any	of	the	byte	count	fields,	but	it	does	use	the	links	to	access	all	of	the
free	 sectors.	 Initially,	 all	 of	 the	 sectors	 (except	 the	 directory	 itself)	 are	 linked
together,	with	 the	 special	 directory	 entry	 pointing	 to	 the	 first	 one	 and	 the	 last	 one
having	a	null	pointer.

Figure	8.18.	Free-space	management.

When	a	file	requests	a	sector,	it	is	unlinked	from	the	free	space	and	linked	to	the	file.
When	a	file	is	deleted,	all	of	its	sectors	are	linked	to	the	free	space	again.

Checkpoint	8.14:	If	the	directory	shown	in	Figures	8.17	and	8.18	allocated	6
bytes	for	the	filename	instead	of	10,	how	many	files	could	it	support?	

8.5.	Write-once	File	System

8.5.1.	Usage
Even	 though	 the	previous	approaches	were	 indeed	simple,	we	can	simplify	 the	file
system	even	more	if	we	make	the	following	usage	restrictions/specifications:

The	128k	flash	memory	is	erased	only	once;
The	act	of	erasing	the	entire	flash	is	equivalent	to	“formatting”
the	disk;
The	disk	is	partitioned	into	256	sectors	of	512	bytes/sector;
We	can	append	data	to	a	file	but	cannot	delete	data	or	files;
We	append	data	to	a	file	in	chunks	of	512	bytes;
We	will	read	data	in	a	sequential	fashion;
We	assign	file	names	as	single	8-bit	numbers	(0	to	254);
We	limit	the	file	system	to	a	maximum	of	255	files;
We	will	mount	(initialize	the	driver)	the	file	system	on	startup;
We	will	call	flush	(backup	to	disk)	the	file	system	before
powering	down.

	

One	 sector	will	 be	 reserved	 for	 the	 operating	 system	 to	manage	 the	 directory	 and
allocation	 scheme	 and	 the	 other	 255	 sectors	 will	 contain	 data.	 Depending	 on	 the
debugger	 settings,	 loading	 the	 program	 into	 flash	 may	 erase	 the	 entire
flash.Alternately,	you	could	explicitly	erase	 the	 flash	 in	 the	debugger,	or	you	could
call	 the OS_File_Format 	 function.	 	These	 erase	 events	will	 serve	 to	 “format”	 the
disk.	 All	 255	 data	 sectors	 will	 be	 free	 and	 the	 file	 system	 will	 have	 no	 files.
However,	hitting	the	reset	button	or	powering	up	the	system	should	not	erase	the	disk.

While	using	this	disk	we	could	have	255	individual	files,	each	with	one	sector.	We
could	have	51	files	each	with	5	sectors.	Alternately,	we	could	have	one	file	with	255
sectors.	Any	combination	is	possible	where	the	number	of	files	is	less	than	or	equal
to	255,	and	the	total	allocated	sectors	is	also	less	than	or	equal	to	255.

There	 will	 be	 a	 function, OS_File_New ,	 which	 will	 return	 the	 file	 number	 of	 an
empty	 file.	This	 function	will	 fail	 if	 there	are	no	more	 files	 left,	because	 there	are
already	254	files	created,	or	if	there	are	no	free	sectors,	because	the	disk	is	full.

//********OS_File_New*************
//	Returns	a	file	number	of	a	new	file	for	writing
//	Inputs:	none

//	Outputs:	number	of	a	new	file
//	Errors:	return	255	on	failure	or	disk	full
uint8_t	OS_File_New(void);
	

To	 check	 the	 status	 of	 a	 file,	we	 can	 call OS_File_Size .	 This	 function	 returns	 the
number	of	sectors	allocated	to	this	file.	If	the	size	is	zero,	this	is	an	empty	file.

//********OS_File_Size*************
//	Check	the	size	of	this	file
//	Inputs:		num,	8-bit	file	number,	0	to	254
//	Outputs:	0	if	empty,	otherwise	the	number	of	sectors
//	Errors:		none
uint8_t	OS_File_Size(uint8_t	num);
	

To	write	data	 to	an	existing	 file	we	need	 to	specify	 the	 file	number	 into	which	we
will	store	the	data.	The	write	data	function	will	allocate	another	sector	to	the	file	and
append	512	bytes	of	new	data	to	the	file.	The	input	parameters	to OS_File_Append
are	the	file	number	and	a	sector	of	512	bytes	of	data	to	write.	This	function	will	fail
if	there	are	no	free	sectors	(disk	full).

//********OS_File_Append*************
//	Save	512	bytes	into	the	file
//	Inputs:		num,	8-bit	file	number,	0	to	254
//										buf,	pointer	to	512	bytes	of	data
//	Outputs:	0	if	successful
//	Errors:		255	on	failure	or	disk	full
uint8_t	OS_File_Append(uint8_t	num,	uint8_t	buf[512]);
	

To	 read	 data	 from	 a	 file	 we	 call OS_File_Read .	 The	 three	 parameters	 to	 this
function	 are	 the	 file	 number,	 the	 location,	 and	 a	 pointer	 to	 RAM.
The location parameter	defines	 the	 logical	address	of	 the	data	 in	a	 file.	Location	0
will	 access	 the	 first	 sector	 of	 the	 file.	 For	 example,	 if	 a	 file	 has	 5	 sectors,
the location 	 parameter	could	be	0,	1,	2,	3,	or	4.	The	 read	data	 function	will	 copy
512	bytes	of	data	from	the	file	into	the	RAM	buffer.	This	function	will	fail	if	this	file
does	not	have	data	at	this	location.

//********OS_File_Read*************
//	Read	512	bytes	from	the	file
//	Inputs:		num,	8-bit	file	number,	0	to	254
//										location,	logical	address,	0	to	254
//										buf,	pointer	to	512	empty	spaces	in	RAM
//	Outputs:	0	if	successful
//	Errors:		255	on	failure	because	no	data
uint8_t	OS_File_Read(uint8_t	num,	uint8_t	location,
																					uint8_t	buf[512]);

	

We	will	load	into	RAM	versions	of	the	directory	and	the	FAT	when	the	system	starts.
When	we	call OS_File_Flush 	the	RAM	versions	will	be	stored	onto	the	disk.	Notice
that	due	 to	 the	nature	of	how	 this	 file	 system	 is	designed,	bits	 in	 the	directory	 and
FAT	never	switch	from	0	to	1.	We	can	either	call	this	function	periodically	or	call	it
once	just	before	power	is	removed	from	the	system.

//********OS_File_Flush*************
//	Update	working	buffers	onto	the	disk
//	Power	can	be	removed	after	calling	flush
//	Inputs:		none
//	Outputs:	0	if	success
//	Errors:		255	on	disk	write	failure
uint8_t	OS_File_Flush(void);

Depending	 on	 the	 debugger	 settings,	 downloading	 software	 may	 erase	 the	 flash.
When	the	flash	is	erased,	the	disk	in	essence	is	formatted,	because	we	defined	the	all
ones	state	as	empty.	However,	if	one	wishes	to	erase	the	entire	disk	removing	all	data
and	 all	 files,	 one	 could	 call OS_File_Format .	 This	 function	 will	 erase	 the	 flash
from	 0x00020000	 to	 0x0003FFFF.	 Program	 8.4	 shows	 the	 implementation	 for	 the
TM4C123.	It	simply	erases	all	blocks	from	0x00020000	to	0x0003FFFF.	Notice	that
this	implementation	skips	the	eDisk	layer	and	directly	calls	the	physical	layer.

//********OS_File_Format*************
//	Erase	all	files	and	all	data
//	Inputs:		none
//	Outputs:	0	if	success
//	Errors:		255	on	disk	write	failure
uint8_t	OS_File_Format(void){
		uint32_t	address;
		address	=	0x00020000;		//	start	of	disk
		while(address	<=	0x00040000){
				Flash_Erase(address);	//	erase	1k	block
				address	=	address+1024;
		}
}

Program	8.4.	TM4C123	version	of	formatting.

Checkpoint	8.15:	The	physical	block	size	on	the	MSP432	is	4096	bytes.	How
would	you	modify	OS_File_Format	for	the	MSP432?	

8.5.2.	Allocation
There	are	many	possible	solutions,	but	we	chose	FAT	allocation	because	it	supports
appending	 to	 an	 existing	 file.	 FAT	 supports	 many	 small	 files	 or	 one	 large	 file.
Because	there	are	256	sectors	we	will	use	8-bit	sector	addresses.	Because	we	will

define	 a	 completely	 erased	 flash	 as	 “formatted”,	 we	 will	 use	 the	 sector	 address
255=0xFF	 to	 mean	 null-pointer,	 and	 use	 sector	 number	 255	 as	 the	 directory.	 To
implement	a	FAT	with	this	disk,	we	would	need	only	255	bytes.	Since	the	sector	is
512	bytes	we	can	use	256	bytes	for	the	directory	and	the	other	256	bytes	for	the	FAT.
Notice	 that	 sectors	 are	 allocated	 to	 files,	 but	 never	 released.	 This	 means	 we	 can
update	 the	 FAT	 multiple	 times	 because	 bits	 are	 all	 initially	 one	 (erased)	 and
programmed	to	0	once,	and	never	need	to	be	erased	again.

Since	the	files	are	identified	by	number	and	not	name,	the	directory	need	not	store	the
name.	 Rather,	 the	 directory	 is	 a	 simple	 list	 of	 255	 8-bit	 numbers,	 containing	 the
sector	number	of	its	first	sector.	Notice	there	is	exactly	one	directory	entry	for	each
possible	 file.	 If	 this	 sector	number	 is	 255,	 this	 file	 is	 empty.	Similarly,	 the	FAT	 is
another	simple	list	of	255	8-bit	numbers.	However,	a	255	in	the	FAT	may	mean	a	free
sector	or	the	last	sector	of	a	file.	Notice	there	is	one	entry	in	the	FAT	for	each	data
sector	on	the	disk.	Figure	8.19	shows	the	disk	after	formatting.	Each	rectangle	in	the
disk	figure	represents	a	512-byte	data	sector.	The	directory	and	FAT	are	both	stored
in	sector	number	255.

	

Figure	8.19.	Empty	disk	on	the	write-once	file	system.

If	we	ask	for	a	new	file,	the	system	will	return	a	number	from	0	to	254	of	a	file	that
has	 not	 been	 written.	 In	 other	 words, OS_File_New will	 return	 the	 number	 of	 an
empty	file.	 If	we	execute	 the	following	when	 the	disk	 is	empty, OS_File_New will
return	a	0	(n=0),	and	the	eight	calls	to OS_File_Append 	will	store	eight	sectors	on
the	disk,	see	Figure	8.20.

n	=	OS_File_New();
OS_File_Append(n,buf0);
OS_File_Append(n,buf1);
OS_File_Append(n,buf2);

OS_File_Append(n,buf3);
OS_File_Append(n,buf4);
OS_File_Append(n,buf5);
OS_File_Append(n,buf6);
OS_File_Append(n,buf7);

	

In	 this	 example,the	 variables n,m,p are	 simple	 global	 variables	 containing	 the	 file
numbers	 we	 are	 using.	 The	 parameters buf0-buf9 , dat0-dat4 , arr0-2 	 represent
RAM	buffers	with	512	bytes	of	data.		Having	18	buffers	we	not	to	imply	we	needed	a
separate	RAM	buffer	 for	every	sector	on	 the	disk,	but	 rather	 to	differentiate	where
data	is	stored	on	the	disk.	In	other	words,	the	use	of	18	different	RAM	buffers	was
meant	 to	 associate	 the	 18	 calls	 to	 OS_File_Append	 with	 the	 corresponding	 18
sectors	 used	 on	 the	 disk.	 Because	 of	 the	 limited	 RAM	 on	 the	 microcontroller,
normally	we	will	limit	the	number	of	RAM	buffers.

Figure	8.20.	A	disk	with	one	file,	this	file	has	8	sectors.
	
If	we	were	to	continue	this	example	and	execute	the	following,	there	would	now	be	3
files	on	the	disk	occupying	18	sectors.	See	Figure	8.21.

m	=	OS_File_New();
OS_File_Append(m,dat0);
OS_File_Append(m,dat1);
OS_File_Append(m,dat2);
OS_File_Append(m,dat3);
p	=	OS_File_New();

OS_File_Append(p,arr0);
OS_File_Append(p,arr1);
OS_File_Append(n,buf8);
OS_File_Append(n,buf9);
OS_File_Append(p,arr2);
OS_File_Append(m,dat4);

Figure	8.21.	A	disk	with	three	files,	file	0	has	10	sectors,	file	1	has	5	sectors
and	file	2	has	3	sectors.

Notice	 that	 we	 limit	 usage	 to	 adding	 data	 to	 the	 disk	 is	 chunks	 of	 512	 bytes.	 As
mentioned	 earlier	 we	 will	 never	 delete	 a	 file,	 nor	 will	 we	 delete	 parts	 of	 a	 file
previously	written.	Furthermore,	we	always	append	to	the	end	of	a	file,	which	means
we	never	move	data	of	a	file	from	one	place	on	the	disk	to	another.

8.5.3.	Directory
We	will	read	the	directory/FAT	into	RAM	on	startup.		We	need	to	be	able	to	write	the
directory	 to	 the	disk	multiple	 times.	We	will	write	 the	directory/FAT	each	 time	we
close	 a	 file	 and	 before	 removing	 power.	 Figure	 8.22	 shows	 one	 possible
implementation	of	the	process	to	create	a	new	file.	This	function	will	return	the	file
number	(0	to	254)	of	a	file	not	yet	written	to.

Since	files	are	never	deleted,	 this	 function	will	 return	file	numbers	 in	a	0,	1,	2,	…
order.	Once	there	are	255	files	on	the	disk,	no	more	files	can	be	created.

Figure	8.22.	Software	flowchart	for	OS_File_New.	Returning	with	a	255
means	fail	because	the	disk	already	has	254	files.	The	only	way	for	this
function	to	fail	is	if	the	disk	has	254	files,	and	each	file	is	one	sector.

This	 simple	 file	 system	assumes	you	append	some	data	after	you	create	a	new	file
and	before	you	create	a	second	new	file.	The	following	shows	a	proper	use	case	of
creating	multiple	files:

n	=	OS_File_New();								//	create	a	new	file
OS_File_Append(n,stuff);		//	add	to	n
m	=	OS_File_New();								//	second	file
OS_File_Append(m,other);		//	add	to	m
	

If	you	violate	this	assumption	and	execute	the	following	code,	then	files	n	and	m	will
be	one	file.	I.e.,	n	will	equal	m.

n	=	OS_File_New();								//	create	a	new	file
m	=	OS_File_New();								//	second	file
OS_File_Append(n,stuff);		//	add	to	n
OS_File_Append(m,other);		//	add	to	m

8.5.4.	Append
Figure	8.23	shows	one	possible	 implementation	of	 the	 function	 that	appends	a	data
buffer	to	an	existing	file.

Figure	8.23.	Software	flowchart	for	OS_File_Append.	Returning	with	a	255
means	fail	because	there	are	no	free	sectors	on	the	disk.

Figure	8.24	shows	the	helper	function	that	appends	the	sector	number	(n)	to	the	FAT
link	associated	with	file	(num).

Figure	8.24.	Software	flowchart	for	the	helper	function	appendfat.

8.5.5.	Free	space	management
An	entry	in	the	FAT	of	255	means	that	sector	is	free	or	that	is	the	last	sector	of	a	file.
However,	since	files	are	never	deleted	or	reduced	in	size,	there	will	be	no	external
fragmentation	and	all	free	sectors	exist	in	one	contiguous	chunk.	In	particular,	if	we
search	the	FAT	for	the	last	sector	of	each	file,	find	the	maximum	of	these	numbers,	the
first	free	sector	is	this	maximum+1.	The	last	free	sector	is	254.	Figure	8.25	shows	the
helper	function	that	finds	a	free	sector	on	the	disk.

Figure	8.25.	Software	flowchart	for	the	helper	function	findfreesector.

Figure	8.26	 shows	 the	helper	 function	 that	 finds	 the	 last	 sector	of	 file	 that	 starts	 at
sector.

Figure	8.26.	Software	flowchart	for	the	helper	function	lastsector.

8.6.	Readers-Writers	Problem
When	 threads	 within	 an	 OS	 share	 a	 common	 file	 system,	 synchronization	 will	 be
required	to	prevent	corrupted	or	inconsistent	data,	see	Figure	8.27.	Multiple	readers
are	allowed	concurrent	access	to	the	file	system	because	readers	do	not	modify	the
data.	Table	8.3	shows	a	reader	will	open	a	file	for	reading,	access	the	data,	and	then
close	the	file.	On	the	other	hand,	only	one	writer	is	allowed	access	to	the	data	at	a
time.	A	writer	thread	will	open	the	file	with	read/write	permission,	read	and	write	to
the	file,	and	then	close	the	file.

Reader	Threads
1)	Execute	ROpen(file)
2)	Read	information	from	file
3)	Execute	RClose(file)

Writer	Threads
1)	Execute	WOpen(file)
2)	Read/write	information	from/to
file
3)	Execute	WClose(file)

Table	8.3.	Sequence	of	action	employed	by	readers	and	writers.

Figure	8.27.	A	file	system	can	have	multiple	readers	and	multiple	writers.

The	solution	to	the	readers-writers	problem	uses	three	objects:	a	numerical	counter
called ReadCount ,	 a	 binary	 semaphore	 called mutex ,	 and	 another	 binary
semaphorecalled wrt .	 The ReadCount defines	 how	 many	 reader	 threads	 are
accessing	the	file	system	and	this	counter	is	initialized	to	0.	The mutex semaphore	is
used	 to	 create	 mutually	 exclusive	 access	 to	 shared	 information	 inReadCount ,
and mutex is	initialized	to	1.	The wrt semaphore	allows	just	one	writer	to	access	the
file	 system	 and wrt 	 is	 initialized	 to	 1.	 Program	 8.5shows	 the	 synchronization
required	 to	open	 and	 close	 files.	 If	 a	 reader	 thread	 is	 first,	 it	will	 prevent	writers
from	 access	 by	 executing	 a	 wait	 onwrt .	 Once	 all	 readers	 are	 finished,	 the wrt
semaphore	is	signaled.	If	a	writer	thread	is	first,	it	will	prevent	all	other	threads	from
accessing	the	file	system.

ROpen
		wait(&mutex);
		ReadCount++;
	
if(ReadCount==1)
{
				wait(&wrt);
		}

RClose
		wait(&mutex);
		ReadCount--;
	
if(ReadCount==0)
{
				signal(&wrt);
		}

WOpen
		wait(&wrt);

WClose
		signal(&wrt);
	

		signal(&mutex); 		signal(&mutex);

Program	8.5.	Semaphore	synchronization	used	to	solve	the	readers-writers
problem.

8.7.	Exercises
8.1	For	each	term	give	a	definition	in	32	words	or	less.
a)	Free-space	management b)	Linked	allocation c)	Indexed	allocation
d)	FAT e)	Internal	fragmentation f)	External	fragmentation
	
8.2	Consider	a	file	system	that	uses	contiguous	allocation	to	define	the	set	of	blocks
allocated	 to	 each	 file,	 as	 shown	 in	Figure	8.28.	There	 are	8192	bytes	on	 this	 disk
made	up	of	 256	blocks,	where	 each	block	 is	 32	 bytes.	This	 file	 system	 is	 used	 to
record	important	“black	box”	information.	Therefore,	the	file	system	is	initialized	to
empty	when	the	device	is	manufactured.	Each	time	the	system	is	turned	on,	a	new	file
is	 created.	While	 running	 important	 data	 are	 stored	 into	 that	 file	 (create	 new	 file,
append	data	at	the	end,	close	file).	Files	are	never	deleted.	Once	a	file	is	closed,	it
can	 be	 opened	 for	 reading,	 but	 it	 cannot	 be	 opened	 again	 for	 writing.	 Block	 0
contains	 the	 directory	 and	 not	 available	 for	 data.	 Each	 directory	 entry	 has	 three
fields:	name,	block	number	of	the	first	block,	and	total	number	of	bytes	stored.	The
example	 in	 Figure	 8.28	 shows	 file	 A	 with	 3	 allocated	 blocks	 (1,2,3	 containing
32,32,8	bytes),	file	B	with	2	blocks	(4,5	containing	32,32	bytes),	and	file	C	with	7
blocks	(6,7,8,9,10,11,12	containing	32,32,32,32,32,32,8).	All	32	bytes	of	each	data
block	can	contain	data	for	the	file.
a)	Does	this	file	system	have	any	external	fragmentation?	Justify	your	answer.
b)	Assume	a	file	has	n	data	blocks.	It	takes	one	block	read	to	fetch	the	directory.	On
average,	how	many	more	block	reads	does	it	take	to	read	a	single	byte	at	a	random
position	in	 the	file?	What	 is	 the	maximum	number	of	additional	block	reads	 that	 it
takes	to	read	a	single	byte	in	the	file	(worst	case)?
c)	Describe	a	simple	mechanism	to	manage	free	blocks	in	this	system.	Be	as	explicit
as	 possible,	 describing	how	many	bytes	 in	 the	 directory	 are	 needed	 to	manage	 the
free	space.	Describe	what	the	free	space	looks	like	after	the	disk	is	erased/formatted.
Describe	what	the	free	space	looks	like	when	the	disk	is	full.
d)	 File	 names	 are	 a	 single	 character.	 How	many	 files	 can	 be	 stored?	 Justify	 your
answer.
e)	Assume	you	have	n	files	each	with	of	random	size.	Quantify	the	number	of	wasted
bytes	 due	 to	 internal	 fragmentation.	 You	 may	 assume	 n	 is	 less	 than	 the	 number
determined	in	part	d).

Figure	8.28.	File	system	for	Exercise	8.2.

8.3	Consider	 a	 file	 system	 that	 uses	 contiguous	 allocation,	 as	 illustrated	 by	Figure
8.29.	The	block	size	 is	32	bytes	and	all	256	blocks	can	be	used	 to	store	data.	The
directory	is	not	stored	on	the	disk.	Each	directory	entry	contains	the	file	name	(e.g.,
A,	B,	C),	the	start	block	(e.g.,	File	B	starts	at	block	4),	and	the	number	of	blocks	used
in	the	file	(e.g.,	File	C	has	5	blocks).	The	file	sizes	are	always	a	multiple	of	32	bytes.
I.e.,	 a	 file	 can	 contain	 only	 32,	 64,	 96,	 …,	 8192	 bytes.	 For	 example,	 File	 A	 is
3*32=96	bytes,	File	B	 is	2*32=62	bytes	and	File	C	 is	5*32=160	bytes.	 	Does	 this
system	have	internal	fragmentation?	Explain	your	answer.

Figure	8.29.	File	system	for	Exercise	8.3.

	

8.4	Consider	a	file	system	that	manages	a	16	Megabyte	(224	bytes)	EEPROM	storage
for	 a	 battery-powered	 embedded	 system.	 You	 are	 free	 to	 select	 from	 a	 range	 of
EEPROM	chips	with	 different	 block	 sizes.	 The	 block	 size	 can	 be	 any	 power	 of	 2
from	1	to	224	bytes.	Chipn	has	a	total	of	16	Megabytes	with	block	size	2n	bytes.	Chipn
can	perform	a	2n	 byte	 block-write	 operation	 in	 1	ms	 regardless	 of	 block	 size.	For
bandwidth	reasons,	therefore,	you	wish	to	choose	a	large	block	size.	A	block	will	be
completed	allocated	 to	a	 file	 (you	are	not	allowed	 to	 split	one	block	between	 two

files).	16	bytes	of	each	block	are	used	by	 the	 file	system	to	manage	pointers,	 type,
size,	 and	 free	 space.	However,	 if	 the	 file	were	 to	contain	1	byte	of	data,	 an	entire
block	would	be	allocated,	and	the	remaining	2n-17	bytes	would	be	wasted.	File	sizes
in	this	system	are	uniformly	distributed	from	50,000	to	150,000	bytes	(this	means	any
file	 size	 from	 50,000	 to	 150,000	 bytes	 is	 equally	 likely	 with	 an	 average	 size	 of
100,000	 bytes).	 You	 are	 asked	 to	 choose	 the	 largest	 block	 size	 with	 the
constraint	 that	 the	 average	 internal	 fragmentation	 be	 less	 5%	 of	 the	 total
number	of	bytes	stored.	Show	your	work.

	
	
	

D8.5	One	way	 to	manage	 free-space	on	 a	 disk	 is	 to	 implement	 a	bit	vector.	 Each
block	is	32	bytes	 long,	and	there	are	256	blocks.	For	each	block	on	our	8-kibibyte
disk,	there	will	be	a	single	bit	specifying	whether	the	block	is	free	(1)	or	allocated.
In	C,	we	can	define	256	bits	as	a	byte-array	with	32	entries.

uint8_t	BitVector[32];		//	256	bits
Similar	 to	 the	 directory,	 the	 BitVector	 will	 exist	 both	 in	 RAM,	 as	 the	 above	 C
definition,	 and	 on	 the	 disk	 as	 block	 1.	 The	 format	 operation	will	 initialize	 254	 of
these	bits	to	1,	performing:

		BitVector[0]	=	0x3F;	//	blocks	0,1	used	(directory,	BitVector)
		for(i=1;i<32;i++)	BitVector[i]=0xFF;	//	blocks	8-255	are	free
		eDisk_WriteBlock(BitVector,1);							//	update	disk	copy
	

a)	 Write	 a	 helper	 function	 that	 allocates	 a	 free-block	 updating	 the	 disk	 copy	 of
BitVector.

//	allocate	a	free	block,	returns	a	block	number	of	a	free	block
//	Output:	block	number	2	to	255	if	successful	and	0	if	full
uint8_t	AllocateBlock(void){
		eDisk_ReadBlock(BitVector,1);								//	fresh	RAM	copy

b)	 Write	 a	 helper	 function	 that	 deallocates	 a	 block	 updating	 the	 disk	 copy	 of
BitVector.

//	deallocate	a	free	block
//	Input:	block	number	2	to	255
void	DeallocateBlock(uint8_t	blockNum){
		eDisk_ReadBlock(BitVector,1);								//	fresh	RAM	copy
	

8.6	Consider	a	file	system	that	uses	a	file	translation	table	(FTT)	to	define	the	set	of
blocks	 allocated	 to	 each	 file.	 There	 are	 65536	 bytes	 on	 this	 disk	made	 up	 of	 256
blocks,	 where	 each	 block	 is	 256	 bytes.	 Block	 0	 contains	 the	 directory	 and	 is	 not
available	for	data.	Each	file	has	its	own	FTT,	which	is	a	null-terminated	list	of	block
numbers	assigned	to	the	file.	Figure	8.30	shows	a	file	with	4	allocated	blocks,	with
the	 first	block	at	12,	 and	 the	 last	block	at	22.	The	directory	entry	 includes	 the	 file

name,	the	total	number	of	bytes,	and	the	block	number	of	its	FTT.	All	256	bytes	of
each	data	block	 can	 contain	data	 for	 the	 file.	For	 example,	 the	 figure	 shows	 a	 file
with	1024	bytes	of	data,	stored	in	5	blocks	(FTT	and	4	data	blocks).
a)	Does	this	file	system	have	any	external	fragmentation?	Justify	your	answer.
b)	Assume	 a	 file	 has	n	 data	 blocks.	 It	 takes	 one	block	read	 to	 fetch	 the	FTT.	 On
average,	how	many	more	block	reads	does	it	take	to	read	a	single	byte	at	a	random
position	in	 the	file?	What	 is	 the	maximum	number	of	additional	block	reads	 that	 it
takes	to	read	a	single	byte	in	the	file	(worst	case)?
c)	Consider	the	linked	allocation	scheme.		Assume	the	directory	is	in	memory	and	the
file	has	n	 data	 blocks.	On	average,	 how	many	block	 reads	does	 it	 take	 to	 read	 a
single	byte	at	a	random	position	in	the	file?	What	is	the	maximum	number	of	block
reads	that	it	takes	to	read	a	single	byte	in	the	file	(worst	case)?
d)	Assume	you	are	given	the	following	function	that	reads	a	256-byte	block	from	disk

int	eDisk_ReadBlock(uint8_t	*pt,		//	result	returned	by	reference
		uint8_t	blockNum);														//	which	block	to	read

Write	a	C	function	that	returns	a	byte	from	a	file	at	a	random	location.	Do	not	worry
about	error	handling	(e.g., eDisk_ReadBlock error	or	address	too	big).	The	inputs	to
the	function	are numFTT 	(the	block	number	of	the	file’s	FTT)	and address 	(the	byte
address,	where	0	is	the	first	byte,	1	means	second	byte	etc.).	You	can	use	two	buffers.

uint8_t	FTTbuf[256];		//	place	to	store	FTT
uint8_t	Databuf[256];	//	place	to	store	data

The	prototype	of	the	C	function	you	have	to	write	is

uint8_t	eFile_Read(uint8_t	numFTT,	uint16_t	address);

Figure	8.30.	File	system	for	Exercise	8.6.

	
	

	

9.	Communication	Systems
Chapter	9	objectives	are	to:
•	Introduce	basic	concepts	of	networks

•	Describe	the	controller	area	network	(CAN)	protocol

•	Present	fundamentals	and	implementation	of	Bluetooth	Low	Energy
(BLE)

•	Introduce	Ethernet,	Wireless,	and	the	Internet	of	Things
The	 goal	 of	 this	 chapter	 is	 to	 provide	 a	 brief	 introduction	 to	 communication
systems.	Communication	theory	is	a	richly	developed	discipline,	and	much	of
the	communication	 theory	 is	beyond	the	scope	of	 this	book.	Nevertheless,	 the
trend	in	embedded	systems	is	to	employ	multiple	intelligent	devices,	therefore
the	interconnection	will	be	a	strategic	factor	in	the	performance	of	the	system.
These	 devices	 will	 be	 developed	 by	 different	 manufacturers,	 thus	 the
interconnection	 network	must	 be	 flexible,	 robust,	 and	 reliable.	Consequently,
this	 chapter	 focuses	 on	 implementing	 communication	 systems	 appropriate	 for
embedded	 systems.	 The	 components	 of	 an	 embedded	 system	 typically
combined	to	solve	a	common	objective,	 thus	 the	nodes	on	 the	communication
network	will	cooperate	towards	that	shared	goal.	In	particular,	requirements	of
an	 embedded	 system,	 in	 general,	 involve	 relatively	 low	 bandwidth,	 static
configuration,	and	a	low	probability	of	corrupted	data.	In	Volume	2,	networks
designed	with	serial	ports	and	ZigBee	were	presented.	In	this	chapter	we	will
discuss	CAN,	Bluetooth,	and	Ethernet.

9.1.	Fundamentals

9.1.1.	The	network
A	network	 is	 a	 collection	 of	 interfaces	 that	 share	 a	 physical	 medium	 and	 a	 data
protocol.	 	 A	 network	 allows	 software	 tasks	 in	 one	 computer	 to	 communicate	 and
synchronize	 with	 software	 tasks	 running	 on	 another	 computer.	 For	 an	 embedded
system,	the	network	provides	a	means	for	distributed	computing.	The	topology	of	a
network	defines	how	the	components	are	interconnected.	Example	topologies	include
rings,	 busses	 and	 multi-hop.	 Figure	 9.1	 shows	 a	 ring	 network	 of	 three
microcontrollers.	 The	 advantage	 of	 this	 ring	 network	 is	 low	 cost	 and	 can	 be
implemented	 on	 any	 microcontroller	 with	 a	 serial	 port.	 Notice	 that	 the
microcontrollers	need	not	be	the	same	type	or	speed.	The	CAN	network,	presented	in
Section	9.2,	is	an	example	of	a	multi-drop	bus.

The	 ZigBee	 wireless	 network	 described	 in	 Volume	 2	 is	 a	 multi-hop	 network
(duplicated	in	Figure	9.2).	Notice	that	there	can	be	multiple	paths	with	which	to	route
packets.

	

Figure	9.1.	A	simple	ring	network	with	three	nodes,	linked	using	the	serial
ports.

Figure	9.2.	ZigBee	wireless	networks	communicate	by	hopping	between
nodes.

In	Chapter	11	of	Volume	2,	we	considered	networks	with	one	or	two	layers.	In	this
chapter,	we	will	build	on	 those	 ideas	and	 introduce	 the	concepts	of	networks	with
more	layers	and	higher	bandwidths.

A	communication	network	 includes	 both	 the	 physical	 channel	 (hardware)	 and	 the
logical	procedures	(software)	that	allow	users	or	software	processes	to	communicate
with	 each	 other.	 The	 network	 provides	 the	 transfer	 of	 information	 as	 well	 as	 the
mechanisms	for	process	synchronization.	It	is	convenient	to	visualize	the	network	in	a
hierarchical	fashion	as	shown	in	Figure	9.3.

	

Figure	9.3.	A	layered	approach	to	communication	systems.

Most	networks	provide	an	abstraction	 that	hides	 low-level	details	 from	high-level
operations.	This	abstraction	is	often	described	as	layers.		The	International	Standards
Organization	 (ISO)	 defines	 a	 7-layer	 model	 called	 the	 Open	 Systems
Interconnection	 (OSI),	 as	 shown	 in	 Figure	 9.4.	 It	 provides	 a	 standard	 way	 to
classify	network	components	and	operations.

Figure	9.4.	The	Open	Systems	Interconnection	model	has	seven	layers.

The	Physical	layer	includes	connectors,	bit	formats,	and	a	means	to	transfer	energy.
Examples	 include	 RS232,	 controller	 area	 network	 (CAN),	 modem	 V.35,	 T1,
10BASE-T,	 100BASE-TX,	 DSL,	 and	 802.11a/b/g/n	 PHY.	 The	 Data	 link	 layer
includes	 error	 detection	 and	 control	 across	 a	 single	 link	 (single	 hop).	 Examples
include	 802.3	 (Ethernet),	 802.11a/b/g/n	 MAC/LLC,	 PPP,	 and	 Token	 Ring.	 The
Network	 layer	 defines	 end-to-end	 multi-hop	 data	 communication.	 The	Transport
layer	provides	connections	and	may	optimize	network	resources.	The	Session	 layer
provides	services	for	end-user	applications	such	as	data	grouping	and	check	points.
The	 Presentation	 layer	 includes	 data	 formats,	 transformation	 services.	 The
Application	layer	provides	an	interface	between	network	and	end-user	programs.

Observation:	Communication	systems	often	specify	bandwidth	in	total	bits/sec,
but	the	important	parameter	is	the	data	transfer	rate.	

Observation:	Often	the	bandwidth	is	limited	by	the	software	and	not	the
hardware	channel.	

Many	embedded	systems	require	the	communication	of	command	or	data	information
to	other	modules	at	either	a	near	or	a	remote	location.	A	full	duplex	channel	allows
data	 to	 transfer	 in	 both	 directions	 at	 the	 same	 time.	 Ethernet,	 SPI,	 and	 UART
implement	 full	duplex	communication.	 In	a	half	duplex	 system,	data	can	 transfer	 in
both	directions	but	only	in	one	direction	at	a	time.	Half	duplex	is	popular	because	it
is	 less	 expensive	 and	 allows	 the	 addition	 of	more	 devices	 on	 the	 channel	without
change	to	the	existing	nodes.	CAN,	I2C,	and	most	wireless	protocols	implement	half-
duplex	communication.	A	simplex	channel	allows	data	to	flow	in	only	one	direction.

Checkpoint	9.1:	In	which	manner	to	most	people	communicate:	simplex,	half
duplex	or	full	duplex?

9.1.2.	Physical	Channel
Information,	such	as	text,	sound,	pictures	and	movies,	can	be	encoded	in	digital	form
and	 transmitted	 across	 a	 channel,	 as	 shown	 in	 Figure	 9.5.	 Channel	 capacity	 is
defined	as	the	maximum	information	per	second	it	can	transmit.	In	order	to	improve
the	effective	bandwidth	many	communication	systems	will	compress	the	information
at	 the	source,	 transmit	 the	compressed	version,	and	then	decompress	 the	data	at	 the
destination.	Compression	 essentially	 removes	 redundant	 information	 in	 such	 a	way
that	 the	 decompressed	 data	 is	 identical	 (lossless)	 or	 slightly	 altered	 but	 similar
enough	(lossy).	 For	 example,	 a	 400	 pixels/inch	 photo	 compressed	 using	 the	 JPEG
algorithm	will	be	5	to	30	times	smaller	than	the	original.	A	guided	medium	 focuses
the	 transmission	 energy	 into	 a	 well-defined	 path,	 such	 as	 current	 flowing	 along
copper	wire	 of	 a	 twisted	 pair	 cable,	 or	 light	 traveling	 along	 a	 fiber	 optic	 cable.	
Conversely,	an	unguided	medium	 has	 no	 focus,	 and	 the	 energy	 field	 diffuses	 as	 in
propagates,	such	as	sound	or	EM	fields	in	air	or	water.	In	general,	for	communication
to	occur,	the	transmitter	must	encode	information	as	energy,	the	channel	must	allow
the	 energy	 to	move	 from	 transmitter	 to	 receiver,	 and	 the	 receiver	must	 decode	 the
energy	back	into	the	information,	see	Figure	9.5.	In	an	analog	communication	system,
energy	can	vary	continuously	in	amplitude	and	time.	A	digital	communication	signal
exists	at	a	finite	number	of	energy	levels	for	discrete	amounts	of	time.	Along	the	way,
the	 energy	may	 be	 lost	 due	 to	 attenuation.	 For	 example,	 a	 simple	V=I*R	 voltage
drop	is	in	actuality	a	loss	of	energy	as	electrical	energy	converted	to	thermal	energy.
A	second	example	of	attenuation	is	an	RF	cable	splitter.	For	each	splitter,	there	will
be	 50%	 attenuation,	 where	 half	 the	 energy	 goes	 left	 and	 the	 other	 half	 goes	 right
through	the	splitter.	Unguided	media	will	have	attenuation	as	the	energy	propagates	in
multiple	directions.	Attenuation	causes	the	received	energy	to	be	lower	in	amplitude
than	the	transmitted	energy.

A	second	problem	is	distortion.	The	 transfer	gain	and	phase	 in	 the	channel	may	be
function	of	frequency,	time,	or	amplitude.	Distortion	causes	the	received	energy	to	be
different	shape	than	the	transmitted	energy.

A	third	problem	is	noise.	The	noise	energy	is	combined	with	the	information	energy
to	 create	 a	 new	 signal.	 White	 noise	 is	 an	 inherent	 or	 internally	 generated	 noise
caused	by	thermal	fluctuations.	EM	field	noise	is	externally	generated	and	is	coupled
or	added	into	the	system.	Crosstalk	 is	a	problem	where	energy	in	one	wire	causes
noise	 in	 an	 adjacent	 wire.	 	 We	 quantify	 noise	 with	 signal-to-noise	 ratio	 (SNR),
which	is	the	ratio	of	the	information	signal	power	to	noise	power.

	

Figure	9.5.	Information	is	encoded	as	energy,	and	errors	can	occur	during
transmission.

Checkpoint	9.2:	Why	do	we	measure	SNR	as	power	and	not	voltage?

Checkpoint	9.3:	Why	do	we	always	have	a	ratio	of	two	signals	whenever	we	use
the	log10	to	calculate	the	amplitude	of	a	signal?

Observation:	Whenever	we	use	the	log10	to	calculate	the	amplitude	of	a	signal,
we	multiply	by	10	if	we	have	a	ratio	of	two	power	signals	or	energy	signals,	and
we	multiply	by	20	if	we	have	a	ratio	of	two	voltage	signals	or	current	signals.

We	 can	 make	 an	 interesting	 analogy	 between	 time	 and	 space.	 A	 communication
system	allows	us	transfer	information	from	position	A	to	position	B.	A	digital	storage
system	allows	us	 transfer	 information	from	time	A	to	 time	B.	Many	of	 the	concepts
(encoding/decoding	 information	 as	 energy,	 signal	 to	 noise	 ratio,	 error
detection/correction,	 security,	 and	 compression)	 apply	 in	 an	 analogous	 manner	 to
both	types	of	systems.

Checkpoint	9.4:	We	measure	the	performance	of	a	communication	system	as
bandwidth	in	bits/sec.	What	is	the	analogous	performance	measure	of	a	digital
storage	system?		

Errors	can	occur	when	communicating	through	a	channel	with	attenuation,	distortion
and	 added	 noise.	 If	 the	 receiver	 detects	 an	 error,	 it	 can	 send	 a	 negative
acknowledgement	so	the	transmitter	will	retransmit	the	data.	The	CAN,	ZigBee,	and
Bluetooth	 protocols	 handle	 this	 detection-retransmission	 process	 automatically.
Networks	 based	 on	 the	 UARTs	 could	 define	 and	 implement	 error	 detection.	 For
example,	we	can	add	an	additional	bit	to	the	serial	frame	for	the	purpose	of	detecting
errors.	With	even	parity,	the	sum	of	the	data	bits	plus	the	parity	bit	will	be	an	even
number.	The	framing	error	in	the	UART	can	also	be	used	to	signify	the	data	may	be
corrupted.	The	CAN	network	sends	a	 longitudinal	redundancy	check,	LRC,	which
is	the	exclusive	or	of	the	bytes	in	the	frame.	The	ZigBee	network	adds	a	checksum,
which	is	the	sum	of	all	the	data.	The	Network	Processor	Interface	(NPI)	later	in	this
chapter	uses	LRC.

There	 are	 many	 ways	 to	 improve	 transmission	 in	 the	 channel,	 reducing	 the
probability	of	errors.	The	first	design	choice	is	the	selection	of	the	interface	driver.

For	example,	RS422	is	less	likely	to	exhibit	errors	than	RS232.	Of	course	having	a
driver	will	be	more	reliable	than	not	having	a	driver.	The	second	consideration	is	the
cable.	Proper	shielding	can	improve	SNR.	For	example,	Cat6	Ethernet	cables	have	a
separator	between	the	four	pairs	of	twisted	wire,	which	reduce	the	crosstalk	between
lines	 as	 compared	 to	 Cat5e	 cable.	 If	 we	 can	 separate	 or	 eliminate	 the	 source	 of
added	 noise,	 the	 SNR	 will	 improve.	 Reducing	 the	 distance	 and	 reducing	 the
bandwidth	 often	 will	 reduce	 the	 probability	 of	 error.	 If	 we	 must	 transmit	 long
distances,	we	 can	 use	 a	 repeater,	which	 accepts	 the	 input	 and	 retransmits	 the	 data
again.			

Error	correcting	codes	are	beyond	the	scope	of	this	book.	However,	we	can	present
two	simple	error	correcting	codes.	The	first	error	correcting	code	involves	sending
three	copies	of	each	data.	The	receiver	will	compare	the	three	versions	received	and
majority	vote	will	decide	which	value	 to	use.	A	second	error	correcting	code	uses
both	parity	and	LRC.	For	example,	assume	we	wished	to	send	the	message	“Ciao”.
Encoded	as	ASCII	characters	the	data	are	$43,	$69,	$61,	and	$6F.	The	first	step	is	to
display	the	binary	data	in	2-D.

	 Byte
0

Byte
1

Byte
2

Byte
3

Bit	7 0 0 0 0
Bit	6 1 1 1 1
Bit	5 0 1 1 1
Bit	4 0 0 0 0
Bit	3 0 1 0 1
Bit	2 0 0 0 1
Bit	1 1 0 0 1
Bit	0 1 1 1 1

	
The	second	step	is	to	add	an	even	parity	to	each	byte	and	add	a	LRC	at	the	end.

	 Byte
0

Byte
1

Byte
2

Byte
3

LRC

Parity 1 0 1 0 0
Bit	7 0 0 0 0 0
Bit	6 1 1 1 1 0
Bit	5 0 1 1 1 1
Bit	4 0 0 0 0 0
Bit	3 0 1 0 1 0
Bit	2 0 0 0 1 1
Bit	1 1 0 0 1 0
Bit	0 1 1 1 1 0
Notice	that	the	even	parity	is	the	exclusive	OR	of	each	bit	in	the	vertical	column	and

the	LRC	is	the	exclusive	OR	of	each	bit	in	the	horizontal	row.	The	parity	bit	for	the
LRC	(or	the	LRC	bit	for	the	parity)	will	be	the	exclusive	OR	of	all	the	data	bits.

Now,	 if	any	one	bit	 in	 this	9-row	by	5-column	matrix	 is	flipped,	we	can	determine
which	byte	is	in	error	by	the	parity	and	which	bit	is	in	error	by	the	LRC.	Rather	than
asking	for	retransmission,	we	simply	correct	 the	error.	These	are	very	simple	error
correcting	codes,	but	they	illustrate	that	we	can	send	more	bits	than	the	minimum	and
use	those	extra	bits	in	a	creative	way	to	either	detect	or	correct	errors.

RS422,	 RS485,	 Ethernet,	 and	 CAN	 are	 high-speed	 communication	 channels.	 This
means	the	bandwidth	and	slew	rate	on	the	signals	are	higher	than	RS232.	There	is	a
correspondence	between	 rise	 time	 (t)	 of	 a	 digital	 signal	 and	 equivalent	 sinusoidal
frequency	(f).	 The	 derivative	 of	A∙sin(2πft)	 is	 2πf∙A∙cos(2πft).	 The	maximum	 slew
rate	 of	 this	 sinusoid	 is	 2πf∙A.	 Approximating	 the	 slew	 rate	 as	 A/t,	 we	 get	 a
correspondence	between	f	and	t

f=	1/ 	t
	

For	example,	 if	 the	 rise	 time	 is	5	ns,	 the	equivalent	 frequency	 is	200	MHz.	Notice
that	this	equivalent	frequency	is	independent	of	baud	rate.	So	even	at	1000	bits/sec,	if
the	rise	time	is	5	ns,	then	the	signal	has	a	strong	200	MHz	frequency	component!	To
deal	with	this	issue,	the	RS232	protocol	limits	the	slew	rate	to	a	maximum	of	30V/
µs.	 This	 means	 it	 will	 take	 about	 400	 ns	 for	 a	 signal	 to	 rise	 from	 -6	 to	 +6	 V.
Consequently,	RS232	signals	have	frequency	components	less	than	2	MHz.	However,
to	 transmit	 faster	 than	 RS232,	 the	 protocol	must	 have	 faster	 rise	 times.	 Electrical
signals	travel	at	about	0.6	to	0.9	times	the	speed	of	light.	This	velocity	factor	(VF)	is
a	property	of	the	cable.	For	example,	VF	for	RG-6/U	coax	cable	is	0.75,	whereas	VF
is	only	0.66	for	RG-58/U	coax	cable.	Using	the	slower	0.66	estimate,	the	speed	is	v
=	 2∙108	 m/s.	 According	 to	 wave	 theory,	 the	 wavelength	 is	 l	 =	 v/f.	 Estimating	 the
frequency	from	rise	time,	we	get

l = v 	*t
	

In	our	example,	a	rise	time	of	5	ns	is	equivalent	to	a	wavelength	of	about	1	m.	As	a
rule	of	thumb,	we	will	consider	the	channel	as	a	transmission	line	if	the	length	of	the
wire	 is	 greater	 than	 l/4.	Another	 requirement	 is	 for	 the	 diameter	 of	 the	wire	 to	 be
much	smaller	than	the	wavelength.	In	a	transmission	line,	the	signals	travel	down	the
wires	 as	waves	 according	 to	 the	wave	 equation.	Analysis	 of	 the	wave	 equation	 is
outside	the	scope	of	this	book.	However,	you	need	to	know	that	when	a	wave	meets	a
change	in	impedance,	some	of	the	energy	will	transmit	(a	good	thing)	and	some	of	the
energy	will	reflect	(a	bad	thing).	Reflections	are	essentially	noise	on	the	signal,	and
if	large	enough,	they	will	cause	bit	errors	in	transmission.	We	can	reduce	the	change
in	 impedance	 by	 placing	 terminating	 resistors	 on	 both	 ends	 of	 a	 long	 high-speed
cable,	 which	 are	 needed	 for	 both	 CAN	 and	 Ethernet.	 These	 resistors	 reduce
reflections;	hence	they	improve	signal	to	noise	ratio.

9.1.3.	Wireless	Communication
The	details	of	exactly	how	wireless	communication	operates	are	beyond	the	scope	of
this	 book.	 Nevertheless,	 the	 interfacing	 techniques	 presented	 in	 this	 book	 are
sufficient	to	implement	wireless	communication	by	selecting	a	wireless	module	and
interfacing	 it	 to	 the	microcontroller.	 In	general,	one	considers	bandwidth,	distance,
topology	and	security	when	designing	a	wireless	link.	Bandwidth	is	the	fundamental
performance	measure	for	a	communication	system.	In	this	book,	we	define	bandwidth
of	 the	 system	 as	 the	 information	 transfer	 rate.	 However,	 when	 characterizing	 the
physical	channel,	bandwidth	can	have	many	definitions.	In	general,	the	bandwidth	of
a	 channel	 is	 the	 range	 of	 frequencies	 passed	 by	 the	 channel	 (Communication
Networks	 by	 Leon-Garcia).	 Let	Gx(f)	 be	 the	 gain	 versus	 frequency	 of	 the	 channel.
When	 considering	 EM	 fields	 transmitted	 across	 space,	 we	 can	 define	 absolute
bandwidth	 as	 the	 frequency	 interval	 that	 contains	 all	 of	 the	 signal’s	 frequencies.
Half-power	 bandwidth	 is	 the	 interval	 between	 frequencies	 at	 which	 Gx(f)	 has
dropped	 to	 half	 power	 (‑3dB).	 Let	 fc	 be	 the	 carrier	 frequency,	 and	Px	 be	 the	 total
signal	 power	 over	 all	 frequencies.	 The	 equivalent	 rectangular	 bandwidth	 is
Px/Gx(fc).	The	null-to-null	bandwidth	is	the	frequency	interval	between	first	two	nulls
of	 Gx(f).	 The	 FCC	 defines	 fractional	 power	 containment	 bandwidth	 as	 the
bandwidth	 with	 0.5%	 of	 signal	 power	 above	 and	 below	 the	 band.	 The	 bounded
power	 spectral	density	 is	 the	 band	defined	 so	 that	 everywhere	 outside	Gx(f)	must
have	fallen	to	a	given	level.	The	purpose	of	this	list	is	to	demonstrate	to	the	reader
that,	when	quoting	performance	data,	we	must	give	both	definition	of	 the	parameter
and	the	data.	If	we	know	the	channel	bandwidth	W	in	Hz	and	the	SNR,	we	can	use	the
Shannon–Hartley	 Channel	 Capacity	 Theorem	 to	 estimate	 the	 maximum	 data
transfer	rate	C	in	bits/s:

C	=	W	*log2(1	+	SNR)

For	example,	consider	a	telephone	line	with	a	bandwidth	W	of	3.4	kHz	and	SNR	of
38	 dB.	 The	 dimensionless	 SNR	 =	 10(38/10)	 =	 6310.	 Using	 the	 Channel	 Capacity
Theorem,	we	calculate	C	=	3.4	kHz	*	log2(1	+	6310)	=	43	kbits/s.

9.1.4.	Radio
Figure	 9.6	 shows	 a	 rough	 image	 of	 various	 electromagnetic	waves	 that	 exist	 from
radio	waves	 to	gamma	 rays.	Visible	 light	constitutes	a	very	 small	 fraction,	 ranging
from	430–770	THz.	Bluetooth.	ZigBee,	and	WiFi	use	an	even	narrower	range	from
2.40	to	2.48	GHz,	which	exists	in	the	microwave	spectrum.

Figure	9.6.	Bluetooth	communication	occurs	in	the	microwave	band	at	about
2.4	GHz.

Table	 9.1	 shows	 some	 general	 descriptions	 of	 the	 three	 major	 communication
standards	operating	in	this	2.4	GHz	band.

	

Standard Description
WiFi Up	to	600	Mbits/sec

Fixed	wide	frequency	channels
Requires	lots	of	power
Support	for	2.4	and	5	GHz	channels
Extensive	security	features

Bluetooth/BLE Very	low	power
BT	up	to	2	Mbps
Massive	deployed	base
Frequency	hopping
Good	performance	in	congested/noisy
environment
Ease	of	use,	no	roaming

ZigBee Very	low	power
Fixed	channels
Complex	mesh	network
250	kbps	bandwidth

Table	9.1.	Comparison	between	Wi-Fi,	Bluetooth,	and	ZigBee.
Bluetooth	LE	could	use	any	of	 the	40	narrow	bands	(LL	0	to	39)	at	2.4	GHz;	 these
bands	are	drawn	as	bumps	in	Figure	9.7.	This	figure	also	shows	the	WiFi	channels,
which	exist	as	three	wide	bands	of	frequencies,	called	channel	1,	6	and	11.	Because
BLE	coexists	with	regular	Bluetooth	and	WiFi,	BLE	will	avoid	the	frequencies	used
by	other	communication	devices.	LL	channels	37,	38	and	39	are	used	 to	advertise,
and	LL	channels	9-10,	21-23	and	33-36	are	used	for	BLE	communication.	BLE	has
good	 performance	 in	 congested/noisy	 environments	 because	 it	 can	 hop	 from	 one
frequency	 to	 another.	 Frequency	 Hopping	 Spread	 Spectrum	 (FHSS)	 rapidly
switches	 the	 carrier	 among	 many	 frequency	 channels,	 using	 a	 pseudorandom
sequence	 known	 to	 both	 transmitter	 and	 receiver.	 This	way,	 interference	will	 only
affect	some	but	not	all	communication.

Figure	9.7.	The	2.4	GHz	spectrum	is	divided	into	40	narrow	bands,
numbered	LL	0	to	39.	Each	band	is	±1	MHz.

Figure	9.8	illustrated	the	inverted	F	shape	of	the	2.4	GHz	antenna	used	on	the
CC2650	LaunchPad.	For	more	information	on	antenna	layout,	see
http://www.ti.com/lit/an/swra351a/swra351a.pdf

Figure	9.8.		One	possible	layout	of	the	2.4	GHz	antenna.

9.2.	Controller	Area	Network	(CAN)

9.2.1.	The	Fundamentals	of	CAN
In	 this	 section,	we	will	 design	 and	 implement	 a	Controller	Area	Network	 (CAN).
CAN	 is	 a	 high-integrity	 serial	 data	 communications	 bus	 that	 is	 used	 for	 real-time
applications.	 It	 can	operate	at	data	 rates	of	up	 to	1	Mbits/second,	having	excellent
error	detection	and	confinement	capabilities.	The	CAN	was	originally	developed	by
Robert	 Bosch	 for	 use	 in	 automobiles,	 and	 is	 now	 extensively	 used	 in	 industrial
automation	and	control	applications.	The	CAN	protocol	has	been	developed	into	an
international	standard	for	serial	data	communication,	specifically	the	ISO	11989.

Figure	 9.9	 shows	 the	 block	 diagram	 of	 a	CAN	 system,	which	 can	 have	 up	 to	 112
nodes.	There	are	 four	components	of	a	CAN	system.	The	first	part	 is	 the	CAN	bus
consisting	of	 two	wires	 (CANH,	CANL)	with	120-Ω	 termination	 resistors	on	each
end.	 The	 second	 part	 is	 the	 Transceiver,	 which	 handles	 the	 voltage	 levels	 and
interfacing	the	separate	receive	(RxD)	and	transmit	(TxD)	signals	onto	the	CAN	bus.
The	 third	 part	 is	 the	 CAN	 controller,	 which	 is	 hardware	 built	 into	 the
microcontroller,	 and	 it	 handles	 message	 timing,	 priority,	 error	 detection,	 and
retransmission.	 The	 last	 part	 is	 software	 that	 handles	 the	 high-level	 functions	 of
generating	data	to	transmit	and	processing	data	received	from	other	nodes.

	

Figure	9.9.		Block	Diagram	of	a	TM4C-Based	CAN	communication	system

Each	 node	 consists	 of	 a	microcontroller	 (with	 an	 internal	 CAN	 controller),	 and	 a
transceiver	 that	 interfaces	 the	CAN	controller	 to	 the	CAN	bus.	A	 transceiver	 is	 a
device	capable	of	transmitting	and	receiving	on	the	same	channel.	The	CAN	is	based
on	 the	 “broadcast	 communication	 mechanism”,	 which	 follows	 a	 message-based
transmission	protocol	rather	than	an	address-based	protocol.	The	CAN	provides	two

communication	services:	the	sending	of	a	message	(data	frame	transmission)	and	the
requesting	 of	 a	message	 (remote	 transmission	 request).	 All	 other	 services	 such	 as
error	 signaling,	 automatic	 retransmission	 of	 erroneous	 frames	 are	 user-transparent,
which	 implies	 that	 the	CAN	interface	automatically	performs	these	functions.	 	Both
the	TM4C123	and	 the	TM4C1294	have	 two	CAN	devices.	However,	 the	MSP432
does	 not	 have	 a	 CAN	 interface.	 The	 physical	 channel	 consists	 of	 two	 wires
containing	 in	 differential	mode	 one	 digital	 logic	 bit.	 Because	multiple	 outputs	 are
connected	together,	 there	must	be	a	mechanism	to	resolve	simultaneous	requests	for
transmission.	 In	 a	manner	 similar	 to	 open	 collector	 logic,	 there	 are	dominant	 and
recessive	 states	 on	 the	 transmitter,	 as	 shown	 in	 Figure	 9.10.	The	 outputs	 follow	 a
wired-and	mechanism	in	such	a	way	that	if	one	or	more	nodes	are	sending	a	dominant
state,	it	will	override	any	nodes	attempting	to	send	a	recessive	state.

Figure	9.10.	Voltage	specifications	for	the	recessive	and	dominant	states.

Checkpoint	9.5:	What	are	the	dominant	and	recessive	states	in	open	collector
logic?

The	 CAN	 transceiver	 is	 a	 high-speed,	 fault-tolerant	 device	 that	 serves	 as	 the
interface	between	a	CAN	protocol	controller	(located	in	the	microcontroller)	and	the
physical	bus.	The	transceiver	 is	capable	of	driving	the	large	current	needed	for	 the
CAN	 bus	 and	 has	 electrical	 protection	 against	 defective	 stations.	 Typically,	 each
CAN	 node	must	 have	 a	 device	 to	 convert	 the	 digital	 signals	 generated	 by	 a	 CAN
controller	 to	signals	suitable	for	 transmission	over	 the	bus	cabling.	The	transceiver
also	provides	a	buffer	between	the	CAN	controller	and	the	high-voltage	spikes	than
can	be	generated	on	the	CAN	bus	by	outside	sources.	Examples	of	CAN	transceiver
chips	include	the	Texas	Instruments	SN65HVD1050D,	AMIS-30660	high	speed	CAN
transceiver,	 ST	 Microelectronics	 L9615	 transceiver,	 Philips	 Semiconductors
AN96116	transceiver,	and	the	Microchip	MCP2551	transceiver.	These	 transceivers
have	similar	characteristics	and	would	be	equally	suitable	for	implementing	a	CAN
system.

In	a	CAN	system,	messages	are	identified	by	their	contents	rather	by	addresses.	Each
message	sent	on	the	bus	has	a	unique	identifier,	which	defines	both	the	content	and	the
priority	 of	 the	message.	This	 feature	 is	 especially	 important	when	 several	 stations
compete	for	bus	access,	a	process	called	bus	arbitration.	As	a	result	of	the	content-
oriented	addressing	scheme,	a	high	degree	of	system	and	configuration	flexibility	is
achieved.	It	is	easy	to	add	stations	to	an	existing	CAN	network.

Four	message	 types	 or	 frames	 can	be	 sent	 on	 a	CAN	bus.	These	 include	 the	Data
Frame,	 the	 Remote	 Frame,	 the	 Error	 Frame,	 and	 the	 Overload	 Frame.	 This

section	will	focus	on	the	Data	Frame,	where	the	parts	in	standard	format	are	shown
in	Figure	9.11.	The	Arbitration	Field	 determines	 the	priority	of	 the	message	when
two	 or	 more	 nodes	 are	 contending	 for	 the	 bus.	 For	 the	 Standard	 CAN	 2.0A,	 it
consists	 of	 an	 11-bit	 identifier.	 For	 the	 Extended	 CAN	 2.0B,	 there	 is	 a	 29-bit
Identifier.	 The	 identifier	 defines	 the	 type	 of	 data.	 The	Control	 Field	 contains	 the
DLC,	which	specifies	the	number	of	data	bytes.	The	Data	Field	contains	zero	to	eight
bytes	of	data.	The	CRC	Field	 contains	a	15-bit	checksum	used	 for	error	detection.
Any	CAN	controller	 that	 has	been	 able	 to	 correctly	 receive	 this	message	 sends	 an
Acknowledgement	 bit	 at	 the	 end	 of	 each	 message.	 This	 bit	 is	 stored	 in	 the
Acknowledge	slot	in	the	CAN	data	frame.	The	transmitter	checks	for	the	presence	of
this	bit	and	if	no	acknowledge	is	received,	the	message	is	retransmitted.	To	transmit	a
message,	the	software	must	set	the	11-bit	Identifier,	set	the	4-bit	DLC,	and	give	the	0
to	 8	 bytes	 of	 data.	 The	 receivers	 can	 define	 filters	 on	 the	 identifier	 field,	 so	 only
certain	message	 types	will	 be	 accepted.	When	 a	message	 is	 received	 the	 software
can	read	the	identifier,	length,	and	data.

The	Intermission	Frame	Space	(IFS)	separates	one	frame	from	the	next.		There	are
two	factors	that	affect	the	number	of	bits	in	a	CAN	message	frame.	The	ID	(11	or	29
bits)	and	the	Data	fields	(0,	8,	16,	24,	32,	40,	48,	56,	or	64	bits)	have	variable	length.
The	 remaining	 components	 (36	 bits)	 of	 the	 frame	 have	 fixed	 length	 including	 SOF
(1),	RTR	 (1),	 IDE/r1	 (1),	 r0	 (1),	DLC	 (4),	CRC	 (15),	 and	ACK/EOF/intermission
(13).	For	example,	a	Standard	CAN	2.0A	frame	with	two	data	bytes	has	11+16+36	=
63	bits.	Similarly,	an	Extended	CAN	2.0B	frame	with	four	data	bytes	has	29+32+36
=	97	bits.

If	a	long	sequence	of	0’s	or	a	long	sequence	of	1’s	is	being	transferred,	the	data	line
will	 be	 devoid	 of	 edges	 that	 the	 receiver	 needs	 to	 synchronize	 its	 clock	 to	 the
transmitter.	 In	 this	 case,	 measures	 must	 be	 taken	 to	 ensure	 that	 the	 maximum
permissible	interval	between	two	signal	edges	is	not	exceeded.		Bit	Stuffing	can	be
utilized	by	 inserting	a	complementary	bit	after	 five	bits	of	equal	value.	Some	CAN
systems	add	stuff	bits,	where	the	number	of	stuff	bits	depends	on	the	data	transmitted.	
Assuming	n	 is	 the	number	of	data	bytes	(0	to	8),	CAN	2.0A	may	add	3+n	 stuff	bits
and	a	CAN	2.0B	may	add	5+n	stuff	bits.	Of	course,	the	receiver	has	to	un-stuff	these
bits	to	obtain	the	original	data.

	

Figure	9.11.		CAN	Standard	Format	Data	Frame.

The	urgency	of	messages	to	be	transmitted	over	the	CAN	network	can	vary	greatly	in
a	 real-time	 system.	 Typically,	 there	 are	 one	 or	 two	 activities	 that	 require	 high

transmission	 rates	 or	 quick	 responses.	 Both	 bandwidth	 and	 response	 time	 are
affected	by	message	priority.	Low	priority	messages	may	have	to	wait	for	the	bus	to
be	idle.	There	are	two	priorities	occurring	as	the	CANs	transmit	messages.	The	first
priority	is	the	11-bit	identifier,	which	is	used	by	all	the	CAN	controllers	wishing	to
transmit	a	message	on	the	bus.	Message	identifiers	are	specified	during	system	design
and	 cannot	 be	 altered	 dynamically.	 The	 11-bit	 identifier	 with	 the	 lowest	 binary
number	has	the	highest	priority.	In	order	to	resolve	a	bus	access	conflict,	each	node
in	 the	 network	 observes	 the	 bus	 level	 bit	 by	 bit,	 a	 process	 known	 as	 bit-wise
arbitration.	 In	 accordance	 with	 the	 wired-and-mechanism,	 the	 dominant	 state
overwrites	 the	 recessive	 state.	All	nodes	with	 recessive	 transmission	but	dominant
observation	 immediately	 lose	 the	competition	for	bus	access	and	become	receivers
of	the	message	with	the	higher	priority.	They	do	not	attempt	transmission	until	the	bus
is	 available	 again.	 Transmission	 requests	 are	 hence	 handled	 according	 to	 their
importance	for	the	system	as	a	whole.	The	second	priority	occurs	locally,	within	each
CAN	node.	When	 a	 node	 has	multiple	messages	 ready	 to	 be	 sent,	 it	will	 send	 the
highest	priority	messages	first.

Observation:	It	is	confusing	when	designing	systems	that	use	a	sophisticated	I/O
interface	like	the	CAN	to	understand	the	difference	between	those	activities
automatically	handled	by	the	CAN	hardware	module	and	those	activities	your
software	must	perform.	The	solution	to	this	problem	is	to	look	at	software
examples	to	see	exactly	the	kinds	of	tasks	your	software	must	perform.

9.2.2.	Texas	Instruments	TM4C	CAN
A	device	driver	for	the	CAN	network	is	divided	into	three	components:	initialization,
transmission,	and	reception.	There	is	a	CAN	driver	available	in	TivaWare®.	In	this
section,	we	will	 use	 this	 driver	 to	 develop	 a	 simple	 system	 that	 exchanges	 4-byte
messages	between	two	microcontrollers.	Each	node	generates	an	interrupt	when	they
receive	 a	 CAN	 message,	 and	 the	 interrupt	 handler	 dumps	 the	 data	 either	 into	 a
mailbox.	 	 In	 this	example,	 the	 transmission	doesn’t	block,	 just	returns	a	failure	 if	 it
can’t	put,	so	it	will	not	block	or	spin.	This	example	was	written	using	the	TivaWare®
driverlib	 library.	Figure	9.12	 shows	 the	data	 flow.	There	 are	 two	 IDs	used	 in	 this
example:

#define	RCV_ID	2
#define	XMT_ID	4

The	CAN	ID	numbers	must	be	reversed	on	the	other	microcontroller.	Otherwise,	the
software	functions	on	the	two	nodes	are	identical.

Figure	9.12.	Data	flow	for	a	simple	CAN	network.

Transmission	 uses	 busy-wait	 synchronization.	 However,	 receiving	 messages	 is
interrupt	 driven,	 and	 data	 is	 passed	 from	 the	 ISR	 to	 the	 user	 application	 using	 a
simple	mailbox:

uint8_t	static	RCVData[4];
int	static	MailFlag;			//	set	when	new	data	arrives
	

The	TM4C	CAN	 receiver	 supports	 up	 to	32	message	objects.	Each	message	 to	be
sent	 occupies	 a	 unique	 message	 object	 in	 the	 32-object	 memory	 of	 the	 CAN
controller	 and	 each	 receive	 object	matches	 one	 of	 the	 transmit	 objects,	 just	 on	 the
opposite	board.	Although	this	example	has	only	two	message	objects	it	could	easily
be	 extended	 to	 up	 to	 32	 objects,	 but	 not	 beyond	 32.	 In	 this	 code	 there	 are	 two
message	objects;	the	transmission	object	on	one	is	connected	to	a	receive	object	on
the	 other.	 The	 following	 helper	 function	 sets	 up	 one	 of	 these	 32	message	 objects,
which	can	be	a	TX	object	or	an	RX	object	type.

void	static	CAN0_Setup_Message_Object(uint32_t	MessageID,
					uint32_t	MessageFlags,	uint32_t	MessageLength,
					uint8_t	*	MessageData,	uint32_t	ObjectID,	tMsgObjType	eMsgType){
		tCANMsgObject	xTempObject;
		xTempObject.ulMsgID	=	MessageID;										//	11	or	29	bit	ID
		xTempObject.ulMsgLen	=	MessageLength;
		xTempObject.pucMsgData	=	MessageData;
		xTempObject.ulFlags	=	MessageFlags;
		CANMessageSet(CAN0_BASE,	ObjectID,	&xTempObject,	eMsgType);}

The	initialization	software	first	configures	Port	E	bits	4,5	to	be	CAN0.	From	Table
1.4	we	see	PE4	is	CAN0Rx,	and	PE5	is	CAN0Tx.	Next,	it	initializes	the	baudrate	to
1,000,000	 bps.It	 arms	CAN	 interrupts	 on	 error	 and	 status	 change.	A	 status	 change
will	 occur	 when	 an	 incoming	 frame	 is	 successively	 received.

The CAN0_Setup_Message_Object function	will	configure	one	of	 the	32	message
objects.	Basically,	it	will	set	a	filter	to	allow	receive	frames	with	this RCV_ID 	ID.
An	 interrupt	 will	 be	 generated	 when	 receiving	 this	 type	 of	 frame,	 but	 other	 CAN
traffic	will	be	ignored.	This	function	also	specifies	the	expected	size	in	bytes	of	the
payload.	Lastly,	the	CAN	module	is	armed	in	the	NVIC.	Interrupts	will	be	enabled	in
the	main	program	after	all	devices	are	initialized.

void	CAN0_Open(void){uint32_t	volatile	delay;
		MailFlag	=	false;
		SYSCTL_RCGCCAN_R	|=	0x00000001;		//	CAN0	enable	bit	0
		SYSCTL_RCGCGPIO_R	|=	0x00000010;		//	PortE	enable	bit	4
		for(delay=0;	delay<10;	delay++){};
		GPIO_PORTE_AFSEL_R	|=	0x30;	//PORTE	AFSEL	bits	5,4
		GPIO_PORTE_PCTL_R	=	(GPIO_PORTE_PCTL_R&0xFF00FFFF)|0x00880000;
		GPIO_PORTE_DEN_R	|=	0x30;
		GPIO_PORTE_DIR_R	|=	0x20;				
		CANInit(CAN0_BASE);
		CANBitRateSet(CAN0_BASE,	80000000,	CAN_BITRATE);
		CANEnable(CAN0_BASE);
	
CANIntEnable(CAN0_BASE,CAN_INT_MASTER|CAN_INT_ERROR|CAN_INT_STATUS);
		CAN0_Setup_Message_Object(RCV_ID,	MSG_OBJ_RX_INT_ENABLE,	4,	NULL,
					RCV_ID,	MSG_OBJ_TYPE_RX);
		NVIC_EN1_R	=	(1	<<	(INT_CAN0	-	48));	//	IntEnable(INT_CAN0);
		return;
}

Again,	an	interrupt	is	generated	when	a	frame	of	the	appropriate	ID	is	received.	The
ISR	will	search	the	32	possible	message	objects	for	the	one	that	caused	the	interrupt.

void	CAN0_Handler(void){uint8_t	data[4];	int	i;
		uint32_t	ulIntStatus,ulIDStatus;	tCANMsgObject	xTempMsgObject;	
		xTempMsgObject.pucMsgData	=	data;
		ulIntStatus	=	CANIntStatus(CAN0_BASE,	CAN_INT_STS_CAUSE);	//	cause?
		if(ulIntStatus	&	CAN_INT_INTID_STATUS){		//	receive?
				ulIDStatus	=	CANStatusGet(CAN0_BASE,	CAN_STS_NEWDAT);
				for(i	=	0;	i	<	32;	i++){				//	test	every	bit	of	the	mask
						if((0x1	<<	i)	&	ulIDStatus){		//	if	active,	get	data
								CANMessageGet(CAN0_BASE,	(i+1),	&xTempMsgObject,	true);
								if(xTempMsgObject.ulMsgID	==	RCV_ID){
										RCVData[0]	=	data[0];	RCVData[1]	=	data[1];
										RCVData[2]	=	data[2];	RCVData[3]	=	data[3];
										MailFlag	=	true;			//	new	mail
								}
						}
				}

		}
		CANIntClear(CAN0_BASE,	ulIntStatus);		//	acknowledge
}

When	 the	 user	 code	 wishes	 to	 receive	 a	 message,	 it
calls CAN0_GetMailNonBlock ,	which	is	a	simple	mailbox	receiver.	This	function
is	nonblocking,	meaning	if	there	is	no	message	it	returns	false.	If	there	is	a	message,	it
copies	 the	 payload	 of	 4	 bytes	 and	 returns	 true.	 If	 the	 RTOS	 were	 available,	 the
MailFlag	could	be	replaces	with	a	semaphore.	The	ISR	would	signal	the	semaphore
on	new	data,	and	the	user	code	could	wait	on	that	semaphore.

int	CAN0_GetMailNonBlock(uint8_t	data[4]){
		if(MailFlag){
				data[0]	=	RCVData[0];
				data[1]	=	RCVData[1];
				data[2]	=	RCVData[2];
				data[3]	=	RCVData[3];
				MailFlag	=	false;
				return	true;
		}
		return	false;
}
int	CAN0_CheckMail(void){
		return	MailFlag;
}

When	the	user	code	wishes	to	transmit	data	it	calls	this	function,	which	configures	a
new	message	object.	This	function	will	send	4	bytes	of	data	to	other	microcontroller.

void	CAN0_SendData(uint8_t	data[4]){
		CAN0_Setup_Message_Object(XMT_ID,NULL,4,data,XMT_ID,MSG_OBJ_TYPE_TX);
}

The UserTask 	 ISR	 periodically	 reads	 its	 switches	 and	 creates	 a	 transmit	 object.
Because	 the	 transmission	 rate	 is	 slower	 than	 the	 network,	 the	 transmitter	 does	 not
wait.	It	simply	creates	the	message	object	(CAN0_SendData)	and	schedules	it	for
transmission.	When	 received	by	 the	other	microcontroller	 an	 interrupt	 is	 generated
and	the	data	is	put	in	a	mailbox.	The	main	program	on	the	other	microcontroller	reads
the	mail	and	writes	the	data	out	to	its	LED.	Data	flows	in	both	directions.	Remember
to	reverse	the XMT_ID 	RCV_ID 	values	on	the	two	microcontrollers.

uint8_t	XmtData[4];
uint8_t	RcvData[4];
uint32_t	RcvCount=0;
uint8_t	sequenceNum=0;	
void	UserTask(void){
		XmtData[0]	=	PF0<<1;		//	0	or	2
		XmtData[1]	=	PF4>>2;		//	0	or	4
		XmtData[2]	=	0;							//	unassigned	field

		XmtData[3]	=	sequenceNum;		//	sequence	count
		CAN0_SendData(XmtData);
		sequenceNum++;
}
int	main(void){
		PLL_Init(Bus80MHz);														//	bus	clock	at	80	MHz
		SYSCTL_RCGCGPIO_R	|=	0x20;							//	activate	port	F
		while((SYSCTL_PRGPIO_R&0x20)	==	0){};
		GPIO_PORTF_LOCK_R	=	0x4C4F434B;		//	unlock	GPIO	Port	F
		GPIO_PORTF_CR_R	=	0xFF;										//	allow	changes	to	PF4-0
		GPIO_PORTF_DIR_R	=	0x0E;									//	make	PF3-1	output
		GPIO_PORTF_AFSEL_R	=	0;										//	disable	alt	funct
		GPIO_PORTF_DEN_R	=	0x1F;									//	enable	digital	I/O	on	PF4-0
		GPIO_PORTF_PUR_R	=	0x11;									//	enable	pullup	on	inputs
		GPIO_PORTF_PCTL_R	=	0x00000000;
		GPIO_PORTF_AMSEL_R	=	0;										//	disable	analog	functionality	on	PF
		CAN0_Open();
		Timer3_Init(&UserTask,	1600000);	//	initialize	timer3	(10	Hz)
		EnableInterrupts();
		while(1){
				if(CAN0_GetMailNonBlock(RcvData)){
						RcvCount++;
						PF1	=	RcvData[0];
						PF2	=	RcvData[1];
						PF3	=	RcvCount;			//	heartbeat
				}
		}
}
Program	9.1.	Very	simple	CAN	network	example.

In	this	simple	example,	there	is	just	one	transmit	ID	type	and	one	receive	ID	type,	but
you	 could	 rewrite	 the	 transmitter	 and	 receiver	 to	 allow	multiple	 ID	 types.	 In	 this
case,	the	message	ID	(11-bit	ID)	and	the	object	ID	(0	to	31)	are	the	same.	In	general,
there	 could	 be	 2048	 IDs,	 but	 in	 this	 example	 only	 the	 first	 32	 can	 be	 used.	 The
transmit	messages	are	sent	without	 interrupts,	but	 the	receive	messages	will	 trigger
an	interrupt.	It	would	take	three	steps	to	expand	to	more	receive	IDs.	First,	we	would
call CAN0_Setup_Message_Object 	 multiple	 times	 during	 initialization,	 once	 for
each	type	of	message	we	wish	to	receive	(obviously,	giving	each	a	unique	ID,	up	to
32).	 Second,	 for	 each	 possible	 ID,	 we	 would	 duplicate	 the
	 if(xTempMsgObject.ulMsgID==RCV_ID){} test	 in	 the	 ISR	 to	check	 if	a	desired
message	has	been	received.	Third,	each	message	ID	would	need	its	own	mailbox	or
FIFO.	 This	 way	 the	 user	 tasks	 could	 be	 signaled	 when	 the	 appropriate	 data	 is
available.	Expanding	the	system	to	support	more	transmit	message	IDs	is	simple.	We
simple	duplicate CAN0_SendData 	function	for	each	message	ID	we	wish	to	send.

9.3.	Embedded	Internet
This	section	provides	a	brief	introduction	to	the	Internet	as	well	as	present	low-level
details	 of	 the	 Ethernet	 controller	 on	 a	 Tiva	 microcontroller.	 For	 an	 excellent
description	 of	 the	 TCP/IP	 (Transmission	 Control	 Protocol/Internet	 Protocol)
protocol	the	reader	is	referred	to	W.	Richard	Stevens,	TCP/IP	Illustrated,	Volume	1:
The	Protocols.	 For	 a	 general	 description	 of	 the	 internet	 of	 things,	 see	Vasseur	 and
Dunkels,	 Interconnecting	 Smart	 Objects	 with	 IP.	 These	 two	 books	 provide	 good
overviews	of	network	technologies	used	for	connecting	devices.

9.3.1.	Abstraction
In	a	manner	similar	 to	ZigBee,	TCP/IP	packets	hop	from	one	network	to	another	as
they	 travel	 from	 source	 to	 destination,	 see	 Figure	 9.13.	 The	 network	 schedules
communication	 and	 provides	 routing	 from	 source	 to	 destination.	 Communication
channels	such	as	USB	and	CAN	have	scheduling	mechanisms	to	guarantee	real-time
performance.	 In	 particular,	USB	 allows	 for	 prenegotiated	 bandwidth,	 so	 important
data	can	be	sent	in	real	time.	Because	of	the	priority,	important	CAN	messages	will
have	bounded	latency.	TCP/IP	although	fast	and	reliable	has	no	built-in	guarantees	of
timing.	Nevertheless,	 the	 use	 of	 TCP/IP	 is	 growing	 in	 the	 embedded	world.	Often
TCP/IP	 is	 fast	 enough	 and	 reliable	 enough	 for	 embedded	 applications,	 even	 if
response	time	is	uncertain.

	

Figure	9.13.	Packets	on	the	internet	hop	from	one	network	to	another.

	

When	faced	with	a	complex	problem,	one	could	develop	a	solution	on	one	powerful
and	 centralized	 computer	 system.	 Alternatively	 a	 distributed	 solution	 could	 be
employed	using	multiple	computers	connected	by	a	network.	The	processing	elements
in	Figure	9.14	may	be	a	powerful	computer,	a	microcontroller,	an	ASIC,	or	a	smart
sensor/actuator.	 Another	 name	 given	 for	 an	 embedded	 system	 connected	 to	 the
internet	is	smart	object.	Smart	objects	include	sensors	to	collect	data,	processing	to

detect	events	and	make	decisions,	and	actuators	to	manipulate	the	local	environment.

Table	9.2	lists	some	existing	applications	and	the	things	they	sense	or	control.	There
are	 many	 reasons	 to	 consider	 a	 distributed	 solution	 (network)	 over	 a	 centralized
solution.	Often	multiple	simple	microcontrollers	can	provide	a	higher	performance	at
lower	 cost	 compared	 to	 one	 computer	 powerful	 enough	 to	 run	 the	 entire	 system.
Some	 embedded	 applications	 require	 input/output	 activities	 that	 are	 physically
distributed.	 For	 real-time	 operation	 there	 may	 not	 be	 enough	 time	 to	 allow
communication	between	a	remote	sensor	and	a	central	computer.	Another	advantage
of	distributed	system	is	improved	debugging.	For	example,	we	could	use	one	node	in
a	 network	 to	 monitor	 and	 debug	 the	 others.	 Often,	 we	 do	 not	 know	 the	 level	 of
complexity	of	our	problem	at	design	 time.	Similarly,	over	 time	 the	complexity	may
increase	or	decrease.	A	distributed	system	can	often	be	deployed	that	can	be	scaled.
For	 example,	 as	 the	 complexity	 increases	 more	 nodes	 can	 be	 added,	 and	 if	 the
complexity	were	to	decrease	nodes	could	be	removed.

Industrial	Automation Factories,	machines,	shipping
Environment Weather,	pollution,	public	safety
Smart	Grid Electric	power,	energy	delivery
Smart	Cities Transportation,	hazards,	public	services
Social	Networks Ideas,	politics,	sales,	and	communication
Home	Networks Lighting,	heat,	security,	information
Building	Networks Energy,	hazards,	security,	maintenance
Structural	Monitors Bridges,	roads,	building
Health	Care Heart	function,	medical	data,	remote	care
Law	enforcement Crime,	public	safety

Table	9.2.		Applications	of	smart	objects.

	

Figure	9.14.	The	internet	of	things	places	input,	output	and	processing	at
multiple	locations	connected	together	over	the	internet.

	

The	TCP/IP	model	of	the	Internet	does	not	adhere	to	such	a	strict	layered	structure,
but	does	recognize	four	broad	layers:	scope	of	the	software	application;	the	end-to-
end	transport	connection;	the	internetworking	range;	and	the	direct	links	as	shown	on
the	right	of	Figure	9.15.	Examples	of	applications	include	Telnet,	FTP	(File	Transfer
Protocol),	 and	 SMTP	 (Simple	 Mail	 Transfer	 Protocol).	 Examples	 of	 transport
include	TCP	 (Transmission	Control	 Protocol)	 and	UDP	 (User	Datagram	Protocol).
TCP	 provides	 reliable,	 ordered	 delivery	 of	 data	 from	 a	 software	 task	 on	 one
computer	to	another	software	task	running	on	another	computer.	For	applications	that
do	 not	 require	 reliable	 data	 stream	 service	 UDP	 can	 be	 used.	 UDP	 provides	 a
datagram	 service	 that	 emphasizes	 reduced	 latency	 over	 reliability.	 Examples	 of
network	 include	 IP	 (Internet	 Protocol),	 ICMP	 (Internet	 Control	Message	 Protocol)
and	 IGMP	 (Internet	 Group	 Management	 Protocol).	 Ethernet	 is	 the	 physical	 link
explored	 later	 in	 this	 section.	 In	 this	 section	 we	 will	 develop	 projects	 at	 the
application	layer.	The	communication	of	bits	happens	at	the	physical	layer,	frames	at
the	 data	 link	 layer,	 packets	 or	 datagrams	 at	 the	 network	 layer,	 segments	 at	 the
transport	layer,	and	messages	at	the	application	layer.

Figure	9.15.	The	TCP/IP	model	has	four	layers.

9.3.2.	Message	Protocols
The	 layered	 format	 can	 be	 seen	 in	 the	message	 packet	 formats,	 as	 overviewed	 in
Figure	9.16.	At	the	lowest	level	are	Ethernet	frames,	which	contain	a	header,	46	to
1500	bytes	of	payload,	 and	a	 trailer.	The	header	 includes	 address,	 type	 and	 length
information.	 If	 the	 there	 is	 less	 than	 46	 bytes	 of	 Ethernet	 data,	 zeros	 are	 added
(padding)	to	make	the	Ethernet	payload	at	 least	46	bytes.	The	trailer	 includes	error
checking	(CRC).	At	the	IP	level,	packets	include	a	header	and	payload.	The	header	of
an	IP	packet	 includes	a	32-bit	destination	IP	address,	 typically	shown	as	 four	8-bit
numbers	 (e.g.,	 176.31.244.1).	 Some	 of	 these	 IP	 addresses	 are	 reserved	 for
communicating	within	nodes	on	a	 local	network.	The	Domain	Name	System	(DNS)

host	 can	 be	 used	 to	 translate	 domain	 names	 to	 IP	 addresses.	 Computers	 that
communicate	only	with	each	other	via	TCP/IP,	but	are	not	connected	to	the	Internet,
need	not	 have	globally	 unique	 IP	 addresses.	 IP	 addresses	 for	 private	 networks	 are
listed	in	Table	9.3.	These	IP	addresses	could	be	used	for	systems	that	use	TCP/IP	to
communicate,	but	are	not	connected	to	the	internet.

Start End Number	of
addresses

10.0.0.0 10.255.255.255 224

172.16.0.0 172.31.255.255 220

192.168.0.0 192.168.255.255 216

Table	9.3.	Private	IP	addresses.
	

Because	of	the	growth	of	the	internet,	the	32-bit	IP	address	(IPv4)	is	being	replaced
with	a	128-bit	address	(IPv6),	which	will	provide	for	about	3∙1038	addresses.

Figure	9.16.	Overview	of	message	packets	used	at	various	layers.

9.3.3.	Ethernet	Physical	Layer
The	 goal	 of	 Ethernet	 is	 to	 provide	 reliable	 communication	 over	 an	 unreliable
medium.	 The	 Ethernet	 physical	 layer	 has	 evolved	 over	 time	 and	 includes	 many
physical	media	 interfaces.	 Ethernet	 speed	 ranges	 over	 2	 orders	 of	magnitude.	 The
most	 common	 forms	 used	 are	 10BASE-T,	 100BASE-TX,	 and	 1000BASE-T.	 All
three	 utilize	 twisted	 pair	 cables	 and	 8P8C	 modular	 connectors.	 They	 run	 at	 10
Mbit/s,	100	Mbit/s,	and	1	Gbit/s,	respectively.	Fiber	optic	variants	of	Ethernet	offer
high	 performance,	 electrical	 isolation	 and	 distance	 (tens	 of	 kilometers	 with	 some

versions).	 In	 general,	 network	 protocol	 stack	 software	 will	 work	 similarly	 on	 all
varieties.	The	left	side	of	Figure	9.17	shows	two	processing	elements	connected	with
Ethernet.	The	transmitter	of	one	element	is	connected	to	the	receiver	of	the	other.	If
more	than	two	processing	elements	are	connected	to	the	same	physical	medium,	then
collisions	could	occur.	One	solution	to	reduce	collisions	is	to	use	an	Ethernet	switch
(right	side	of	Figure	9.17).

Figure	9.17.	Ethernet	has	a	bus-based	topology.

Hubs	and	switches	allow	multiple	devices	to	exist	on	the	same	network.	They	differ
in	the	way	that	they	pass	the	network	traffic	that	they	receive.	A	hub	repeats	incoming
frames	 to	 all	 nodes	 on	 the	 network.	 If	 there	 are	 a	 small	 number	 of	 nodes	 and	 the
traffic	is	light,	this	simple	approach	is	adequate.	A	switch	learns	the	addresses	of	the
nodes	connected	to	it;	this	way,	an	incoming	frame	is	sent	only	to	the	proper	node.	If
there	 are	 a	 lot	 of	 nodes,	 this	 selective	 retransmission	 provides	 a	 significant
improvement	 in	performance	over	 a	hub.	A	router	 sits	 between	 two	networks	 and
passes	frames	from	one	network	to	another,	see	Figure	9.13.

Packets	from	one	element	are	sent	to	the	appropriate	destination.	If	a	collision	were
to	occur	(sending	packets	 to	the	same	destination	at	 the	same	time),	 then	the	switch
will	delay	one	packet	 to	 avoid	 the	 collision.	From	 the	viewpoint	of	 the	nodes,	 the
network	 looks	 like	 a	 bus-based	 topology.	 For	 example,	 if	 processing	 element	 A
wishes	 to	 send	 a	 packet	 to	 processing	 element	 C,	 it	 transmits	 the	 packet	 that	 is
addressed	to	C	onto	the	bus,	and	the	C	receives	it.

Table	 9.4	 shows	 the	 pin	 assignments	 in	 the	 8-wire	 568-B	 connectors.	 The	 568-A
connector	 has	 the	 transmit	 and	 receive	 pins	 reversed.	 These	 two	 connector
configurations	 are	 similar	 to	 the	 data	 terminal	 equipment	 (DTE)	 and	 the	 data
communication	equipment	(DCE)	of	RS232	described	in	Section	4.9	of	Volume	2.
When	connecting	a	processing	element	to	a	switch,	a	568-B	connector	is	used	on	the
processing	element	and	a	568-A	connector	is	used	on	the	switch.	This	way	a	straight-
through	 8-wire	 cable	 can	 be	 used	 (Figure	 9.18).	When	 connecting	 two	 processing
element	 to	 each	 other,	 both	 elements	 use	 568-B	 connectors.	 For	 this	 situation	 the
pairs	2	and	3	are	reversed	in	the	cable	can	be	used	(Figure	9.19	and	Table	9.5).

Pin Color Pair Description
1 white/orange 2 TxData	+
2 orange 2 TxData	-
3 white/green 3 RecvData	+
4 blue 1 Unused
5 white/blue 1 Unused
6 green 3 RecvData	-

7 white/brown 4 Unused
8 brown 4 Unused

Table	9.4.	Pin	assignments	on	a	568-B	Ethernet	connector.

Figure	9.18.	Ethernet	cable	between	a	microcontroller	and	a	switch.

Figure	9.19.	Ethernet	cable	between	two	microcontrollers.

Pin Left	color Left
signal

Cable Right	color Right	signal

1 white/orange TxData	 + 	 white/green TxData	+
2 orange TxData	- 	 green TxData	-
3 white/green RecvData

+
	 white/orange RecvData	+

4 blue Unused 	 blue Unused
5 white/blue Unused 	 white/blue Unused
6 green RecvData

-
	 orange RecvData	-

7 white/brown Unused 	 white/brown Unused
8 brown Unused 	 brown Unused

Table	9.5.	Pin	assignments	for	a	crossover	Ethernet	cable.

9.3.4.	Ethernet	on	the	TM4C1294
The	Ethernet	Controller	consists	of	a	fully	integrated	media	access	controller	(MAC)
and	 network	 physical	 (PHY)	 interface.	 The	 Ethernet	 Controller	 conforms	 to
IEEE802.3	 specifications	 and	 fully	 supports	 10BASE-T	 and	 100BASE-TX
standards.	To	fully	understand	this	section,	you	must	read	the	TM4C1294	datasheet.
In	other	words,	this	section	is	meant	to	supplement,	rather	than	replace	the	datasheet.

As	 shown	 in	 Figure	 9.20,	 the	 Ethernet	 Controller	 is	 functionally	 divided	 into	 two
layers:	the	Media	Access	Controller	(MAC)	layer	and	the	Network	Physical	(PHY)
layer.	These	layers	correspond	to	the	OSI	model	layers	2	and	1.	The	microcontroller
accesses	 the	 Ethernet	 Controller	 via	 the	 MAC	 layer.	 The	 MAC	 layer	 provides
transmit	and	receive	processing	for	Ethernet	 frames.	The	MAC	layer	also	provides
the	interface	to	the	PHY	layer	via	an	internal	Media	Independent	Interface	(MII).	The
PHY	layer	communicates	with	the	Ethernet	bus.

Figure	9.20.	The	Ethernet	port	on	the	microcontroller	implements	the	MAC
and	PHY	layers.

Figure	9.21	shows	the	hardware	interface	between	the	TM4C1294	and	the	Ethernet
cable	as	it	is	implemented	on	the	Connected	LaunchPad.	The	data	is	coupled	onto	the
bus	via	transform	coupling.	The	transforms	are	connected	to	the	RJ45	jack.	Only	four
of	the	eight	wires	are	used	and	there	are	no	ground	pins	in	the	cable.	There	are	two
activity	LEDs.	By	default,	these	pins	are	configured	as	GPIO	signals	(PF3	and	PF2).
For	the	PHY	layer	to	drive	these	signals,	they	must	be	reconfigured	to	their	alternate
function.	When	configured	for	Ethernet	operation,	LEDs	D4	(PF0)	and	D3	(PF4)	on
the	connected	LaunchPad	are	controlled	by	the	Ethernet	MAC	to	indicate	connection
and	transmit/receive	status.

Figure	9.21.	Electrical	interface	between	the	microcontroller	and	the
Ethernet	cable.

An	 Ethernet	 data	 packet	 is	 called	 a	 frame	 (Figure	 9.22).	 A	 frame	 begins	 with
preamble	 and	 start	 frame	 delimiter,	 followed	 by	 an	 Ethernet	 header	 featuring
destination	and	source	MAC	addresses.	Whether	the	Length/Type	field	is	a	length	or
a	type	depends	on	the	numeric	value.	If	the	value	of	the	Length/Type	field	is	less	than
or	 equal	 to	1500	decimal,	 it	 indicates	 the	number	of	MAC	client	data	bytes.	 If	 the
value	 of	 this	 field	 is	 greater	 than	 or	 equal	 to	 1536	 decimal,	 then	 it	 is	 type
interpretation.	The	meaning	of	 this	 field	when	 the	value	 is	between	1500	and	1536
decimal	 is	 unspecified.	 The	middle	 section	 of	 the	 frame	 consists	 of	payload	 data
including	 any	 headers	 for	 other	 protocols	 (e.g.,	 Internet	 Protocol)	 carried	 in	 the
frame.	The	minimum	frame	size	is	46	bytes.	If	the	frame	size	is	too	small,	the	Ethernet
Controller	automatically	appends	extra	bytes	(a	pad)	to	make	it	at	least	46	bytes.	The
frame	ends	with	a	frame	check	sequence	(FCS)	is	a	32-bit	cyclic	redundancy	check
(CRC),	which	 is	used	 to	detect	corruption	of	data	 in	 transit.	The	CRC	is	computed
over	 the	 destination	 address,	 source	 address,	 length/type,	 and	 data	 (including	 pad)
fields	using	the	CRC-32	algorithm.	For	transmitted	frames,	this	field	is	automatically
inserted	 by	 the	 MAC	 layer,	 unless	 disabled	 by	 clearing	 the	 CRC	 bit	 in	 the
MACTCTL	register.	For	received	frames,	 this	field	is	automatically	checked.	If	 the
FCS	does	not	pass,	the	frame	is	not	placed	in	the	RX	FIFO,	unless	the	FCS	check	is
disabled	by	clearing	the	BADCRC	bit	in	the	MACRCTL	register.

Figure	9.22.	An	Ethernet	frame	can	hold	46	to	1500	bytes.

Autonegotiation	is	the	procedure	by	which	two	connected	devices	choose	common
transmission	parameters,	such	as	speed	and	duplex	mode.	Autonegotiation	was	first
introduced	 as	 an	 optional	 feature	 for	 100BASE-TX,	 but	 it	 is	 also	 backward
compatible	with	10BASE-T.	Autonegotiation	is	mandatory	for	1000BASE-T.

Example	software	for	this	Ethernet	link	can	be	found	in	TI’s	TivaWare.

enet_io Ethernet-based	I/O	Control
enet_lwip Ethernet	with	a	Lightweight	TCP/IP	stack	(lwIP)
enet_uip Ethernet	with	uIP	TCP/IP	Stack
enet_weather Ethernet	with	lwIP	Weather	Application
	

For	more	information	on	lwIP,	see	http://savannah.nongnu.org/projects/lwip/

9.4.	Internet	of	Things

9.4.1.	Basic	Concepts
With	the	proliferation	of	embedded	systems	and	the	pervasiveness	of	the	internet,	it	is
only	 natural	 to	 connect	 the	 two.	 The	 internet	 of	 things	 (IoT)	 is	 the	 combination	 of
embedded	 systems,	 which	 have	 sensors	 to	 collect	 data	 and	 actuators	 to	 affect	 the
surrounding,	 and	 the	 internet,	 which	 provides	 for	 ubiquitous	 remote	 and	 secure
communication.	This	section	will	not	describe	how	the	internet	works,	but	rather	we
will	 discuss	 both	 the	 general	 and	 specific	 approaches	 for	 connecting	 embedded
systems	to	the	internet.	 	(References	for	 internet	 in	general	and	IoT	in	specific	see:
W.	Richard	Stevens,	TCP/IP	 Illustrated,	Volume	1:	The	Protocols	 and	Vasseur	 and
Dunkels,	Interconnecting	Smart	Objects	with	IP).

Challenges.	On	a	local	scale,	the	design	of	smart	objects	faces	the	same	challenges
existing	 in	 all	 embedded	 systems:	 power,	 size,	 reliability,	 longevity,	 and	 cost.
Luckily	the	deployment	of	billions	of	microcontrollers	into	the	market	has	created	a
technology	race	to	reduce	power,	size	and	cost	while	increasing	the	performance.	At
the	 microcontroller	 level	 things	 are	 getting	 smaller,	 but	 at	 the	 network	 level,
complexity	is	 increasing	and	protocols	are	constantly	changing	as	the	world’s	thirst
for	information	and	communication	rapidly	grows.

Standardization.	The	existence	of	standards	allows	for	a	wide	variety	of	objects	to
communicate	with	each	other.	Adhering	to	a	standard	will	increase	the	acceptance	of
our	 device	 by	 customers,	 and	 allow	 our	 customers	 to	 apply	 our	 device	 to	 solve
problems	we	never	envisioned.	uIP	is	a	light-weight	implementation	of	the	IP	stack
specifically	 designed	 to	 operate	 with	 the	 available	 memory	 resources	 of	 smart
objects.	 In	 this	 section	we	will	 start	with	a	microcontroller	with	 the	hardware	and
software	 to	 implement	 TCP/IP	 protocols,	 and	 build	 our	 application	 on	 top	 of	 this
standard.

Interoperability	means	our	device	can	function	with	a	wide	range	of	other	devices
made	 with	 different	 technologies,	 sold	 by	 different	 vendors,	 and	 produced	 by
different	companies.

Evolution	is	the	process	of	how	new	technologies	are	introduced	into	the	market.	If
there	is	one	constant	in	this	world,	it	is	that	things	will	change.	Every	thousand	years,
one	 big	 discovery	 fundamentally	 changes	 how	 we	 operate	 (fire,	 language,	 metal
tools).	More	frequently,	change	is	 introduced	gradually	such	that	 those	technologies
that	give	us	a	competitive	advantage	survive.	If	we	build	our	business	model	on	the
premise	evolutionary	change,	then	we	can	be	nimble	to	deploy	new	technology	when
it	provides	lower	cost	and/or	better	performance.

Stability.	Even	though	technology	will	advance,	our	customers	demand	products	that
work	 reliably,	 for	 a	 long	 time,	 and	 in	 a	manner	with	which	 they	 are	 comfortable.
Over	 the	 last	 50	 years,	 automotive	 technology	 has	 drastically	 improved,	 but	 the
driving	experience,	how	we	drive,	has	remained	almost	constant.

Abstraction.	 You	will	 notice	 the	 approach	 in	 this	 section	 differs	widely	 from	 the
other	examples	in	this	book.	The	rest	of	the	book	deploys	a	bottom	up	approach.	With
bottom-up	education,	 the	details	 are	 first	 explained,	 so	 there	 is	no	magic,	 and	 then
abstraction	occurs	by	encapsulating	that	we	fully	understand.	In	this	section	we	will
purchase	hardware	and	software	with	capabilities	to	communicate	with	the	internet,
and	 use	 this	 abstraction	without	 fully	 understanding	 how	 some	 of	 the	 lower	 levels
operate.

Scalability.	 ARM	 reports	 over	 50	 million	 devices	 with	 an	 ARM	 core	 have	 been
shipped	 from	1993	 to	 2013,	 and	predicts	 another	 50	 billion	 before	 the	 end	of	 this
decade.	In	order	to	be	effective	and	profitable,	we	need	to	develop	systems	that	can
scale.

Security.	Because	 embedded	 systems	 are	 deployed	 in	 life-critical	 situations,	 and
because	the	quality	of	service	affect	our	profits,	we	must	protect	 the	system	from	a
determined	adversary.	A	chain	is	only	as	strong	as	its	weakest	link.	Security	cannot
be	obtained	simply	by	operating	in	secret,	because	once	the	secret	is	out,	the	system
will	be	extremely	vulnerable.	“Security	by	obscurity”	is	a	very	poor	design	method.
Security	 involves	 more	 than	 encrypting	 the	 data.	 The	 first	 aspect	 of	 security	 is
confidentiality.	We	must	decide	what	it	means	to	view/change	the	data	and	who	has
the	right	to	read/write.	Authentication	is	the	means	to	ensure	the	identity	of	the	sender
is	correct.	Confidentiality	will	require	both	logical	and	physical	measures	to	protect
against	 an	 attack.	 Encryption	makes	 it	 harder	 for	 an	 unauthorized	 party	 to	 view	 a
message.	The	second	aspect	is	data	integrity.	For	most	of	the	applications	listed	in
Table	9.2	it	is	important	that	data	reach	the	rightful	recipient	in	an	unaltered	fashion.
To	 support	 network	 integrity,	 we	 need	 techniques	 that	 support	 both	 detection	 and
prevention.	 The	 third	 aspect	 is	 availability.	 A	 secure	 communication	 not	 only
requires	 the	correct	data	arrive	at	 the	correct	place,	but	also	at	 the	correct	 time.	A
Denial	of	Service	(DoS)	attack	attempts	to	breach	the	availability	of	the	network.	For
wired	networks,	we	can	reroute	traffic	along	multiple	paths.	With	wireless	networks,
we	 can	 channel	 hop	 by	 switching	 channels	 on	 a	 pseudorandom	 fashion,	 making	 it
harder	 for	an	attacker	 to	 jam.	For	more	 information	on	security,	 see	Frank	Stajano,
Security	for	Ubiquitous	Computing.

9.4.2.	UDP	and	TCP	Packets
The	UDP	header	is	8	bytes	and	contains	the	source	port,	destination	port,	length,	and
checksum,	 see	 Table	 9.6	 and	 Figure	 9.23.	 The	 IP	 address	 specifies	 the	 node,	 and
ports	are	addresses	within	the	source	and	destination	nodes.

Source	port:	16-bit	number	of	the	process	that	sent	the	packet,
could	be	zero
Destination	port:	16-bit	number	of	the	process	to	receive	the
packet.
Length:	16-bit	number	specifying	the	size	in	bytes	of	the	data	to
follow
Checksum:	16-bit	modulo	addition	of	all	data,	UDP	header,
and	IP	header

Table	9.6.	UDP	header	format.
The	 TCP	 header	 is	 20	 bytes	 with	 the	 possibility	 of	 additional	 and	 optional
information,	 see	 Table	 9.7.	 The	 sequence	 and	 acknowledgment	 numbers	 allow	 the
receiver	to	properly	sort	segments	of	data	that	were	received	out	of	order.	The	flags
specify	different	modes	of	the	TCP	communication.	The	SYN	flag	means	the	first	of	a
sequence	 of	 packets,	 and	 the	 FIN	 flag	 means	 the	 last.	 The	 RST	 flag	 terminates	 a
connection.	 The	 URG	 flag	 means	 the	 urgent	 pointer	 specifies	 a	 piece	 of	 data	 the
application	urgently	needs.

Figure	9.23.	Overview	of	message	packets	used	at	various	layers.

Source	port:	16-bit	number	of	the	process	that	sent	the	packet,
could	be	zero
Destination	port:	16-bit	number	of	the	process	to	receive	the
packet.
Sequence	number:	32-bit	number	defining	the	position	of	this
data
Acknowledgement:	32-bit	number	of	the	next	data	expected	to
be	received

Hlen:	4-bit	field	of	the	header	size	(including	options)	divided
by	4
Flags:	6-bit	field	with	FIN,	SYN,	RST,	PSH,	ACK,	and	URG
Window:	16-bit	number	specifying	the	number	of	bytes	the
receiver	can	accept
Checksum:	16-bit	modulo	addition	of	all	data,	TCP	header,	and
IP	header
Urgent	pointer:	16-bit	field	pointing	to	a	place	in	the	stream
urgently	needed

Table	9.7.	TCP	header	format.

9.4.3.	Web	server
This	 first	 application	 creates	 a	 web	 server	 that	 maintains	 a	 web	 page	 displaying
local	data,	see	Figures	9.24	and	9.25.	The	components	of	the	system	are	a	sensor	and
sensor	interface,	an	EK-TM4C1294XL	LaunchPad,	Texas	Instruments	TivaWare,	and
a	router	connected	to	the	Internet.	The	Dynamic	Host	Configuration	Protocol	server
provides	 an	 IP	 address,	 and	 is	 typically	 initiated	 via	 a	 DHCP	 broadcast,	 when	 it
connects.	DHCP	provided	the	address	192.168.0.107,	a	local	address	on	its	network.
This	example	was	built	on	top	of	the	uIP	stack	delivered	as	part	of	TivaWare.	First,
you	 need	 to	 download	 TivaWare.	 I	 first	 ran	 the	 enet_uipexample	 found	 in
the TivaWare_C_Series-2.1.0.12573\examples\boards\ek-tm4c1294xl\enet_uip
folder.	I	copied	this	example,	and	changed	the	web	server	as	shown	in	Program	9.2.

	

Figure	9.24.	The	thermistor	measures	temperature	and	the	LaunchPad
serves	pages	to	the	internet.

Figure	9.25.	The	thermistor	measures	temperature	and	the	LaunchPad
serves	pages	to	the	internet.

Program	9.2shows	the	code	you	need	to	modify	to	create	your	own	remote	sensor	smart
object.	When	another	node	sends	a	request	to	this	server,	this	node	will	respond	with	html
code	 to	 render	 the	 page.	 The	 page	 is	 divided	 into	 three	 parts.	 The	 first	 part
(default_page_buf1of3)and	 last	 part	 (default_page_buf3of3)are	 fixed.	 The
application	callback	function, httpd_appcall ,	is	invoked	when	the	web	page	is	requested.
This	 callback	 function	 calls	 our	 application	 functionBoard_Update which	 collects
sensor	 data	 from	 the	 thermistor	 and	 rebuilds	 the	 middle	 part	 of	 the	 html	 code
(default_page_buf2of3).	The	meta	code	automatically	refreshes	every	5	seconds.

const	char	default_page_buf1of3[]	=
		"HTTP/1.0	200	OK\r\n"
		"Server:	UIP/1.0	(http://www.sics.se/~adam/uip/)\r\n"
		"Content-type:	text/html\r\n\r\n"
		"<!DOCTYPE	HTML	PUBLIC	\"-//W3C//DTD	HTML	4.01	Transitional//EN"
		"http://www.w3.org/TR/html4/loose.dtd\">"
		"<html>	<head>"
		"<meta	http-equiv=\"refresh\"	content=\"5\">"
		"<title>Embedded	Systems</title></head>"
		"<body>	<center>"
		"<h1>Embedded	Systems:	Real-Time	Interfacing"
		"to	ARM	Cortex	M	Microcontrollers</h1>"
		"<p>This	is	an	example	from	the	book,	Section	11.4	Internet	of	Things</p>"
		"<p>	For	more	information	see	"
		""
		"the	book	web	site	."
		"<hr	width=\"75%\">"
		"<p>A	thermistor	is	configured	for	temperature	measurement,	"
		"with	a	range	from	0	to	50C.	"
		"For	details	of	analog	circuit	see	the	book	Figure	9.21.	"
		"The	analog	signal	is	sampled	on	PE3/Ain0.		"
		"The	12-bit	digital	sample	is	converted	to	temperature	using	table	lookup	"
		"and	linear	interpolation.</p>		"
		"<p>The	temperature	is	";
uint32_t	const	buf1of3_Size	=	(sizeof(default_page_buf1of3)	-	1);
char	default_page_buf2of3[]	=	"12.01";
uint32_t	buf2of3_Size	=	(sizeof(default_page_buf2of3)	-	1);

const	char	default_page_buf3of3[]	=
		"	C.</p>"
		"<hr	width=\"75%\">"
		"<p>This	web	page	is	served	by	a	small	web	server	running	on	top	of	"
		"the	µIP	embedded	TCP/IP	"
		"stack.</center>	</body>	</html>";
uint32_t	const	buf3of3_Size	=	(sizeof(default_page_buf3of3)	-	1);
void	Board_Update(void){uint32_t	data,temperature;
		data	=	ADC0_InSeq3();																						//	12-bit	ADC,	0	to	4095
		temperature	=	ADC2Temperature(data);							//	temperature,	0.01C
		Fix2Str(temperature,default_page_buf2of3);	//	5	ASCII	characters
		buf2of3_Size	=	5;	//	in	this	case	it	is	fixed	size	(but	it	could	vary)
}

Program	9.2.	The	thermistor	measures	temperature	and	the	LaunchPad
serves	pages	to	the	internet.

To	 run	 the	 internet	 examples	described	 in	 this	 section	download	and	unzip	 the	 IoT
examples	into	examples\boards	so	the	directory	path	looks	like	this

TivaWare_C_Series-2.1.0.12573
examples

boards
CC31xxxx

ek-tm4c1294xl-enet_uip_temperature
ek-tm4c123gxl-boost-cc3100_basic_wifi_UDP
ek-tm4c123gxl-boost-cc3100_starter
ek-tm4c1294xl-boost-cc3100_starter

9.4.4.	UDP	communication	over	WiFi
The	 approach	 for	 implementing	 a	 smart	 object	 over	 WiFi	 is	 to	 begin	 with	 a
hardware/software	platform	that	implements	IEEE801.11	WiFi.	The	CC3100BOOST
is	 a	 BoosterPack	 that	 can	 be	 used	 with	 the	 MSP430	 LaunchPad,	 the	 TM4C123
LaunchPad,	 the	TM4C1294	LaunchPad,	or	with	 a	CC31XXEMUBOOST	emulation
module,	 see	 Figure	 9.26.	 The	 emulation	module	 can	 be	 used	 early	 in	 a	 project	 to
develop	wireless	applications	using	a	“generic”	microcontroller.	After	a	prototype	is
configured,	 the	 project	 can	 select	 a	 microcontroller	 and	 design	 the	 actual	 smart
object.	In	this	design	we	will	use	either	of	the	two	TM4C	LaunchPads	and	develop	a
solution	that	transmits	UDP	packets	from	one	smart	object	to	another.	UDP	is	simpler
than	 TCP	 and	 appropriate	 for	 applications	 requiring	 simplicity	 and	 speed.
Furthermore,	 to	use	UDP	 the	application	must	 tolerate	 lost	or	out	of	order	packets.
UDP	provides	a	best-effort	datagram	delivery	service.

Figure	9.26.		The	CC3100	booster	packet	provides	IEEE802.11	wireless
connectivity.

The	 actual	 TCP/IP	 software	 stack	 resides	 in	 firmware	 on	 the	 booster	 pack	 itself.
Therefore,	when	using	any	of	the	wireless	booster	packs	the	first	step	is	to	upgrade
the	firmware.	One	way	to	upgrade	the	firmware	is	to	use	the	CC31XXEMUBOOST
emulation	module.	 The	 examples	 of	 this	 section	 ran	 on	 version	 3.3	 booster	 packs
without	needing	to	upgrade	the	firmware.

Program	 9.3	 shows	 the	 client	 software,	 which	 samples	 the	 ADC	 and	 sends	 UDP
packets.	Line	1	specifies	 the	name	of	 the	access	point	(AP)	 to	which	the	node	will
connect.	There	is	a	mechanism	using	SmartConfig	to	automate	this	discovery,	but	in
this	 example	 I	 named	 the	 AP	 Valvano	 so	 I	 used	 a	 manual	 method	 to	 define	 the
connection	between	the	node	and	AP.	The	UDP	payload	will	have	a	type	field,	which
is	 defined	 in	 line	 2.	 The	 destination	 IP	 address	 is	 hard-coded	 in	 line	 3.	 For	 this
application,	 the	 server	 was	 at	 IP	 address	 at	 192.168.0.101,	 which	 in	 hex	 is
C0.A8.00.65.	The	port	number,	which	is	a	16-bit	value	defining	which	process	in	the
server	 should	 receive	 the	 data,	 is	 specified	 in	 line	 4.	 There	 are	 a	 long	 list	 of
registered	port	numbers	that	have	special	purposes,	so	I	chose	a	port	number	larger
than	1024	to	avoid	selecting	any	of	these	special	purpose	port	numbers.	Lines	5	and	6
define	 the	payload	for	 the	UDP	packet.	Line	15	sets	 the	bus	clock	 to	50	MHz.	The
PLL	needs	to	be	active	for	the	ADC	to	operate.		Line	16	initializes	the	ADC	channel
7	 using	 PD0.	 Line	 17	 initializes	 the	 CC3100.	 After	 executing	 line	 18	we	will	 be
connected	and	have	IP	address.	Line	19	will	return	the	network	configuration.		Lines
21-24	 define	 the	 address	 and	 port	 to	which	 the	USP	 packet	will	 be	 sent.	 Line	 25
defines	and	opens	a	socket.	In	this	example	we	leave	the	socket	open,	but	it	is	ok	to
close	the	socket,	go	into	low-power	mode,	and	reopen	the	connection	after	sleeping.
Lines	26-29	will	sample	the	ADC	and	create	a	new	message.	Line	30	sends	the	UDP
packet	through	the	open	socket.	The	wait	in	line	32	defines	the	rate	at	which	packets
are	sent.	Each	of	 the	WiFi	 functions	will	 return	a	success	 flag	 (error	code).	 In	 this
simple	program	we	ignored	the	return	values,	assuming	it	was	ok.	In	the	version	on

the	web,	the	process	is	restarted	on	error.

	

#define	SSID_NAME			"Valvano"			//	AP	to	connect	to																1
#define	ATYPE							'a'									//	analog	data	type																2
#define	IP_ADDR					0xC0A80065		//	server	IP																							3
#define	PORT_NUM				5001								//	Port	number	to	be	used										4
#define	BUF_SIZE				12										//																																	5														
UINT8	uBuf[BUF_SIZE];											//	UDP	packet	payload														6
int	main(void){
		UINT8													IsDHCP	=	0;
		_NetCfgIpV4Args_t	ipV4;
		SlSockAddrIn_t				Addr;
		UINT16												AddrSize	=	0;
		INT16													SockID	=	0;
		UINT32												data;
		unsigned	char					len	=	sizeof(_NetCfgIpV4Args_t);
		initClk();									//	PLL	50	MHz,	ADC	needs	PPL	active										15
		ADC0_InitSWTriggerSeq3(7);		//	Ain7	is	on	PD0																			16
		sl_Start(0,	0,	0);	//	Initializing	the	CC3100	device												17
		WlanConnect();					//	connect	to	AP																													18
		sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,							//	19
															(unsigned	char	*)&ipV4);																								//	20
		Addr.sin_family	=	SL_AF_INET;																							//										21
		Addr.sin_port	=	sl_Htons((UINT16)PORT_NUM);									//										22
		Addr.sin_addr.s_addr	=	sl_Htonl((UINT32)IP_ADDR);			//										23
		AddrSize	=	sizeof(SlSockAddrIn_t);																		//										24
		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_DGRAM,	0);				//										25
		while(1){
				uBuf[0]	=	ATYPE;						//	analog	data	type																					26
				uBuf[1]	=	'=';								//																																						27
				data	=	ADC0_InSeq3();	//	0	to	4095,	Ain7	is	on	PD0												28
				Int2Str(data,(char*)&uBuf[2]);	//	6	digit	number														29
				sl_SendTo(SockID,	uBuf,	BUF_SIZE,	0,								//																30
																									(SlSockAddr_t	*)&Addr,	AddrSize);	//					31
				ROM_SysCtlDelay(ROM_SysCtlClockGet()	/	25);	//	40ms											32
		}
}
Program	9.3.	Client	software	that	measures	ADC	data	and	sends	UDP
packets.

Program	9.4	 shows	 the	 server	 software,	which	 accepts	UDP	packets	 and	 plots	 the
data	on	an	ST7735	graphics	LCD.	Line	1	specifies	the	name	of	the	access	point	(AP)
to	 which	 the	 node	 will	 connect.	 The	 client	 and	 server	 use	 the	 same	 AP,	 which	 I

named	Valvano,	 so	 I	used	 the	manual	method	 to	define	 the	connection	between	 the
node	and	AP.	The	UDP	payload	will	have	a	 type	 field,	which	 is	defined	 in	 line	2.
Lines	16,	22-25	configure	the	WiFi	connection	in	a	similar	way	as	the	client.	Lines
17-20	initialize	the	ST7735	LCD	and	output	a	welcome	message.	Line	21	configures
the	LCD	graphics	routines	specifying	the	range	on	the	y-axis	of	the	plot.	Raw	ADC
data	will	be	plotted	versus	 time.	Lines	26-29	define	an	IP	address	and	port	 to	use.
Line	31	defines	and	opens	a	socket,	and	lines	32-33	bind	the	port	to	that	socket.	Lines
34-35	 receive	 a	UDP	packet.	 Just	 like	 the	 client,	we	 leave	 the	 socket	 open.	 If	we
wished	 to	 save	 power,	 we	 could	 close	 the	 socket,	 go	 into	 low-power	 mode,	 and
reopen	the	connection	after	sleeping.	Lines	36-51	decode	the	packet	and	plot	the	data
on	the	LCD.

#define	SSID_NAME			"Valvano"			//	AP	to	connect	to																1
#define	ATYPE							'a'									//	analog	data	type																2
#define	IP_ADDR					0xC0A80065		//	server	IP																							3
#define	PORT_NUM				5001								//	Port	number	to	be	used										4
#define	BUF_SIZE				12										//																																	5														
UINT8	uBuf[BUF_SIZE];											//	UDP	packet	payload														6
int	main(void){
		UINT8													IsDHCP	=	0;
		_NetCfgIpV4Args_t	ipV4;
		SlSockAddrIn_t				Addr,	LocalAddr;
		UINT16												AddrSize	=	0;
		INT16													SockID	=	0;
		INT16													Status	=	1;		//	ok
		UINT32												data;
		unsigned	char					len	=	sizeof(_NetCfgIpV4Args_t);
		initClk();								//	PLL	50	MHz,	ADC	needs	PPL	active											16
		ST7735_InitR(INITR_REDTAB);																		//	Initialize						17
		ST7735_OutString("Internet	of	Things\n");				//																	18
		ST7735_OutString("Embedded	Systems\n");						//																	19
		ST7735_OutString("Vol.	2,	Valvano");									//																	20
		ST7735_PlotClear(0,4095);		//	range	from	0	to	4095														21
		sl_Start(0,	0,	0);	//	Initializing	the	CC3100	device												22
		WlanConnect();					//	connect	to	AP																													23
		sl_NetCfgGet(SL_IPV4_STA_P2P_CL_GET_INFO,&IsDHCP,&len,			//					24
															(unsigned	char	*)&ipV4);																				//					25
		LocalAddr.sin_family	=	SL_AF_INET;																							//					26
		LocalAddr.sin_port	=	sl_Htons((UINT16)PORT_NUM);									//					27
		LocalAddr.sin_addr.s_addr	=	0;																											//					28
		AddrSize	=	sizeof(SlSockAddrIn_t);																							//					29
		while(1){
			SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_DGRAM,	0);							//					31		
				Status	=	sl_Bind(SockID,	(SlSockAddr_t	*)&LocalAddr,			//					32
																							AddrSize);																										//					33

				Status	=	sl_RecvFrom(SockID,	uBuf,	BUF_SIZE,	0,								//					34
										(SlSockAddr_t	*)&Addr,	(SlSocklen_t*)&AddrSize);//					35
				if((uBuf[0]==ATYPE)&&(uBuf[1]==	'=')){																	//					36
						int	i,bOk;	uint32_t	place;																											//					37
						data	=	0;	bOk	=	1;																																			//					38
						i=4;		//	ignore	possible	negative	sign																						39
						for(place	=	1000;	place;	place	=	place/10){										//					40
								if((uBuf[i]&0xF0)==0x30){	//	ignore	spaces																41
										data	+=	place*(uBuf[i]-0x30);																				//					42
								}else{																																													//					43
										if((uBuf[i]&0xF0)!=	'	'){																								//					44
												bOk	=	0;																																							//					45
										}																																																//					46
								}																																																		//					47
								i++;																																															//					48
						}																																																				//					49
						if(bOk){																																													//					50
								ST7735_PlotLine(data);																													//					51
								ST7735_PlotNextErase();																												//					51
						}
				}
		}
}
Program	9.4.	Server	software	that	receives	UDP	packets	and	plots	results	on
the	LCD.

Since	UDP	transmission	is	“best	effort”	we	could	lose	packets	or	receive	packets	out
of	order.	In	this	simple	example	we	will	not	know	if	either	of	 these	errors	were	to
occur.	If	we	wished	to	have	a	more	reliable	transmission,	we	could	have	used	TCP.
Program	9.4	line	31would	have	specified	a	socket	stream	instead	of	a	datagram.	To
create	a	TCP	communication,	use	the	example	software	in	the tcp_socket 	folder.

		SockID	=	sl_Socket(SL_AF_INET,SL_SOCK_STREAM,	0);				//		TCP	socket

9.4.5.	Other	CC3100	Applications
This	 section	 lists	 the	 sample	 applications	 are	 also	 provided	 for	 MSP430F5739,
TM4C123GH6PM	and	SimpleLink	Studio.	The	source	code	for	these	examples	can
be	found	in	the	examples	directory	after	downloading	CC3100SDK,	the	SimpleLink
Wi-Fi	 CC3100	 Software	 Development	 Kit	 (SDK)	 from	 the	 TI	 website.	 For	 more
details	on	each	example,	see	the	docs	folder	included	in	the	CC3100SDK	download.
The	CC3100	comes	preloaded	with	CC3100	BoosterPack	comes	preloaded	with	Out
of	 Box	 HTML	 pages.	 Out	 of	 box	 demo	 highlights	 the	 following	 features:	 Simple
WLAN	Connection	Using	Smart	Config,	and	easy	access	to	CC3100	using	mDNS	and

HTTP	Server.

Antenna	Selection.	This	is	a	reference	implementation	for	antenna-selection	scheme
running	on	the	host	MCU,	to	enable	improved	radio	performance	inside	buildings

Connection	 Policies.	 This	 application	 demonstrates	 the	 usage	 of	 the	 CC3100
profiles	and	connection-policies.

Send	Email.	 This	 application	 sends	 an	 email	 using	 SMTP	 to	 a	 user-configurable
email	address	at	the	push	of	a	button.

Enterprise	Network	Connection.	This	 application	demonstrates	 the	procedure	 for
connecting	the	CC3100	to	an	enterprise	network.

File	Download.	This	application	demonstrates	file	download	from	a	cloud	server	to
the	on	board	serial	Flash.

File	System.	This	application	demonstrates	the	use	of	the	file	system	API	to	read	and
write	files	from	the	serial	Flash.

Get	 Time.	 This	 application	 connects	 to	 an	 SNTP	 cloud	 server	 and	 receives	 the
accurate	time.

Get	Weather.	This	application	connects	to	‘Open	Weather	Map’	cloud	service	and
receives	weather	data.

Getting	Started	in	AP	Mode.	This	application	configures	the	CC3100	in	AP	mode.
It	verifies	the	connection	by	pinging	the	connected	client.

Getting	Started	in	Station	Mode.	This	application	configures	the	CC3100	in	STA
mode.	It	verifies	the	connection	by	pinging	the	connected	Access	Point.

HTTP	Server.	This	application	demonstrates	using	the	on-chip	HTTP	Server	APIs	to
enable	static	and	dynamic	web	page	content.

IP	 Configuration.	 This	 application	 demonstrates	 how	 to	 enable	 static	 IP
configuration	instead	of	using	DHCP.

mDNS.	This	application	registers	the	mDNS	service	for	broadcasting	and	attempts	to
get	the	service	by	the	name	broadcasted	by	another	device.

Mode	Configuration.	This	application	demonstrates	switching	between	STA	and	AP
modes.

NWP	 Filters.	 This	 application	 demonstrates	 the	 configuration	 of	 Rx-filtering	 to
reduce	 the	 amount	 of	 traffic	 transferred	 to	 the	 host,	 and	 to	 achieve	 lower	 power
consumption.

NWP	Power	Policy.	This	application	shows	how	to	enable	different	power	policies
to	reduce	power	consumption	based	on	use	case	in	the	station	mode.

P2P	 (Wi-Fi	Direct).	This	 application	 configures	 the	 device	 in	P2P	 (Wi-Fi	Direct)
mode	and	demonstrates	how	to	communicate	with	a	remote	peer	device.

Provisioning	AP.	This	application	demonstrates	the	use	of	the	on	Chip	HTTP	server
for	Wi-Fi	provisioning	in	AP	Mode,	building	upon	example	application	7.8	above.

Provisioning	 with	 SmartConfig.	 This	 application	 demonstrates	 the	 usage	 of	 TI's
SmartConfig™	Wi-Fi	 provisioning	 technology.	 The	 Wi-Fi	 Starter	 Application	 for
iOS	 and	 Android	 is	 required	 to	 use	 this	 application.	 It	 can	 be	 downloaded	 from
following	 link:	http://www.ti.com/tool/wifistarter	or	 from	the	Apple	App	store	and
Google	Play.

Provisioning	 with	WPS.	 This	 application	 demonstrates	 the	 usage	 of	 WPS	 Wi-Fi
provisioning	with	CC3100.

Scan	Policy.	The	application	demonstrates	the	scan-policy	settings	in	CC3100.

SPI	Diagnostics	Tool.	This	is	a	diagnostics	application	for	troubleshooting	the	host
SPI	configuration.

SSL/TLS.	The	application	demonstrates	the	usage	of	certificates	with	SSL/TLS	for
application	traffic	privacy	and	device	or	user	authentication

TCP	Socket.	The	application	demonstrates	simple	connection	with	TCP	traffic.

Transceiver	Mode.	The	application	demonstrates	 the	CC3100	 transceiver	mode	of
operation.

UDP	Socket.	The	application	demonstrates	simple	connection	with	UDP	traffic.

XMPP	Client.	The	application	demonstrates	 instant	messaging	using	a	cloud	based
XMPP	server.

These	were	the	steps	I	used	to	create	the	UDP	communication	example.	I	began	with
the	 starter	 application, ek-tm4c123gxl-boost-cc3100_starter .	 I	 first
changed SSID_NAME 	to	match	our	access	point

#define	SSID_NAME			"Valvano"			//	AP	to	connect	to
	
Next,	I	compiled,	downloaded	and	ran	this	application	onto	two	LaunchPad+CC3100
systems,	observing	the	operating	on	PuTTy.	The	interpreter	output	should	show	it	has
connected	and	shows	the	IP	assigned	 to	 these	 two	nodes	by	 the	AP.	I	could	run	 the
ping	command	to	check	the	WiFi	connection	to	my	AP.

Once	 I	was	 sure	my	 two	LaunchPad+CC3100	systems	could	communicate	with	my
AP,	 I	 made	 a	 copy	 of	 the	 starter	 application	 by	 copy-pasting	 the	 entire	 folder.	 I
renamed	this	new	folder	to ek-tm4c123gxl-boost-cc3100_basic_wifi_UDP .	I	opened
the	 new	 project	 in	 the	 compiler	 IDE	 and	 opened	 the	main.cfrom	 the udp_socket
example	 folder.	 I	 added	and/or	merged	 the	 source	 code	 from	main.cof udp_socket
into	 starter.cof	 the	 new	 project.	 The	 event	 handlers	 and	 the	 main	 project	 needed
merging,	but	 the BsdUdpClient and BsdUdpServer 	 functions	were	 simply	added.	 I
changed	the	IP	address	to	match	the	address	given	to	the	server.

#define	IP_ADDR									0xC0A80068	

	
I	then	loaded	a	version	that	called	the	client	(send	UDP)	on	one	system

			while(1){	BsdUdpClient(PORT_NUM)};	
	

and	loaded	a	version	that	called	the	server	(receive	UDP)	on	the	other	system

			while(1){	BsdUdpServer(PORT_NUM)};	
I	ran	the	two	systems	in	the	debugger	to	see	that	packets	were	being	sent.	I	did	not	use
SmartConfig,	 because	 I	 knew	 the	 name	of	 the	AP.	The	 last	 step	was	 to	modify	 the
client	and	server	so	the	client	collects	data	and	the	server	displays	it.

9.4.	Bluetooth	Fundamentals
Bluetooth	 is	 wireless	medium	 and	 a	 data	 protocol	 that	 connects	 devices	 together
over	a	short	distance.	Examples	of	Bluetooth	connectivity	include	headset	to	phone,
speaker	to	computer,	and	fitness	device	to	phone/computer.	Bluetooth	is	an	important
component	of	billions	of	products	on	the	market	today.	Bluetooth	operates	from	1	to
100	meters,	depending	on	the	strength	of	the	radio.	Most	Bluetooth	devices	operate
up	 to	 a	 maximum	 of	 10	 meters.	 However,	 in	 order	 to	 improve	 battery	 life,	 many
devices	 reduce	 the	 strength	 of	 the	 radio,	 and	 therefore	 save	 power	 by	 operating
across	distances	shorter	than	10	meters.	If	the	computer	or	phone	provides	a	bridge
to	the	internet,	a	Bluetooth-connected	device	becomes	part	of	the	Internet	of	Things
(IoT).

Bluetooth	 is	 classified	 as	 a	personal	 area	 network	 (PAN)	 because	 it	 implements
communication	 within	 the	 range	 of	 an	 individual	 person.	 Alternatively,	 devices
within	 a	Bluetooth	 network	 are	 usually	 owned	 or	 controlled	 by	 one	 person.	When
two	devices	on	the	network	are	connected,	we	often	say	the	devices	are	paired.

At	 the	 highest	 level,	 we	 see	Bluetooth	 devices	 implement	 profiles.	A	profile	 is	 a
suite	of	functionalities	that	support	a	certain	type	of	communication.	For	example,	the
Advanced	 Audio	 Distribution	 Profile	 (A2DP)	 can	 be	 used	 to	 stream	 data.	 The
Health	Device	Profile	 (HDP)	is	a	standard	profile	for	medical	devices.	There	are
profiles	 for	 remote	 controls,	 images,	 printers,	 cordless	 telephones,	 health	 devices,
hands	 free	 devices,	 and	 intercoms.	 The	 profile	 we	 will	 use	 in	 this	 chapter	 is	 the
generic	 attribute	 protocol	 (GATT).	Within	 the	GATT	 there	 can	 be	 once	 or	more
services.	Table	9.8	shows	some	of	the	services	that	have	been	developed.

Specification	Name Assigned	Number
Alert	 Notification
Service

0x1811

Automation	IO 0x1815
Battery	Service 0x180F
Blood	Pressure 0x1810
Body	Composition 0x181B
Bond	Management 0x181E
Continuous	 Glucose
Monitoring

0x181F

Current	Time	Service 0x1805
Cycling	Power 0x1818
Cycling	 Speed	 and
Cadence

0x1816

Device	Information 0x180A

Environmental
Sensing

0x181A

Generic	Access 0x1800
Generic	Attribute 0x1801
Glucose 0x1808
Health	Thermometer 0x1809
Heart	Rate 0x180D
HTTP	Proxy 0x1823
Human	 Interface
Device

0x1812

Immediate	Alert 0x1802
Indoor	Positioning 0x1821
Internet	 Protocol
Support

0x1820

Link	Loss 0x1803
Location	 and
Navigation

0x1819

Next	 DST	 Change
Service

0x1807

Object	Transfer 0x1825
Phone	 Alert	 Status
Service

0x180E

Pulse	Oximeter 0x1822
Reference	 Time
Update	Service

0x1806

Running	 Speed	 and
Cadence

0x1814

Scan	Parameters 0x1813
Transport	Discovery 0x1824
Tx	Power 0x1804
User	Data 0x181C
Weight	Scale 0x181D

Table	9.8.	Adopted	GATT	services,	https://www.bluetooth.com/specifications/gatt/services
Within	a	service	there	may	be	one	or	more	characteristics.	A	characteristic	 is	user
or	application	data	that	is	transmitted	from	one	device	to	another	across	the	network.
One	of	the	attributes	of	a	characteristic	is	whether	it	is	readable,	writeable,	or	both.
We	will	 use	 the	notify	 indication	 to	 stream	 data	 from	 the	 embedded	 object	 to	 the
smart	phone.	Characteristics	have	a	universally	unique	identifier	(UUID),	which	is	a
128-bit	(16-byte)	number	that	is	unique.	BLE	can	use	either	16-bit	or	32-bit	UUIDs.
A	 specific	 UUID	 is	 used	 within	 the	 network	 to	 identify	 a	 specific	 characteristic.

Often	a	characteristic	has	one	or	more	descriptors.	Descriptors	may	be	information
like	 its	 name	 and	 its	 units.	We	 will	 also	 see	 handles,	 which	 are	 a	 mechanism	 to
identify	 characteristics	within	 the	 device.	A	handle	 is	 a	 pointer	 to	 an	 internal	 data
structure	within	the	GATT	that	contains	all	the	information	about	that	characteristic.
Handles	are	not	passed	across	the	Bluetooth	network;	rather,	handles	are	used	by	the
host	 and	 controller	 to	 keep	 track	 of	 characteristics.	 UUIDs	 are	 passed	 across	 the
network.	Figure	9.27	shows	a	GATT	service	with	seven	characteristics.

Figure	9.27.	A	GATT	profile	implements	services,	and	a	service	has	one	or
more	characteristics.

9.4.1.	Bluetooth	Protocol	Stack
The	BLE	protocol	 stack	 includes	a	controller	and	a	host,	as	 shown	 in	Figure	9.28.
Bluetooth	BR	 (basic	 rate),	Bluetooth	EDR	 (enhanced	 data	 rate),	 and	Bluetooth	LE
(low	 energy)	 all	 separate	 the	 controller	 and	 host	 as	 different	 layers	 and	 are	 often
implemented	separately.	The	user	application	and	operating	system	sit	on	top	of	the
host	 layer.	This	section	 is	a	brief	overview	of	BLE.	For	more	 information	on	HCI,
www.ti.com/ble-wiki	and	www.ti.com/ble-stack.

Figure	9.28.	The	BLE	stack.	These	layers	are	implemented	inside	the
CC2650.	The	physical	layer	includes	the	antenna,	which	is	outside	the
CC2650.

The	physical	layer	(PHY)	is	a	1Mbps	adaptive	frequency-hopping	GFSK	(Gaussian
Frequency-Shift	Keying)	radio	operating	in	the	unlicensed	2.4	GHz	ISM	(Industrial,
Scientific,	and	Medical)	band.

The	link	layer	(LL)	controls	the	radiofrequency	state	of	the	device.	The	device	can	be
in	 one	 of	 five	 states:	 standby,	 advertising,	 scanning,	 initiating,	 or	 connected.
Advertisers	 transmit	 data	without	 being	 in	 a	 connection,	while	 scanners	 listen	 for
advertisers.	 An	 Initiator	 is	 a	 device	 that	 is	 responding	 to	 an	 Advertiser	 with	 a
connection	 request.	 If	 the	Advertiser	 accepts,	 both	 the	 advertiser	 and	 initiator	will
enter	a	connected	state.	When	a	device	is	in	a	connection,	it	will	be	connected	in	one
of	 two	 roles	master	or	 slave.	The	device	 that	 initiated	 the	 connection	becomes	 the
master,	 and	 the	 device	 that	 accepted	 the	 request	 becomes	 the	 slave.	 In	 Lab	 6,	 the
embedded	system	will	be	an	advertiser	and	the	smart	phone	will	be	the	initiator.

The	host	control	interface	(HCI)	layer	provides	a	means	of	communication	between
the	 host	 and	 controller	 via	 a	 standardized	 interface.	 Standard	 HCI	 commands	 and
events	are	specified	in	the	Bluetooth	Core	Spec.	The	HCI	layer	is	a	thin	layer	which
transports	commands	and	events	between	the	host	and	controller.	In	Lab	6,	the	HCI	is
implemented	has	function	calls	and	callbacks	within	the	CC2650	controller.

The	 link	 logical	 control	 and	 adaption	 protocol	 (L2CAP)	 layer	 provides	 data
encapsulation	 services	 to	 the	 upper	 layers,	 allowing	 for	 logical	 end-to-end
communication	of	data.	The	security	manager	 (SM)	 layer	 defines	 the	methods	 for
pairing	 and	 key	 distribution,	 and	 provides	 functions	 for	 the	 other	 layers	 of	 the
protocol	 stack	 to	 securely	 connect	 and	 exchange	 data	 with	 another	 device.	 The
generic	 access	 protocol	 (GAP)	 layer	 handles	 the	 connection	 and	 security.	 In	 this
simple	example,	we	configure	the	GAP	to	setup	and	initiate	advertisement.	We	will

use	the	GAP	to	connect	our	embedded	system	to	a	smart	phone.

The	overriding	 theme	of	Bluetooth	communication	 is	 the	exchange	of	data	between
paired	devices.	A	service	is	a	mechanism	to	exchange	data.	A	collection	of	services
is	 a	 profile.	 The	generic	 attribute	profile	 (GATT)	 handles	 services	 and	 profiles.
The	attribute	protocol	(ATT)	layer	protocol	allows	a	device	to	expose	“attributes”	to
other	 devices.	All	 data	 communications	 that	 occur	 between	 two	 devices	 in	 a	BLE
connection	are	handled	through	the	GATT.

The	 first	 step	 for	 our	 embedded	 device	 to	 perform	 is	 to	 configure	 and	 start
advertisement,	see	Figure	9.29.	In	advertisement	mode	the	device	sends	out	periodic
notifications	of	its	existence	and	its	willingness	to	connect.	Another	device,	such	as	a
smart	phone,	scans	the	area	for	possible	devices.	If	desired	this	device	can	request	a
connection.	If	the	advertiser	accepts,	both	devices	enter	a	connected	phase,	where	the
embedded	 device	 will	 be	 the	 slave	 (server)	 and	 the	 initiator	 becomes	 the	 master
(client).

Figure	9.29.	BLE	connection	steps.

In	order	to	save	power,	the	device	spends	most	the	time	sleeping.	The	master	sends
out	periodic	requests	to	communicate.	If	the	slave	wishes	to	communicate,	the	master
and	 slave	 will	 exchange	 data	 during	 this	 connection	 event.	 Figure	 9.30	 plots	 the
device	current	verses	time.	This	graph	shows	most	of	the	current	draw	occurs	during
the	connection	events.	The	embedded	device	can	save	power	by	reducing	the	period
of	the	connection	events	or	by	choosing	not	to	participate	in	all	the	events.

Figure	9.30.	CC2650	current	verses	time,	showing	the	connection	events.

For	 example,	 you	 will	 see	 the	 advertising	 interval	 settings	 as	 parametersin
the NPI_StartAdvertisement 	 message.	 In	 particular,	 the	 example	 projects	 set	 the
advertising	interval	to	62.5ms.

9.4.2.	Client-server	Paradigm
The	 client-server	 paradigm	 is	 the	 dominant	 communication	 pattern	 for	 network
protocols,	see	Figure	9.31.	In	general,	the	embedded	system	will	be	the	server,	and
the	smart	phone	will	be	the	client.	The	client	can	request	information	from	the	server,
or	 the	 client	 can	 send	 data	 to	 the	 server.	With	 Bluetooth	 this	 exchange	 of	 data	 is
managed	by	 the	services	and	profiles,	discussed	 in	 the	next	section.	There	are	 four
main	profile	types.

A	 peripheral	 device	 has	 sensors	 and	 actuators.	 On	 startup	 it	 advertises	 as
connectable,	and	once	connected	it	acts	as	a	slave.	In	general,	the	embedded	device
will	be	a	peripheral.

A	 central	 device	 has	 intelligence	 to	 manage	 the	 system.	 On	 startup	 it	 scans	 for
advertisements	 and	 initiates	 connections.	 Once	 connected	 it	 acts	 as	 the	 master.	 In
general,	the	smart	phone	in	will	be	a	central	device.

A	 broadcaster	 has	 sensors	 collecting	 information	 that	 is	 generally	 relevant.	 On
startup	it	advertises	but	is	not	connectable.	Other	devices	in	the	vicinity	can	read	this
information	 even	 though	 they	 cannot	 connect	 to	 the	 broadcaster.	 An	 example	 is	 a
thermometer.

An	 observer	 can	 scan	 for	 advertisements	 but	 cannot	 initiate	 a	 connection.	 An
example	 is	 a	 temperature	 display	 device	 that	 shows	 temperatures	 measured	 by
broadcasters.

Figure	9.31.	Client-server	Paradigm.

Read	indication.	When	the	client	wishes	to	know	the	value	of	a	characteristic,	it	will
issue	 a	 read	 indication.	 Inside	 the	 request	will	 be	 a	universally	 unique	 identifier
(UUID)	that	specifies	which	characteristic	is	desired.	The	server	will	respond	with
the	value	by	returning	a	read	confirmation.	The	data	may	be	one	or	more	bytes.	For
large	amounts	of	data,	 the	 response	could	be	broken	 into	multiple	messages.	 In	 the
example	 projects,	 the	 data	 will	 be	 1,	 2	 or	 4	 bytes	 long.	 The	 size	 of	 the	 data	 is
determined	during	initialization	as	the	characteristic	is	configured.

Write	indication.	When	the	client	wishes	to	set	the	value	of	a	characteristic,	it	will
issue	a	write	indication.	This	request	will	include	data.	The	request	will	also	include
a	UUID	that	specifies	to	which	characteristic	the	data	should	be	written.	The	server
will	respond	with	an	acknowledgement,	called	a	write	confirmation.

Notify	request.	When	the	client	wishes	to	keep	up	to	data	on	a	certain	value	in	the
server,	 it	will	 issue	a	notify	request.	The	request	includes	a	UUID.	The	server	will
respond	 with	 an	 acknowledgement,	 and	 then	 the	 server	 will	 stream	 data.	 This
streaming	could	occur	periodically,	or	it	could	occur	whenever	the	value	changes.	In
the	 example	 projects,	 notify	 indication	 messages	 are	 sent	 from	 server	 to	 client
periodically.	The	client	can	start	notification	(listen	command	on	the	phone)	or	stop
notifications.

9.5.	CC2650	Solutions

9.5.1.	CC2650	Microcontroller
There	are	 three	controllers	on	 the	CC2650:	a	main	CPU,	an	RF	core,	and	a	sensor
controller.	 Together,	 these	 combine	 to	 create	 a	 one-chip	 solution	 for	 Bluetooth
applications.	The	main	CPU	 includes	 128kB	 of	 flash,	 20kB	 of	 SRAM,	 and	 a	 full
range	 of	 peripherals.	 Typically,	 the	 ARM	 Cortex-M3	 processor	 handles	 the
application	 layer	and	BLE	protocol	 stack.	However,	 in	 this	chapter,	we	will	place
the	 application	 layer	 on	 another	 processor	 and	 use	 the	 CC2560	 just	 to	 implement
Bluetooth.

The	RF	Core	contains	an	ARM	Cortex-M0	processor	 that	 interfaces	 the	analog	RF
and	base-band	circuitries,	handles	data	 to	and	from	the	system	side,	and	assembles
the	 information	 bits	 in	 a	 given	 packet	 structure.	 The	 RF	 core	 offers	 a	 high	 level,
command-based	 API	 to	 the	 main	 CPU.	 The	 RF	 core	 is	 capable	 of	 autonomously
handling	 the	 time-critical	 aspects	 of	 the	 radio	 protocols	 (802.15.4	 RF4CE	 and
ZigBee,	 Bluetooth	 Low	 Energy)	 thus	 offloading	 the	 main	 CPU	 and	 leaving	 more
resources	 for	 the	 user	 application.	The	RF	 core	 has	 its	 own	RAM	and	ROM.	The
ARM	 Cortex-M0	 ROM	 is	 not	 programmable	 by	 customers.	 The	 basic	 circuit
implementing	the	2.4	GHz	antenna	is	shown	in	Figure	9.32.

Figure	9.32.		The	CC2650	includes	a	main	CPU,	a	suite	of	I/O	devices,	an
RF	core,	and	a	sensor	controller.

	

The	Sensor	Controller	block	provides	additional	flexibility	by	allowing	autonomous
data	acquisition	and	control	independent	of	the	main	CPU,	further	extending	the	low-
power	capabilities	of	the	CC2650.	The	Sensor	Controller	is	set	up	using	a	PC-based
configuration	tool,	called	Sensor	Controller	Studio,	and	example	interfaces	include:

•	Analog	sensors	using	integrated	ADC

•	Digital	sensors	using	GPIOs,	bit-banged	I2C,	and	SPI
•	UART	communication	for	sensor	reading	or	debugging
•	Capacitive	sensing
•	Waveform	generation
•	Pulse	counting
•	Keyboard	scan
•	Quadrature	decoder	for	polling	rotation	sensors
•	Oscillator	calibration

The	CC2650	uses	a	 radio-frequency	(RF)	 link	 to	 implement	Bluetooth	Low	Energy
(BLE).	As	 illustrated	 in	Figure	9.33,	 the	CC2650	can	be	used	as	a	bridge	between
any	microcontroller	and	Bluetooth.	It	is	a	transceiver,	meaning	data	can	flow	across
the	link	in	both	directions.

Figure	9.33.		Block	diagram	of	a	wireless	link	between	two	microcontroller
systems.

	

Figure	9.34	shows	a	CC2650	BoosterPack.	This	board	comes	preprogrammed	with
the	simple	network	processor	described	in	the	next	section.	With	a	JTAG	debugger,
other	programs	can	be	loaded	onto	this	CC2650.	For	more	information,	see

http://www.ti.com/tool/boostxl-cc2650ma

Figure	9.34.		CC2650	BoosterPack	(BOOSTXL-CC2650MA).
	

Figure	9.35	shows	a	CC2650	LaunchPad.	The	 top	part	of	 the	PCB	 is	 the	debugger
and	 the	 bottom	 part	 implements	 the	 CC2650	 target	 system.	 To	 see	 the	 pin
connections,	see

http://www.ti.com/ww/en/launchpad/launchpads-connected-launchxl-cc2650.html

Figure	9.35.		CC2650	LaunchPad	(LAUNCHXL-CC2650).

9.5.2.	Single	Chip	Solution,	CC2650	LaunchPad
The	 CC2650	 microcontroller	 is	 a	 complete	 System-on-Chip	 (SoC)	 Bluetooth
solution,	as	 shown	 in	Figure	9.36.	One	could	deploy	 the	application,	 the	Bluetooth
stack,	and	the	RF	radio	onto	the	CC2650.

Figure	9.36.		Block	diagram	of	a	wireless	link	between	two	single-chip
embedded	systems.

9.6.	Network	Processor	Interface	(NPI)

9.6.1.	Overview
Simple	Network	Processor	(SNP)	is	TI’s	name	for	the	application	that	runs	on	the
CC2650	when	using	the	CC2650	with	another	microcontroller	such	as	 the	MSP432
or	TM4C123.	In	this	configuration	the	controller	and	host	are	implemented	together
on	 the	CC2650,	while	 the	profiles	 and	application	are	 implemented	on	an	external
MCU.	 The	 application	 and	 profiles	 communicate	 with	 the	 CC2650	 via	 the
Application	 Programming	 Interface	 (API)	 that	 simplifies	 the	 management	 of	 the
BLE	network	processor.	The	SNP	API	communicates	with	the	BLE	device	using	the
Network	Protocol	Interface	(NPI)	over	a	serial	(SPI	or	UART)	connection.		In	this
chapter,	we	will	use	a	UART	interface	as	shown	in	Figure	9.37.	This	configuration	is
useful	for	applications	that	wish	to	add	Bluetooth	functionality	to	an	existing	device.
In	this	paradigm,	the	application	runs	on	the	existing	microcontroller,	and	BLE	runs
on	the	CC2650.	For	a	description	of	the	Simple	Network	Processor,	refer	to

SNP	 http://processors.wiki.ti.com/index.php/CC2640_BLE_Network_Processor
Developer	guide	 http://www.ti.com/lit/ug/swru393c/swru393c.pdf
TI	wiki	page http://processors.wiki.ti.com/index.php/NPI

	
In	this	chapter,	our	TM4C123/MSP432	LaunchPad	will	be	the	application	processor
(AP)	 and	 the	 CC2650	 will	 be	 the	 network	 processor	 (NP).	 There	 are	 7	 wires
between	the	AP	and	the	NP.	Two	wires	are	power	and	ground,	one	wire	is	a	negative
logic	 reset,	 two	wires	 are	handshake	 lines,	 and	 two	wires	 are	UART	 transmit	 and
receive.

Figure	9.37.	Hardware	interface	between	the	LaunchPad	AP	and	the	CC2650
NP.

To	initialize	Bluetooth,	the	master	(AP)	first	resets	the	slave	(NP).	The	reset	line	is	a
GPIO	 output	 of	 the	 AP	 and	 is	 the	 hardware	 reset	 line	 on	 the	 NP.	 There	 are	 two
handshake	 lines:	master	 ready	and	slave	 ready.	Master	ready	 (MRDY)	 is	 a	GPIO
output	of	the	AP	and	a	GPIO	input	to	the	NP.	Slave	ready	(SRDY)	is	a	GPIO	output
of	the	NP	and	a	GPIO	input	of	the	AP.	If	the	AP	wishes	to	reset	the	NP,	it	sets	MRDY

high	 and	 pulses	 reset	 low	 for	 10	 ms,	 Figure	 9.38.	 Normally,	 the	 reset	 operation
occurs	once,	and	thereafter	the	reset	line	should	remain	high.

Figure	9.38.	The	LaunchPad	AP	can	reset	the	CC2650	NP.

There	are	two	types	of	communication.	Messages	can	be	sent	from	master	to	slave,	or
from	slave	to	master.	If	the	master	(AP)	wishes	to	send	a	message	to	the	slave	(NP),
it	follows	5	steps,	Figure	9.39.	First,	the	master	sets	MRDY	low	(Master:	“I	wish	to
send”).	Second,	the	slave	responds	with	SRDY	low	(Slave:	“ok,	I	am	ready”).	The
communication	 is	handshaked	 because	 the	master	will	wait	 for	 SRDY	 to	 go	 low.
Third,	 the	master	will	 transmit	a	message	on	 its	UART	output	 (Rx	 input	 to	 slave).	
The	 format	 of	 this	message	will	 be	 described	 later.	 Fourth,	 after	 the	message	 has
been	sent,	the	master	pulls	MRDY	high	(Master:	“I	am	done”).	Fifth,	the	slave	pulls
its	SRDY	high	(Slave:	“ok”).	Again,	the	handshaking	requires	the	master	to	wait	for
SRDY	to	go	high.

Figure	9.39.	The	LaunchPad	AP	can	send	a	message	to	the	CC2650	NP.
Handshake	means	the	steps	1	–	5	always	occur	in	this	sequence.

If	the	slave	(NP)	wishes	to	send	a	message	to	the	master	(AP),	there	are	also	5	steps,
Figure	9.40.	First,	 the	slave	sets	SRDY	low	(Slave:	“I	wish	to	send”).	Second,	 the
master	responds	with	MRDY	low	(Master:	“ok,	I	am	ready”).	You	will	notice	in	the
example	projects	that	the	master	will	periodically	check	to	see	if	the	SRDY	line	has
gone	 low,	 and	 if	 so	 it	 will	 receive	 a	 message.	 Third,	 the	 slave	 will	 transmit	 a
message	on	its	UART	output	(Tx	output	from	slave).		The	format	of	this	message	will
be	the	same	for	all	messages.	Fourth,	after	the	message	has	been	sent,	the	slave	pulls
SRDY	high	(Slave:	“I	am	done”).	The	master	will	wait	for	SRDY	to	go	high.	Fifth,
the	master	pulls	its	MRDY	high	(Master:	“ok”).

Figure	9.40.	The	CC2650	NP	can	send	a	message	to	the	LaunchPad	AP.
Handshake	means	the	steps	1	–	5	always	occur	in	this	sequence.

The	format	of	the	message	is	shown	in	Figure	9.41.	The	boxes	in	the	figure	represent
UART	frames.	Each	UART	frame	contains	1	start	bit,	8	data	bits,	and	1	stop	bit,	sent
at	115,200	bits/sec.	All	messages	begin	with	a	start	of	frame	(SOF),	which	is	a	254
(0xFE).	The	next	 two	bytes	are	 the	payload	 length	 in	 little	endian	format.	Since	all
the	payloads	in	this	chapter	are	less	than	256	bytes,	the	second	byte	is	the	length,	L,
and	the	third	byte	is	0.	The	fourth	and	fifth	bytes	are	the	command.	Most	commands
have	a	payload,	which	contains	the	parameters	of	the	command.	Some	commands	do
not	 have	 a	 payload.	All	messages	 end	with	 a	 frame	 check	 sequence	 (FCS).	 The
FCS	is	the	8-bit	exclusive	or	of	all	the	data,	not	including	the	SOF	and	the	FCS	itself.

Figure	9.41.	The	format	of	an	NPI	message.

The	following	steps	occur	in	this	order

1.	Initialize	GATT	(add	services,	characteristics,	CCCD’s);
2.	Initialize	GAP	(advertisement	data,	connection	parameters);
3.	Advertise	and	optionally	wait	for	a	connection;
4.	Respond	to	GATT	requests	and	send	notifications	/	indications	as
desired.

9.6.2.	Services	and	Characteristics
After	 the	 CC2650	 is	 reset,	 the	 next	 step	 is	 to	 services	 and	 characteristics.	 In	 the
example	projects	we	will	define	one	service	with	multiple	characteristics.	To	create
a	 service,	 the	master	 first	 issues	 an	Add	Service	 command	 (0x35,0x81).	 For	 each
characteristic,	 the	master	 sends	 an	Add	Characteristic	Value	 (0x35,0x82)	 and	 an
Add	Characteristic	Description	 (0x35,0x83)	message.	Once	all	 the	characteristics
are	defined,	the	master	sends	a	Register	Service	command	(0x35,0x84).	Each	of	the
commands	has	an	acknowledgement	response.	The	debugger	output	for	a	service	with
one	characteristic	is	shown	in	Figure	9.42.	The	detailed	syntax	of	these	messages	can
be	 found	 in	 the	 TI	CC2640	Bluetooth	 low	 energy	 Simple	Network	 Processor	API
Guide.

Add	service
		LP->SNP	FE,03,00,35,81,01,F0,FF,B9
		SNP->LP	FE,01,00,75,81,00,F5
Add	CharValue1
		LP->SNP	FE,08,00,35,82,03,0A,00,00,00,02,F1,FF,BA

		SNP->LP	FE,03,00,75,82,00,1E,00,EA
Add	CharDescriptor1
		LP->SNP	FE,0B,00,35,83,80,01,05,00,05,00,44,61,74,61,00,0C
		SNP->LP	FE,04,00,75,83,00,80,1F,00,6D
Register	service
		LP->SNP	FE,00,00,35,84,B1
		SNP->LP	FE,05,00,75,84,00,1C,00,29,00,C1

Figure	9.42.	TExaSdisplay	output	as	the	device	sets	up	a	service	with	one
characteristic.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.

Figures	9.43	through	9.46	show	the	four	messages	used	to	define	a	service	with	one
characteristic.	 The	 add	 service	 creates	 a	 service.	 The	 add	 characteristic	 value
declaration	 defines	 the	 read/write/notify	 properties	 of	 a	 characteristic	 in	 that
service.	The	 response	 to	 this	message	 includes	 the	handle.	The	add	 characteristic
description	 declaration	 defines	 the	 name	 of	 the	 characteristic.	 When	 we	 create
services	 with	 multiple	 characteristics,	 we	 simply	 repeat	 the	 “add	 characteristic
value”	 and	 “add	 characteristic	 description”	 declarations	 for	 each.	 The	 register
service	makes	that	service	active.

Figure	9.43.	Add	service	message	from	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.44.	Add	characteristic	value	declaration	message	from	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.45.	Add	characteristic	declaration	message	from	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.46.	Register	service	message	from	the
VerySimpleApplicationProcessor_xxx	project.

9.6.3.	Advertising
After	 all	 the	 services	 and	 characteristics	 are	 defined,	 the	 master	 will	 setup	 and
initiate	 advertising.	The	master	will	 send	 four	messages	 to	 set	 up	 advertising.	The
debugger	 output	 for	 advertising	 is	 shown	 in	 Figure	 9.47.	 Each	 message	 will	 be
acknowledged	by	the	NP.	A	0x35,0x85	message	will	set	the	device	name.	There	are
two	 0x55,0x43	 messages	 to	 configure	 the	 parameters	 of	 the	 advertising.	 The
0x55,0x42	message	will	start	advertising.	Again,	detailed	syntax	of	 these	messages
can	be	found	in	the	TI	CC2640	Bluetooth	low	energy	Simple	Network	Processor	API
Guide.	Figure	9.48	shows	the	C	code	to	define	a	Set	Device	Name	message.

	
GATT	Set	DeviceName
			LP->SNP	FE,12,00,35,8C,01,00,00,53,68,61,70,65,20,74,68,65,20,57,6F,72,6C,64,DE
			SNP->LP	FE,01,00,75,8C,00,F8
SetAdvertisement1
			LP->SNP	FE,0B,00,55,43,01,02,01,06,06,FF,0D,00,03,00,00,EE
			SNP->LP	FE,01,00,55,43,00,17
SetAdvertisement2
			LP->SNP	FE,1B,00,55,43,00,10,09,53,68,61,70,65,20,74,68,65,20,57,6F,...,00,0C
			SNP->LP	FE,01,00,55,43,00,17
StartAdvertisement
			LP->SNP	FE,0E,00,55,42,00,00,00,64,00,00,00,00,01,00,00,00,C5,02,BB
			SNP->LP	FE,03,00,55,05,08,00,00,5B

Figure	9.47.	TExaSdisplay	output	as	the	device	sets	up	advertising.	These
data	were	collected	running	the	VerySimpleApplicationProcessor_xxx
project.

Figure	9.48.	A	set	device	name	message	from	the
VerySimpleApplicationProcessor_xxx	project.

9.6.4.	Read	and	Write	Indications
Figure	9.49	shows	the	message	exchange	when	the	client	issues	a	read	request.	The

NP	sends	a	read	 indication	 to	 the	AP,	 containing	 the	 connection	 and	handle	 of	 the
characteristic.	 The	 AP	 responds	 with	 a	 read	 confirmation	 containing	 status,
connection,	handle,	and	the	data.

Figure	9.49.	TExaSdisplay	output	occurring	when	the	client	issues	a	read
request.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.

Figure	9.50	shows	the	message	exchange	when	the	client	issues	a	write	request.	The
NP	 sends	 a	write	 indication	 to	 the	 AP,	 containing	 the	 connection,	 handle	 of	 the
characteristic,	 and	 the	 data	 to	 be	 written.	 The	 AP	 responds	 with	 a	 write
confirmation	containing	status,	connection,	and	handle.

Figure	9.50.	TExaSdisplay	output	occurring	when	the	client	issues	a	write
request.	These	data	were	collected	running	the
VerySimpleApplicationProcessor_xxx	project.

9.7.	Application	Layer	Protocols	for	Embedded
Systems

9.7.1.	CoAP
The	Constrained	Application	Protocol	(CoAP)	was	specifically	developed	to	allow
resource-constrained	devices	to	communicate	over	the	Internet	using	UDP	instead	of
TCP.	In	particular,	many	embedded	devices	have	limited	memory,	processing	power,
and	energy	storage.	Developers	can	interact	with	any	CoAP-enabled	device	the	same
way	 they	 would	 with	 a	 device	 using	 a	 traditional	 Representational	 state	 transfer
(REST)	based	API	 like	HTTP.	CoAP	is	particularly	useful	 for	communicating	with
low-power	sensors	and	devices	that	need	to	be	controlled	via	the	Internet.

CoAP	 is	 a	 simple	 request/response	 protocol	 very	 similar	 to	HTTP,	 that	 follows	 a
traditional	 client/server	model.	 Clients	 can	make	GET,	 PUT,	 POST,	 and	DELETE
requests	 to	 resources.	 CoAP	 packets	 use	 bitfields	 to	maximize	memory	 efficiency,
and	they	make	extensive	usage	of	mappings	from	strings	to	integers	to	keep	the	data
packets	small	enough	to	transport	and	interpret	on-device.	A	CoAP	message	header	is
only	4-bytes	 long	with	most	 control	messages	being	 just	 that	 length.	Most	 optional
fields	 in	 the	message	format	are	 in	binary	with	 the	payload	restricted	in	size	so	all
CoAP	messages	fit	inside	a	UDP	datagram.	

TCP	is	a	connection	oriented	protocol,	which	means	the	server,	or	a	client,	will	open
a	socket	and	establish	a	connection	with	the	server.	And	the	communication	is	done
over	 a	 connection.	 For	 the	 duration	 of	 the	 communication,	 the	 connection	 is	 on.
Whereas,	COAP	works	on	UDP,	which	means	that	it's	connectionless.	And	it	allows
what	we	call	as	a	disconnected	operation,	which	means	that	the	client	and	the	server
are	not	connected	to	each	other.	And	therefore,	they	can	act	asynchronously.

Aside	from	the	extremely	small	packet	size,	another	major	advantage	of	CoAP	is	its
usage	of	UDP;	using	datagrams	allows	 for	CoAP	 to	be	 run	on	 top	of	packet-based
technologies	 like	 SMS.	 There	 is	 a	 one-to-one	mapping	 between	 CoAP	 and	HTTP
effectively	 providing	 a	 bridge	 between	 the	 all	 popular	 HTTP	 protocol	 to	 the
emerging	CoAP	protocol.

All	 CoAP	messages	 can	 be	 marked	 as	 either	 “confirmable”	 or	 “nonconfirmable,”
serving	 as	 an	 application-level	 Quality	 of	 Service	 (QoS)	 to	 provide	 reliability.
While	SSL/TLS	encryption	isn’t	available	over	UDP,	CoAP	makes	use	of	Datagram
Transport	 Layer	 Security	 (DTLS),	which	 is	 analogous	 to	 the	TCP	 version	 of	TLS.
The	default	level	of	encryption	is	equivalent	to	a	3,072-bit	RSA	key.	Even	with	all	of
this,	CoAP	is	designed	to	work	on	microcontrollers	with	as	little	as	10KB	of	RAM.

One	of	 the	 downsides	 of	CoAP:	 It's	 a	 one-to-one	 protocol.	Though	 extensions	 that

make	group	broadcasts	possible	are	available,	broadcast	capabilities	are	not	inherent
to	the	protocol.	Arguably,	an	even	more	important	disadvantage	is	the	need	for	both
devices	 to	 be	 simultaneously	 powered,	 so	 when	 one	 sends	 a	 UDP,	 the	 other	 can
receive	it.	In	summary,	the	highlights	of	CoAP	include:

Small	4-byte	header
Option	fields	in	binary
Messages	fit	into	one	UDP	datagram	(no	fragmentation)
Works	with	SMS	(text	messaging)
Connectionless
Needs	less	than	10	kB	of	RAM

http://www.infoworld.com/article/2972143/internet-of-things/real-time-protocols-
for-iot-apps.html

9.7.2	MQTT
Message	Queue	Telemetry	Transport	 (MQTT)	 is	 a	 publish-subscribe	messaging
protocol,	abbreviated	as	pub-sub.	The	MQTT	name	was	inherited	from	a	project	at
IBM.	 Similar	 to	 CoAP,	 it	 was	 built	 with	 resource-constrained	 devices	 in	 mind.
MQTT	has	a	 lightweight	packet	 structure	designed	 to	conserve	both	memory	usage
and	 power.	A	 connected	 device	 subscribes	 to	 a	 topic	 hosted	 on	 an	MQTT	broker.
Every	 time	 another	 device	 or	 service	 publishes	 data	 to	 a	 topic,	 all	 of	 the	 devices
subscribed	to	it	will	automatically	get	the	updated	information.

Figure	9.51	shows	the	basic	idea	of	the	pub-sub	model.	MQTT	uses	an	intermediary,
which	is	called	a	broker.	There	are	clients,	or	publishers,	which	produce	data.	The
MQTT	protocol	calls	this	data	a	topic,	and	each	topic	must	have	a	unique	identifier.
The	figure	shows	a	temperature	sensor,	which	is	an	embedded	device	with	a	sensor
attached,	 and	 it	 periodically	 publishes	 the	 topic	 “temperature”.	 To	 publish	 a	 topic
means	 to	 send	 data	 to	 the	 broker.	 The	 broker	 keeps	 track	 of	 all	 the	 published
information.	 Subscribers	 are	 devices	 consumers,	 which	 are	 interested	 in	 the	 data.
What	 the	 subscribers	 do	 is	 they	 express	 their	 interest	 in	 a	 topic	 by	 sending	 a
subscription	message.	In	this	figure	we	have	two	devices	that	have	subscribed	to	the
topic	“temperature”.	Whenever	new	data	is	available,	the	broker	will	serve	it	to	both
subscribers.

Figure	9.51.	With	MQTT,	the	broker	acts	as	an	intermediary	between
producers	and	consumers.

The	fundamental	advantage	of	a	pub/sub	model	for	communication	in	contrast	with	a
client-server	model	 is	 the	 decoupling	 of	 the	 communicating	 entities	 in	 space,	 time
and	synchronization.	That	is,	the	publisher	and	subscribed	do	not	need	to	know	each
other,	 they	 do	 not	 run	 at	 the	 same	 time	 and	 they	 can	 act	 asynchronously.	 Other
advantages	of	MQTT	are	the	use	of	a	publish-subscribe	message	queue	and	the	many-
to-many	broadcast	 capabilities.	Using	 a	 long-lived	outgoing	TCP	connection	 to	 the
MQTT	broker,	sending	messages	of	limited	bandwidth	back	and	forth	is	simple	and
straightforward.

The	downside	of	having	an	always-on	connection	is	that	it	limits	the	amount	of	time
the	 devices	 can	 be	 put	 to	 sleep.	 If	 the	 device	 mostly	 sleeps,	 then	 another	MQTT
protocol	 can	 be	 used:	 MQTT-SN,	 which	 is	 an	 extension	 of	 MQTT	 for	 sensor
networks,	originally	designed	to	support	ZigBee.	MQTT-S	is	another	extension	 that
allows	 the	 use	 of	UDP	 instead	 of	 TCP	 as	 the	 transport	 protocol,	with	 support	 for
peer-to-peer	messaging	and	multicasting.

Another	disadvantage	of	MQTT	is	the	lack	of	encryption	in	the	base	protocol.	MQTT
was	designed	to	be	a	lightweight	protocol,	and	incorporating	encryption	would	add	a
significant	 amount	 of	 overhead	 to	 the	 connection.	One	 can	 however,	 use	Transport
Layer	 Security(TLS)	 extensions	 to	 TCP,	 or	 add	 custom	 security	 at	 the	 application
level.

References:

http://www.hivemq.com/blog/mqtt-essentials/
http://www.infoworld.com/article/2972143/internet-of-things/real-time-protocols-
for-iot-apps.html

9.8.	Exercises
9.1	Consider	a	wired	communication	system	(like	UART	or	CAN).
a)	Assume	 the	 signal	 has	 a	 rise	 time	 of	 25	 us.	 What	 is	 the	 approximate	 highest
frequency	component	of	this	signal?
b)	Assuming	a	VF	of	0.7,	what	is	the	wavelength	of	this	highest	frequency?
c)	Over	what	cable	length	would	you	have	to	consider	this	system	as	a	transmission
line?
	
9.2	Consider	a	communication	with	a	channel	bandwidth	of	10	kHz	and	an	SNR	of	60
dB.	What	is	the	maximum	possible	data	transfer	rate	in	bits/sec?
	
9.3	What	are	there	so	many	frequency	bands	for	Bluetooth	and	WiFi?
	
9.4	Consider	bit-stuffing
a)	Define	bit-stuffing
b)	Why	do	Ethernet	and	CAN	implement	bit-stuffing?
c)	UART	does	not	implement	bit-stuffing.	How	does	the	lack	of	bit-stuffing	limit	the
UART?
d)	SPI	does	not	implement	bit-stuffing.	Why	does	the	lack	of	bit-stuffing	not	limit	the
SPI	transmission	in	the	same	way	as	UART	is	limited?
	
9.5		Consider	how	the	ACK	bit	is	used	in	a	CAN	network.
a)	What	do	the	receivers	do	during	the	ACK	bit?
b)	What	does	it	mean	if	the	ACK	bit	is	dominant?
c)	What	does	it	mean	if	the	ACK	bit	is	recessive?
	
9.6	If	 the	CAN	channel	 is	noisy,	 it	 is	possible	 that	some	bits	will	be	 transmitted	 in
error.	Assume	there	are	four	nodes,	one	is	transmitting	and	three	are	receiving.	What
happens	 if	 a	 data	 bit	 is	 flipped	 in	 the	 channel	 due	 to	 noise	 being	 added	 into	 the
channel?
	
9.7	Consider	 a	 situation	 where	 two	 microcontrollers	 are	 connected	 with	 a	 CAN
network.	Computer	 1	generates	 8-bit	 data	packets	 that	must	 be	 sent	 to	 computer	 2,
and	 computer	 2	 generates	 8-bit	 data	 packets	 that	must	 be	 sent	 to	 computer	 1.	 The
packets	 are	 generated	 at	 random	 times,	 and	 the	 goal	 is	 to	 minimize	 the	 latency
between	when	a	data	packet	is	generated	on	one	computer	to	when	it	is	received	on
the	other.	Describe	the	CAN	protocol	you	would	use:	11-bit	versus	29-bit	ID,	number
of	bytes	of	data,	and	bandwidth.	Clearly	describe	what	is	in	the	ID	and	how	the	data
is	formatted.
	
9.8	A	CAN	system	has	a	baud	rate	of	100,000	bits/sec,	29-bit	ID,	and	three	bytes	of

data	per	frame.	Assuming	there	is	no	bit-stuffing,	what	is	the	maximum	bandwidth	of
this	network,	in	bytes/s.
	
9.9	A	CAN	system	has	a	baud	rate	of	200,000	bits/sec,	11-bit	ID,	and	five	bytes	of
data	per	frame.	Assuming	there	is	no	bit-stuffing,	what	is	the	maximum	bandwidth	of
this	network,	in	bytes/s.
	
9.10	Consider	 a	 situation	where	 4	microcontrollers	 are	 connected	 together	 using	 a
CAN	 network.	 Assume	 for	 this	 question	 that	 each	 frame	 contains	 100	 bits.	 Also
assume	 the	 baud	 rate	 is	 100,000	 bits/sec,	 therefore	 it	 takes	 1ms	 to	 send	 a	 frame.
Initially,	 the	 CAN	 controllers	 are	 initialized	 (i.e.,	 all	 computers	 have	 previously
executed CAN_Open).
At	time	=	0 computer	A	calls CAN_Send 	with	ID=1000
At	time	=	300	µs computer	B	calls CAN_Send 	with	ID=800
At	time	=	500	µs computer	C	calls CAN_Send 	with	ID=900
At	time	=	700	µs computer	D	calls CAN_Send 	with	ID=600

Specify	 the	 time	 sequence	 in	 which	 the	 four	 frames	 occur	 on	 the	 CAN	 network.
Clearly	 define	 the	 begin	 and	 end	 times	when	 each	message	 is	 visible	 on	 the	CAN
network.
	
9.11	 In	 a	CAN	network,	what	 is	 the	purpose	of	 the	CRC	 field?	 I.e.,	what	 is	CRC
used	for?
	
9.12	Why	is	BLE	considered	a	personal	area	network,	and	WiFi	is	not?
	
9.13	How	does	BLE	achieve	low	energy?
	
9.14	Define	the	following	terms	in	16	words	or	less	as	they	apply	to	BLE.
a)	Service b)	Characteristic c)	Advertising
d)	Client e)	Server f)	Profile
g)	Stack g)	UUID h)	Handle
i)	Read	indication j)	Write	indication k)	Notify	indication
	
	

	

10.	Robotic	Systems
Chapter	10	objectives	are	to:
•	Introduce	the	general	approach	to	digital	control	systems

•	Design	and	implement	some	simple	closed-loop	control	systems

•	Develop	a	methodology	for	designing	PID	control	systems

•	 Present	 the	 terminology	 and	 give	 examples	 of	 fuzzy	 logic	 control
system

	
Throughout	 all	 three	 volumes	 of	 this	 series	 of	 books,	we	 developed	 systems
that	 collected	 information	 concerning	 the	 external	 environment.	 A	 typical
application	of	embedded	systems	is	to	use	this	information	in	order	to	control
the	 external	 environment.	 To	 build	 this	microcontroller-based	 control	 system
we	 will	 need	 an	 output	 device	 that	 the	 computer	 can	 use	 to	 manipulate	 the
external	 environment.	 Control	 systems	 originally	 involved	 just	 analog
electronic	circuits	and	mechanical	devices.	With	the	advent	of	inexpensive	yet
powerful	 microcontrollers,	 implementing	 the	 control	 algorithm	 in	 software
provided	a	lower	cost	and	more	powerful	product.	The	goal	of	this	chapter	is
to	 provide	 a	 brief	 introduction	 to	 this	 important	 application	 area.	 Control
theory	is	a	richly	developed	discipline,	and	most	of	 this	 theory	is	beyond	the
scope	of	 this	book.	Consequently,	 this	chapter	 focuses	more	on	 implementing
the	 control	 system	with	 an	 embedded	computer	 and	 less	on	 the	design	of	 the
control	equations.

10.1.	Introduction	to	Digital	Control	Systems
A	control	system	is	a	collection	of	mechanical	and	electrical	devices	connected	for
the	 purpose	 of	 commanding,	 directing,	 or	 regulating	 a	 physical	 plant	 (see	 Figure
10.1).	The	real	state	variables	are	the	properties	of	the	physical	plant	that	are	to	be
controlled.	The	sensor	and	state	estimator	comprise	a	data	acquisition	system.	The
goal	of	this	data	acquisition	system	is	to	estimate	the	state	variables.	A	closed-loop
control	system	uses	the	output	of	the	state	estimator	in	a	feedback	loop	to	drive	the
errors	to	zero.	The	control	system	compares	these	estimated	state	variables,	X'(t),
to	the	desired	state	variables,	X*(t),	in	order	to	decide	appropriate	action,	U(t).	The
actuator	 is	 a	 transducer	 that	 converts	 the	 control	 system	 commands,	 U(t),	 into
driving	forces,	V(t),	that	are	applied	to	the	physical	plant.		In	general,	the	goal	of	the
control	system	is	to	drive	the	real	state	variables	to	equal	the	desired	state	variables.
In	 actuality	 though,	 the	 controller	 attempts	 to	 drive	 the	 estimated	 state	 variables	 to
equal	the	desired	state	variables.	It	is	important	to	have	an	accurate	state	estimator,
because	 any	 differences	 between	 the	 estimated	 state	 variables	 and	 the	 real	 state
variables	will	translate	directly	into	controller	errors.		If	we	define	the	error	as	the
difference	between	the	desired	and	estimated	state	variables:

	
e(t)	=	X*(t)-	X’(t)

	
then	the	control	system	will	attempt	to	drive	e(t)	 to	zero.	 	In	general	control	theory,
X(t),	X’(t),	X*(t),	U(t),	V(t)	and	e(t)	refer	to	vectors,	but	the	examples	in	this	chapter
control	 only	 a	 single	 parameter.	 Even	 though	 this	 chapter	 shows	 one-dimensional
systems,	 and	 it	 should	 be	 straight-forward	 to	 apply	 standard	 multivariate	 control
theory	to	more	complex	problems.	We	usually	evaluate	the	effectiveness	of	a	control
system	 by	 determining	 three	 properties:	 steady	 state	 controller	 error,	 transient
response,	 and	 stability.	The	 steady	 state	 controller	 error	 is	 the	 average	 value	 of
e(t).	The	transient	response	 is	how	long	does	the	system	take	to	reach	99%	of	 the
final	output	after	X*	 is	changed.	A	system	is	stable	 if	steady	state	(smooth	constant
output)	is	achieved.	The	error	is	small	and	bounded	on	a	stable	system.	An	unstable
system	oscillates,	or	it	may	saturate.

Figure	10.1.	Block	diagram	of	a	microcomputer-based	closed-loop	control
system.

	
An	open-loop	control	system	does	not	include	a	state	estimator.	It	is	called	open	loop
because	 there	 is	no	feedback	path	providing	 information	about	 the	state	variable	 to
the	 controller.	 It	 will	 be	 difficult	 to	 use	 open-loop	with	 the	 plant	 that	 is	 complex
because	the	disturbing	forces	will	have	a	significant	effect	on	controller	error.	On	the
other	 hand,	 if	 the	 plant	 is	well-defined	 and	 the	 disturbing	 forces	 have	 little	 effect,
then	an	open-loop	approach	may	be	feasible.	Because	an	open-loop	control	system
does	 not	 know	 the	 current	 values	 of	 the	 state	 variables,	 large	 errors	 can	 occur.
Stepper	motors	are	often	used	in	open	loop	fashion.

10.2.	Binary	Actuators

10.2.1.	Electrical	Interface
Relays,	 solenoids,	 and	 DC	 motors	 are	 grouped	 together	 because	 their	 electrical
interfaces	 are	 similar.	We	can	add	 speakers	 to	 this	group	 if	 the	 sound	 is	generated
with	a	square	wave.		In	each	case,	there	is	a	coil,	and	the	computer	must	drive	(or	not
drive)	current	through	the	coil.	To	interface	a	coil,	we	consider	voltage,	current	and
inductance.	We	need	a	power	supply	at	the	desired	voltage	requirement	of	the	coil.	If
the	 only	 available	 power	 supply	 is	 larger	 than	 the	 desired	 coil	 voltage,	we	 use	 a
voltage	 regulator	 (rather	 than	 a	 resistor	 divider	 to	 create	 the	 desired	 voltage.)	We
connect	the	power	supply	to	the	positive	terminal	of	the	coil,	shown	as	+V	in	Figure
10.2.	We	will	use	a	transistor	device	to	drive	the	negative	side	of	the	coil	to	ground.
The	 computer	 can	 turn	 the	 current	 on	 and	 off	 using	 this	 transistor.	 The	 second
consideration	is	current.	In	particular,	we	must	however	select	the	power	supply	and
an	interface	device	that	can	support	 the	coil	current.	The	7406	is	an	open	collector
driver	capable	of	sinking	up	to	40	mA.	The	2N2222	is	a	bipolar	junction	transistor
(BJT),	 NPN	 type,	 with	 moderate	 current	 gain.	 The	 TIP120	 is	 a	 Darlington
transistor,	 also	 NPN	 type,	 which	 can	 handle	 larger	 currents.	 The	 IRF540	 is	 a
MOSFET	 transistor	 that	 can	 handle	 even	 more	 current.	 BJT	 and	 Darlington
transistors	 are	 current-controlled	 (meaning	 the	 output	 is	 a	 function	 of	 the	 input
current),	 while	 the	 MOSFET	 is	 voltage-controlled	 (output	 is	 a	 function	 of	 input
voltage).	 When	 interfacing	 a	 coil	 to	 the	 microcontroller,	 we	 use	 information	 like
Table	10.1	to	select	an	interface	device	capable	the	current	necessary	to	activate	the
coil.	It	is	a	good	design	practice	to	select	a	driver	with	a	maximum	current	at	least
twice	 the	 required	 coil	 current.	When	 the	 digital	Port	 output	 is	 high,	 the	 interface
transistor	is	active	and	current	flows	through	the	coil.	When	the	digital	Port	output	is
low,	the	transistor	is	not	active	and	no	current	flows	through	the	coil.

Device Type Maximum	current
TM4C CMOS 8	 mA	 (set	 bits	 in

DR8R)
MSP432 CMOS 20	mA	(DS=1,	P2.0	–

P2.3)
7406 TTL	logic 40	mA
PN2222 BJT	NPN 150	mA
2N2222 BJT	NPN 500	mA
TIP120 Darlington	NPN 5	A
IRF540 power	MOSFET 28	A

Table	10.1.	Four	possible	devices	that	can	be	used	to	interface	a	coil	to	the	microcontroller.

Figure	10.2.	Binary	interface	to	EM	relay,	solenoid,	DC	motor	or	speaker.

The	 third	 consideration	 is	 inductance	 in	 the	 coil.	The	1N914	diode	 in	Figure	 10.1
provides	protection	from	the	back	emf	generated	when	the	switch	is	turned	off,	and
the	large	dI/dt	across	the	inductor	induces	a	large	voltage	(on	the	negative	terminal	of
the	coil),	according	to	V=L∙dI/dt.	For	example,	if	you	are	driving	0.1A	through	a	0.1
mH	coil	(Port	output	=	1)	using	a	2N2222,	then	disable	the	driver	(Port	output	=	0),
the	2N2222	will	 turn	off	 in	 about	 20ns.	This	 creates	 a	dI/dt	 of	 at	 least	 5·106	 A/s,
producing	a	back	emf	of	500	V!	The	1N914	diode	shorts	out	this	voltage,	protecting
the	electronics	from	potential	damage.	The	1N914	is	called	a	snubber	diode.

Observation:	It	is	important	to	realize	that	many	devices	cannot	be	connected
directly	up	to	the	microcontroller.	In	the	specific	case	of	motors,	we	need	an
interface	that	can	handle	the	voltage	and	current	required	by	the	motor.

If	you	are	sinking	16	mA	(IOL)	with	the	7406,	the	output	voltage	(VOL)	will	be	0.4V.
However,	when	the	IOL	of	the	7406	equals	40	mA,	its	VOL	will	be	0.7V.	40	mA	is	not
a	 lot	 of	 current	 when	 it	 comes	 to	 typical	 coils.	 However,	 the	 7406	 interface	 is
appropriate	to	control	small	relays.

Checkpoint	10.1:	A	relay	is	interfaced	with	the	7406	circuit	in	Figure	10.2.	The
positive	terminal	of	the	coil	is	connected	to	+5V	and	the	coil	requires	40	mA.
What	will	be	the	voltage	across	the	coil	when	active?

When	designing	an	interface,	we	need	to	know	the	desired	coil	voltage	(Vcoil)	and	coil
current	 	 (Icoil).	Let	Vbe	 be	 the	 base-emitter	 voltage	 that	 activates	 the	NPN	 transistor
and	 let	hfe	be	 the	current	gain.	There	are	 three	steps	when	 interfacing	an	N-channel
(right	side	of	Figure	10.2.)

1)	Choose	the	interface	voltage	V	equal	to	Vcoil	(since	VCE	is	close	to	zero)
2)	Calculate	the	desired	base	current	Ib	=	Icoil	/hfe	(since	IC	equals	Icoil)
3)	Calculate	 the	 interface	resistor	 	Rb	≤	(VOH	 -	Vbe)/	 Ib	 (choose	a	 resistor	2	 to	5
times	smaller)

With	 an	 N-channel	 switch,	 like	 Figure	 10.2,	 current	 is	 turned	 on	 and	 off	 by
connecting/disconnecting	one	side	of	the	coil	to	ground,	while	the	other	side	is	fixed

at	 the	voltage	supply.	A	second	 type	of	binary	 interface	uses	P-channel	switches	 to
connect/disconnect	 one	 side	 of	 the	 coil	 to	 the	 voltage	 supply,	while	 the	 other	 side
fixed	at	ground,	as	shown	in	Figure	10.3.	In	other	to	activate	a	PNP	transistor	(e.g.,
PN2907	or	TIP125),	there	must	be	a	VEB	greater	than	0.7	V.	In	order	to	deactivate	a
PNP	 transitory,	 the	 VEB	 voltage	 must	 be	 0.	 Because	 the	 transistor	 is	 a	 current
amplifier,	there	must	be	a	resistor	into	the	base	in	order	to	limit	the	base	current.

Figure	10.3.	PNP	interface	to	EM	relay,	solenoid,	DC	motor	or	speaker.

To	understand	how	the	PNP	interface	on	the	right	of	Figure	10.3	operates,	consider
the	behavior	for	the	two	cases:	the	Port	output	is	high	and	the	Port	output	is	low.	If
the	Port	output	 is	high,	 its	output	voltage	will	be	between	2.4	and	3.3	V.	This	will
cause	current	to	flow	into	the	base	of	the	PN2222,	and	its	Vbe	will	saturate	to	0.7	V.
The	base	current	into	the	PN2222	could	be	from	(2.4-0.7)/1000	to	(3.3-0.7)/1000,	or
1.7	 to	 2.6	mA.	 The	microcontroller	 will	 be	 able	 to	 source	 this	 current.	 This	will
saturate	the	PN2222	and	its	VCE	will	be	0.3	V.	This	will	cause	current	to	flow	out	of
the	base	of	the	PN2907,	and	its	VEB	will	saturate	to	0.7	V.	If	the	supply	voltage	is	V,
then	the	PN2907	base	current	 is	(V-0.7-0.3)/Rb.	Since	the	PNP	transistor	 is	on,	VEC
will	be	small	and	current	will	flow	from	the	supply	to	the	coil.	If	the	port	output	is
low,	the	voltage	output	will	be	between	0	and	0.4V.	This	not	high	enough	to	activate
the	PN2222,	 so	 the	NPN	 transistor	will	 be	 off.	 Since	 there	 is	 no	 IC	 current	 in	 the
PN2222,	the	10k	and	Rb	resistors	will	place	+V	at	the	base	of	the	PN2907.	Since	the
VEB	of	the	PN2907	is	0,	this	transistor	will	be	off,	and	no	current	will	flow	into	the
coil.

MOSFETs	can	handle	significantly	more	current	than	BJT	or	Darlington	transistors.
MOSFETs	are	voltage	controlled	switches.	The	difficulty	with	interfacing	MOSFETs
to	a	microcontroller	 is	 the	 large	gate	voltage	needed	 to	activate	 it.	The	 left	side	of
Figure	10.4	is	an	N-channel	interface.	The	IRF540	N-channel	MOSFET	can	sink	up
to	 28A	 when	 the	 gate-source	 voltage	 is	 above	 7V.	 This	 circuit	 is	 negative	 logic.
When	 the	port	pin	 is	high,	 the	2N2222	 is	 active	making	 the	MOSFET	gate	voltage
0.3V	(VCE	of	the	PN2222).	A	VGS	of	0.3V	turns	off	the	MOSFET.	When	the	port	pin	is
low,	the	2N2222	is	off	making	the	MOSFET	gate	voltage	+V	(pulled	up	through	the

10kΩ	resistor).	The	VGS	is	+V,	which	turns	the	MOSFET	on.	

The	right	side	of	Figure	10.4	shows	a	P-channel	MOSFET	interface.	The	IRF9540	P-
channel	MOSFET	can	source	up	 to	20A	when	the	source-gate	voltage	 is	above	7V.
The	 FQP27P06	 P-channel	 MOSFET	 can	 source	 up	 to	 27A	 when	 the	 source-gate
voltage	 is	 above	 6V.	 This	 circuit	 is	 positive	 logic.	When	 the	 port	 pin	 is	 high,	 the
2N2222	 is	active	making	 the	MOSFET	gate	voltage	0.3V.	This	makes	VSG	 equal	 to
+V-0.3,	which	turns	on	the	MOSFET.	When	the	port	pin	 is	 low,	 the	2N2222	is	off.
Since	the	2N2222	is	off,	the	10kΩ	pull-up	resistor	makes	the	MOSFET	gate	voltage
+V.	In	this	case	VSG	equals	0,	which	turns	off	the	MOSFET.

Figure	10.4.	MOSFET	interfaces	to	EM	relay,	solenoid,	DC	motor	or
speaker.

An	H-bridge	combines	P-channel	and	N-channel	devices	allowing	current	to	flow	in
either	direction.	Figures	4.26	and	4.27		in	Volume	2	show	applications	of	the	L293
H-bridge,	while	Figure	10.5	shows	one	of	the	H-bridge	circuits	internal	to	the	L293.
If	1A	is	high,	Q1	is	on	and	Q2	is	off.	If	1A	is	low,	Q1	is	off	and	Q2	is	on.	2A	controls
Q3	and	Q4	 in	a	similar	 fashion.	 If	1A	is	high	and	2A	is	 low,	 then	Q1	Q4	are	on	and
current	flows	left	to	right	across	coil	A.	If	1A	is	low	and	2A	is	high,	then	Q2	Q3	are
on	and	current	flows	right	to	left	across	coil	A.

Figure	10.5.	An	H-bridge	can	drive	current	in	either	direction	(the	actual
L293	uses	all	N-channel	devices).

10.2.2.	DC	Motor	Interface	with	PWM
Similar	 to	 the	 solenoid	 and	 EM	 relay,	 the	 DC	 motor	 has	 a	 frame	 that	 remains
motionless,	and	an	armature	that	moves.	In	this	case,	the	armature	moves	in	a	circular
manner	(shaft	rotation).

In	the	previous	interfaces	the	microcontroller	was	able	to	control	electrical	power	to
a	device	in	a	binary	fashion:	either	all	on	or	all	off.	Sometimes	it	is	desirable	for	the
microcontroller	 to	 be	 able	 to	 vary	 the	 delivered	 power	 in	 a	 variable	manner.	One
effective	way	to	do	this	is	to	use	pulse	width	modulation	(PWM).	The	basic	idea	of
PWM	 is	 to	 create	 a	 digital	 output	 wave	 of	 fixed	 frequency,	 but	 allow	 the
microcontroller	 to	 vary	 its	 duty	 cycle.	 The	 system	 is	 designed	 in	 such	 a	way	 that
High+Low	is	constant	(meaning	the	frequency	is	fixed).	The	duty	cycle	is	defined	as
the	fraction	of	time	the	signal	is	high:

Hence,	 duty	 cycle	 varies	 from	 0	 to	 1.	We	 interface	 this	 digital	 output	wave	 to	 an
external	actuator	(like	a	DC	motor),	such	that	power	is	applied	to	the	motor	when	the
signal	is	high,	and	no	power	is	applied	when	the	signal	is	low.	We	purposely	select	a
frequency	 high	 enough	 so	 the	 DC	 motor	 does	 not	 start/stop	 with	 each	 individual
pulse,	 but	 rather	 responds	 to	 the	 overall	 average	 value	 of	 the	 wave.	 The	 average
value	of	a	PWM	signal	is	linearly	related	to	its	duty	cycle	and	is	independent	of	its
frequency.	Let	P	(P=V*I)	be	the	power	to	the	DC	motor,	Figures	10.2	-	10.5,	when
the	PWM	signal	 is	high.	Under	 conditions	of	 constant	 speed	and	constant	 load,	 the
delivered	power	to	the	motor	is	linearly	related	to	duty	cycle.

Delivered	Power	=

Unfortunately,	 as	 speed	 and	 torque	 vary,	 the	 developed	 emf	 will	 affect	 delivered
power.	 Nevertheless,	 PWM	 is	 a	 very	 effective	 mechanism,	 allowing	 the
microcontroller	to	adjust	delivered	power.

A	DC	motor	has	an	electro-magnet	as	well.	When	current	 flows	 through	 the	coil,	a
magnetic	force	is	created	causing	a	rotation	of	the	shaft.	Brushes	positioned	between
the	frame	and	armature	are	used	to	alternate	the	current	direction	through	the	coil,	so
that	 a	DC	 current	 generates	 a	 continuous	 rotation	 of	 the	 shaft.	When	 the	 current	 is
removed,	the	magnetic	force	stops,	and	the	shaft	is	free	to	rotate.	The	resistance	in	the
coil	(R)	comes	from	the	long	wire	that	goes	from	the	+	terminal	to	the	–	terminal	of
the	motor.	The	inductance	in	the	coil	(L)	arises	from	the	fact	that	the	wire	is	wound
into	coils	to	create	the	electromagnetics.	The	coil	itself	can	generate	its	own	voltage
(emf)	because	of	the	interaction	between	the	electric	and	magnetic	fields.	If	the	coil
is	 a	 DC	motor,	 then	 the	 emf	 is	 a	 function	 of	 both	 the	 speed	 of	 the	motor	 and	 the
developed	 torque	 (which	 in	 turn	 is	 a	 function	 of	 the	 applied	 load	 on	 the	 motor.)

Because	 of	 the	 internal	 emf	 of	 the	 coil,	 the	 current	will	 depend	on	 the	mechanical
load.	For	example,	a	DC	motor	running	with	no	load	might	draw	50	mA,	but	under
load	(friction)	the	current	may	jump	to	500	mA.

There	are	lots	of	motor	driver	chips,	but	they	are	fundamentally	similar	to	the	circuits
shown	in	Figure	10.2.	For	the	2N2222	and	TIP120	NPN	transistors,	if	the	port	output
is	 low,	no	current	can	 flow	 into	 the	base,	 so	 the	 transistor	 is	off,	 and	 the	collector
current,	IC,	will	be	zero.	If	the	port	output	is	high,	current	does	flow	into	the	base	and
VBE	goes	above	VBEsat	turning	on	the	transistor.	The	transistor	is	in	the	linear	range	if
VBE	≤	VBEsat	and	Ic	=	hfe·Ib.	The	transistor	is	in	the	saturated	mode	if	VBE	≥	VBEsat,	VCE	=
0.3V	and	Ic	<	hfe·Ib.	We	select	the	resistor	for	the	NPN	transistor	interfaces	to	operate
right	at	 the	 transition	between	 linear	and	saturated	mode.	We	start	with	 the	desired
coil	current,	Icoil	(the	voltage	across	the	coil	will	be	+V-VCE	which	will	be	about	+V-
0.3V).		Next,	we	calculate	the	needed	base	current	(Ib)	given	the	current	gain	of	the
NPN

Ib	=	Icoil	/hfe
knowing	the	current	gain	of	 the	NPN	(hfe),	see	Table	10.2.	Finally,	given	the	output
high	voltage	of	the	microcontroller	(VOH	is	about	3.3	V)	and	base-emitter	voltage	of
the	 NPN	 (VBEsat)	 needed	 to	 activate	 the	 transistor,	 we	 can	 calculate	 the	 desired
interface	resistor.

Rb	≤	(VOH	-	VBEsat)/	Ib	=		hfe	*(VOH	-	VBEsat)/	Icoil
The	inequality	means	we	can	choose	a	smaller	resistor,	creating	a	larger	Ib.	Because
the	 of	 the	 transistors	 can	 vary	 a	 lot,	 it	 is	 a	 good	 design	 practice	 to	 make	 the	 Rb
resistor	 about	 ½	 the	 value	 shown	 in	 the	 above	 equation.	 Since	 the	 transistor	 is
saturated,	 the	 increased	base	current	produces	 the	same	VCE	 and	 thus	 the	 same	coil
current.	

Parameter PN2222
(IC=150mA)

2N2222
(IC=500mA)

TIP120
(IC=3A)

hfe 100 40 1000
hie 60	Ω 250	to	8000	Ω 70	to	7000	Ω
VBEsat 0.6 2 2.5	V
VCE	 at
saturation

0.3 1 2	V

Table	10.2.	Design	parameters	for	the	2N2222	and	TIP120.
The	IRF540	MOSFET	is	a	voltage-controlled	device,	if	the	Port	output	is	high,	 the
2N2222	 is	 on,	 the	MOSFET	 is	 off,	 and	 the	 coil	 current	 will	 be	 zero.	 If	 the	Port
output	 is	 low,	 the	2N2222	 is	 off,	 the	gate	voltage	of	 the	MOSFET	will	 be	+V,	 the
MOSFET	is	on,	and	the	VDS	will	be	very	close	to	0.	The	IRF540	needs	a	large	gate
voltage	(>	10V)	to	fully	turn	so	the	drain	will	be	able	to	sink	up	to	28	A.

Because	 of	 the	 resistance	 of	 the	 coil,	 there	will	 not	 be	 significant	 dI/dt	 when	 the
device	is	turned	on.	Consider	a	DC	motor	as	shown	in	Figure	10.2	with	V=	12V,	R	=
50	 Ω	 and	 L	 =	 100	 µH.	 Assume	 we	 are	 using	 a	 2N2222	 with	 a	 VCE	 of	 1	 V	 at
saturation.	Initially	the	motor	is	off	(no	current	to	the	motor).	At	time	t=0,	the	digital
port	goes	from	0	to	+3.3	V,	and	transistor	turns	on.		Assume	for	this	section,	the	emf
is	zero	(motor	has	no	external	torque	applied	to	the	shaft)	and	the	transistor	turns	on
instantaneously,	we	can	derive	an	equation	for	the	motor	(Ic)	current	as	a	function	of
time.	The	voltage	across	both	LC	together	is	12-VCE	=	11	V	at	time	=	0+.	At	time	=	0+,
the	inductor	is	an	open	circuit.	Conversely,	at	time	=	∞,	the	inductor	is	a	short	circuit.
The	Ic	at	time	0-	is	0,	and	the	current	will	not	change	instantaneously	because	of	the
inductor.	Thus,	the	Ic	is	0	at	time	=	0+.	The	Ic	is	11V/50Ω	=	220mA	at	time	=	∞.

11	V	=	Ic	*R	+L*d	Ic/dt

General	solution	to	this	differential	equation	is

Ic	=	I0	+	I1e-t/T						d	Ic/dt	=	-	(I1/T)e-t/T

We	plug	the	general	solution	into	the	differential	equation	and	boundary	conditions.

11	V	=	(I0	+	I1e-t/T)*R	-L*(I1/T)e-t/T

To	solve	the	differential	equation,	the	time	constant	will	be	T	=	L/R	=	2	µsec.	Using
initial	conditions,	we	get

Ic	=	220mA*(1-	e-t/2µs)
	

Example	10.4.	Design	an	interface	for	two	+12V	1A	geared	DC	motors.	These	two
motors	will	be	used	to	propel	a	robot	with	two	independent	drive	wheels.

Solution:	We	will	use	 two	copies	of	 the	TIP120	circuit	 in	Figure	10.6	because	 the
TIP120	can	 sink	at	 least	 three	 times	 the	current	needed	 for	 this	motor.	We	select	 a
+12V	supply	and	connect	it	to	the	+V	in	the	circuit.	The	needed	base	current	is

Ib	=	Icoil	/hfe	=	1A/1000	=	1mA

The	desired	interface	resistor.

Rb	≤	(VOH	-	Vbe)/	Ib	=	(3.3-2.5)/1mA	=	800	Ω

To	cover	the	variability	in	hfe,	we	will	use	a	330	Ω	resistor	instead	of	the	800	Ω.	The
actual	 voltage	 on	 the	 motor	 when	 active	 will	 be	 +12-2	 =	 10V.	 The	 coils	 and
transistors	can	vary	a	lot,	so	it	is	appropriate	to	experimentally	verify	the	design	by
measuring	the	voltages	and	currents.	Two	PWM	outputs	are	used	to	control	the	robot.
The	period	of	the	PWM	output	is	chosen	to	be	about	10	times	shorter	than	the	time
constant	of	the	motor.	The	electronic	driver	will	 turn	on	and	off	at	this	rate,	but	the
motor	 only	 responds	 to	 the	 average	 level.	 The	 software	 sets	 the	 duty	 cycle	 of	 the
PWM	 to	 adjust	 the	 delivered	 power.	When	 active,	 the	 interface	will	 drive	 +10	V
across	the	motor.	The	current	will	be	a	function	of	the	friction	applied	to	the	shaft.

	
Figure	10.6.	DC	motor	interface.
	

Similar	 to	 the	 solenoid	 and	 EM	 relay,	 the	 DC	 motor	 has	 a	 frame	 that	 remains
motionless	 (called	 the	 stator),	 and	 an	 armature	 that	moves	 (called	 the	 rotor),	 see
Figure	10.7.

Figure	10.7.	A	brushed	DC	motor	uses	a	commutator	to	flip	the	coil	current.

A	brushed	DC	motor	has	an	electromagnetic	coil	as	well,	located	on	the	rotor,	and
the	 rotor	 is	 positioned	 inside	 the	 stator.	 In	Figure	10.7,	North	 and	South	 refer	 to	 a
permanent	magnet,	 generating	 a	 constant	B	 field	 from	 left	 to	 right.	 In	 this	 case,	 the
rotor	moves	 in	 a	 circular	manner.	When	current	 flows	 through	 the	 coil,	 a	magnetic
force	 is	 created	 causing	 a	 rotation	 of	 the	 shaft.	 A	 brushed	 DC	 motor	 uses
commutators	to	flip	the	direction	of	the	current	in	the	coil.	In	this	way,	the	coil	on	the
right	always	has	an	up	force,	and	the	one	on	the	left	always	has	a	down	force.	Hence,
a	 constant	 current	 generates	 a	 continuous	 rotation	 of	 the	 shaft.	When	 the	 current	 is

removed,	 the	magnetic	 force	 stops,	 and	 the	 shaft	 is	 free	 to	 rotate.	 In	 a	pulse-width
modulated	 DC	 motor,	 the	 computer	 activates	 the	 coil	 with	 a	 current	 of	 fixed
magnitude	 but	 varies	 the	 duty	 cycle	 in	 order	 to	 adjust	 the	 power	 delivered	 to	 the
motor.

10.3.	Sensors
Tachometers	can	be	used	to	measure	rotational	speed	of	a	motor.	Some	tachometers
produce	a	sine	wave	with	a	frequency	and	amplitude	proportional	to	motor	speed.	To
use	 input	 capture,	 we	 need	 to	 convert	 the	 sine	 wave	 into	 a	 corresponding	 square
wave	 of	 the	 same	 period.	We	 can	 use	 a	 voltage	 comparator	 to	 detect	 events	 in	 an
analog	 waveform.	 The	 input	 voltage	 range	 is	 determined	 by	 the	 analog	 supply
voltages	of	the	comparator.	The	output	is	takes	on	two	values,	shown	an	Vh	and	Vl	in
Figure	10.8.	To	 reduce	noise,	a	comparator	with	hysteresis	has	 two	 thresholds,	Vt+
and	Vt-.	In	both	the	positive	and	negative	logic	cases	the	threshold	(Vt+	or	Vt-)	depends
on	the	present	value	of	the	output.

Figure	10.8.	Input/output	response	of	voltage	converters	with	hysteresis.

Hysteresis	prevents	small	noise	spikes	from	creating	a	false	trigger.	

Performance	Tip:	In	order	to	eliminate	false	triggering,	we	select	a	hysteresis
level	(Vt+-Vt-)	greater	than	the	noise	level	in	the	signal.

In	Figure	10.9,	a	rail-to-rail	op	amp	is	used	to	design	a	voltage	comparator.	Since	the
output	 swings	 from	 0	 to	 3.3	V,	 it	 can	 be	 connected	 directly	 to	 an	 input	 pin	 of	 the
microcontroller.	On	the	other	hand,	since	+3.3	and	0	are	used	to	power	the	op	amp,
the	 analog	 input	 must	 remain	 in	 the	 0	 to	 +3.3	 V	 range.	 The	 hysteresis	 level	 is
determined	by	the	amplitude	of	the	output	and	the	R1/(R1+R2)	ratio.	If	the	output	is	at
0V,	 the	 voltage	 at	 the	 +terminal	 is	 Vin*R2/(R1+R2).	 The	 output	 switches	 when	 the
voltage	at	the	+terminal	goes	above	1.65.	By	solving	for	Vin*200k/(10k+200k)=1.65,
we	see	Vin	must	go	above	+1.73	for	the	output	to	switch.	Similarly,	if	the	output	is	at
+3.3	V,	 the	 voltage	 at	 the	 +terminal	 can	 be	 calculated	 as	Vin+(3.3-Vin)*R1/(R1+R2).
The	 output	 switches	 back	when	 the	 voltage	 at	 the	 +terminal	 goes	 below	 1.65.	 By
solving	 for	Vin+(3.3-Vin)*R1/(R1+R2)=1.65,	 we	 see	 Vin	 go	 below	 +1.57	 before	 the
+terminal	of	the	op	amp	falls	below	1.65	V.	In	linear	mode	circuits	we	should	not	use
the	 supply	 voltage	 to	 create	 voltage	 references,	 but	 in	 a	 saturated	 mode	 circuit,
power	supply	ripple	will	have	little	effect	on	the	response.

Figure	10.9.	A	voltage	comparator	with	hysteresis	using	a	rail	to	rail	op
amp.

10.4.	Odometry
Odometry	 is	 a	 method	 to	 predict	 position	 from	 wheel	 rotations.	 We	 assume	 the
wheels	do	not	 slip	along	 the	ground.	 If	one	wheel	moves	but	 the	other	does	not,	 it
will	 rotate	 about	 a	 single	 contact	 point	 of	 the	 wheel	 to	 the	 ground.	 If	 one	 wheel
moves	more	 than	 the	other,	 then	 there	will	be	both	a	motion	and	a	 rotation	about	a
point	somewhere	along	line	defined	by	the	axle	connecting	the	two	wheels.	We	define
the	 robot	 center	 of	 gravity	 (cog)	 as	 a	 point	 equidistant	 from	 the	 pivot	 points.	 The
robot	 position	 is	 defined	 as	 the	 (x,y)	 location	 and	 the	 compass	 direction,	 or	 yaw
angle	θ,	of	the	cog.	See	Figure	10.10.

	

Figure	10.10.	A	robot	with	two	drive	wheels	is	defined	by	the	wheel	base	and
wheel	diameter.

Constants
Number	of	slots/rotation,	n=32
Wheel	diameter,	d	=	886	(0.01cm)

										
Figure	10.11.	To	measure	wheel	motion	we	used	an	encoder	on	each	wheel.

Wheelbase	(distance	between	wheels),	w	=	1651	(0.01cm)
Wheel	circumference,	c	=	πd	=	2783	(0.01cm)

	
Measurements

LCount	the	number	of	slots	of	left	wheel	in	349.5ms.	RCount	the	number	of	slots	of	right

wheel	in	349.5ms.	At	150	RPM,	there	will	be	28	counts	in	349.5	ms.															Some
simple	cases	are	found	in	Table	10.3,	where	m	is	any	number	from	‑28	to	+28.

LCount RCount Motion
m m straight	 line	motion	 in	 the	 current

direction
0 m pivot	about	stopped	left	motor
m 0 pivot	about	stopped	right	motor
m -m pure	rotation	about	cog

Table	10.3.	Example	measurements,	relationship	between	counts	and	motion.
Derivations
Lr	=	LCount	*c/n	the	arc	distance	traveled	by	the	left	wheel	(0.01cm)
Rr	=	RCount*c/n	the	arc	distance	traveled	by	the	right	wheel	(0.01cm)

	
Figure	10.12.	Motions	occurring	during	a	left	turn.

Using	similar	triangles,	we	can	find	the	new	pivot	point.		Assuming	Rr	and	Lr	are	both	positive
and	Rr>Lr,	we	get

L/Lr	=	(L+w)/Rr
L/Lr	-	L/Rr	=	w/Rr
L	Rr	-	L	Lr	=	w	Lr
L	=	w	Lr/(Rr	-	Lr)

	
Notice	also	the	change	in	yaw,	dθ,	is	the	same	angle	as	the	sector	created	by	the	change	in	axle.
The	change	in	angle	is

dθ	=	Lr/L	=	Rr/(L+w)
We	can	divide	the	change	in	position	into	two	components

Figure	10.13.	Geometry	of	a	left	turn.

The	exact	calculation	for	position	change	is
dz	=	(L+w/2)*tan(dθ/2)
but	if	dθ	is	small,	we	can	approximate	dz	by	the	arc	length.
dz	=	dθ/2*(L+w/2)

	
Initialize
We	initialize	the	system	by	specifying	the	initial	position	and	yaw.
(x,	y,	θ) (0.01cm,	0.01cm,	0.01	radian)
Calculations	(run	this	periodically,	measuring	LCount	RCount)

Lr	=	LCount	*c/n	 (0.01cm)
Rr	=	RCount	*c/n	 (0.01cm)
L	=	(w*Lr)/(Rr	-	Lr) (0.01cm)

dθ	=	(100*Lr)/L (0.01	radian)
dz	=	((dθ/2)*(L+w/2))/100 (0.01cm)	approximation
or dz	=	(tan(dθ/2)*(L+w/2))/100 (0.01cm)	more	accurate
x	=	x	+	dz*cos(θ) (0.01cm)

y	=	y+	dz*sin(θ)		 (0.01cm)		first	part	of	move
θ	=	θ	+	dθ (0.01	radian)
x	=	x	+	dz*cos(θ) (0.01cm)

y	=	y+	dz*sin(θ)		 (0.01cm)		second	part	of	move

10.5.	Simple	Closed-Loop	Control	Systems.
A	bang-bang	controller	uses	a	binary	actuator,	meaning	 the	microcontroller	output
can	be	on	or	off.	Other	names	for	this	controller	are	binary	controller,	two-position
controller,	and	on/off	controller.	It	is	a	closed-loop	control	system,	because	there	is
a	sensor	that	measures	the	status	of	the	system.	This	signal	is	called	the	measurand	or
state	variable.	Assume	when	the	actuator	is	on	the	measurand	increases,	and	when	the
actuator	is	off,	the	measurand	decreases.	There	is	a	desired	point	for	the	measurand.
The	 bang-bang	 controller	 is	 simple.	 If	 the	measurand	 is	 too	 small,	 the	 actuator	 is
turned	on,	and	if	the	measurand	is	too	large	the	actuator	is	turned	off.

This	 digital	 control	 system	 applies	 heat	 to	 the	 room	 in	 order	 to	 maintain	 the
temperature	as	close	to	the	desired	temperature	as	possible	(Figure	10.14).	This	is	a
closed-loop	 control	 system	 because	 the	 control	 signals	 (heat)	 depend	 on	 the	 state
variables	(temperature).		In	this	application,	the	actuator	has	only	two	states:	on	that
warms	up	the	room	and	off	that	does	not	apply	heat.	For	this	application	to	function
properly,	there	must	be	a	passive	heat	loss	that	lowers	the	room	temperature	when	the
heater	is	turned	off.	On	a	hot	summer	day,	this	heater	system	will	not	be	able	to	keep
the	 house	 cool.	 A	 bang-bang	 controller	 turns	 on	 the	 power	 if	 the	 measured
temperature	 is	 too	 low	 and	 turns	 off	 the	 power	 if	 the	 temperature	 is	 too	 high.	 	 To
implement	 hysteresis,	 we	 need	 two	 set-point	 temperatures,	 Thigh	 and	 Tlow.	 The
controller	turns	on	the	power	(activate	relay)	if	the	temperature	goes	below	Tlow	and
turns	 off	 the	 power	 (deactivate	 relay)	 if	 the	 temperature	 goes	 above	 Thigh.	 The
difference	Thigh	-	Tlow	is	called	hysteresis.	The	hysteresis	extends	the	life	of	the	relay
by	reducing	the	number	of	times	the	relay	opens	and	closes.

Figure	10.14.	Flowchart	of	a	Bang-Bang	Temperature	Controller
Assume	the	function SE ()	 returns	 the	estimated	 temperature	as	a	binary	fixed-point
number	with	a	resolution	of	0.5	ºC.	Program	10.1	uses	a	periodic	interrupt	so	that	the
bang-bang	controller	 runs	 in	 the	background.	The	 interrupt	period	 is	 selected	 to	be
about	 the	 same	 asthe	 time	 constant	 of	 the	 physical	 plant.	 The	 temperature
variables Tlow , Thigh and T 	 could	 be	 in	 any	 format,	 as	 long	 as	 the	 three	 formats
are	the	same.

Checkpoint	10.2:What	happens	if Tlow and Thigh are	too	close	together?		What

happens	if Tlow and Thigh 	are	too	far	apart?	

Observation:	Bang-bang	control	works	well	with	a	physical	plant	with	a	very
slow	response.

	

int32_t	Tlow,Thigh;					//	controller	set	points,	0.5	C
void	Timer0A_Handler(void){
int32_t	T=SE();								//	estimated	temperature,	0.5	C
		if(T	<	Tlow){
				TurnOn();}							//	too	cold	so	turn	on	heat
		else	if	(T	>	Thigh){
				TurnOff();								//	too	hot	so	turn	off	heat
		}																		//	leave	as	is	if	Tlow<T<Thigh
		TIMER0_ICR_R	=	0x01;//	acknowledge	timer0A	periodic	timer
}
Program	10.1.	Bang-bang	temperature	control	software.

An	 incremental	 control	 system	 uses	 an	 actuator	 with	 a	 finite	 number	 of	 discrete
output	 states.	 For	 example,	 the	 actuator	 might	 be	 a	 PWM	 output	 with	 249
possibilities	from	2,	3,	4,	…	249	(0	 to	100%).	 	 It	 is	a	closed-loop	control	system,
because	there	is	a	sensor	that	measures	the	state	variable.	Assume	when	the	actuator
increases	the	measurand	increases,	and	when	the	actuator	decreases,	 the	measurand
decreases.	There	is	a	desired	point	for	the	measurand.	The	incremental	controller	is
simple.	If	the	measurand	is	too	small,	the	actuator	is	increased,	and	if	the	measurand
is	 too	 large,	 the	 actuator	 is	 decreased.	 It	 is	 important	 to	 choose	 the	 rate	 to	 run	 the
controller	 properly.	 A	 good	 rule	 of	 thumb	 is	 to	 run	 the	 controller	 about	 10	 times
faster	 than	 the	 time	 constant	 of	 the	 plant.	The	 control	 system	 should	make	 sure	 the
actuator	signal	remains	in	the	appropriate	range.	E.g.,	you	do	not	want	to	increment
an	actuator	output	of	255	and	get	0!	The	incremental	controller	is	usually	slow,	but	it
has	good	accuracy	and	is	very	stable.

The	objective	of	this	incremental	control	system	is	to	control	the	speed,	X,	of	a	DC
motor	shown	in	Figure	10.15.	The	actuator	uses	PWM	to	apply	variable	power	to	the
motor.	A	tachometer	is	used	to	measure	speed,	X’.

Figure	10.15.	Flowchart	of	a	position	controller	implemented	using
incremental	control.

An	 incremental	 control	 algorithm	 simply	 adds	 or	 subtracts	 a	 constant	 from	 U
depending	 on	 the	 sign	 of	 the	 error.	 In	 other	 words,	 if	 X	 is	 too	 slow	 then	 U	 is
incremented	and	if	X	is	too	fast	then	U	is	decremented.	It	is	important	to	choose	the
proper	rate	at	which	the	incremental	control	software	is	executed.	If	it	is	executed	too
many	 times	 per	 second,	 then	 the	 actuator	 will	 saturate	 resulting	 in	 a	 Bang-Bang
system.	If	it	is	not	executed	often	enough	then	the	system	will	not	respond	quickly	to
changes	in	the	physical	plant	or	changes	in	X*.	In	this	incremental	controller	we	add
or	 subtract	 "1"	 from	 the	 actuator,	 but	 a	 value	 larger	 than	 "1"	would	 have	 a	 faster
response	at	the	expense	of	introducing	oscillations.

Common	error:	An	error	will	occur	if	the	software	does	not	check	for	overflow
and	underflow	after	U	is	changed.	

Observation:	If	the	incremental	control	algorithm	is	executed	too	frequently,	then
the	resulting	system	behaves	like	a	simple	bang-bang	controller.

Observation:	Many	control	systems	operate	well	when	the	control	equations	are
executed	about	10	times	faster	than	the	step	response	time	of	the	physical	plant.

Assume	 the	 function SE() 	 returns	 measured	 speed.	 Program	 10.2	 uses	 a	 periodic
interrupt	 so	 that	 the	 incremental	 controller	 runs	 in	 the	 background.	 The	 interrupt
period	is	selected	to	be	about	10	times	smaller	than	the	time	constant	of	the	physical
plant.	The	optimal	controller	rate	depends	on	the	significance	of	the	±1	value	added
to	U.	 Experimental	 testing	 may	 be	 required	 to	 select	 an	 optimal	 controller	 rate,
trading	 off	 response	 time	 for	 stability.	 Even	 though	 the	 position
variables X and Xstarmay	be	unsigned,	the	error	calculationE 	will	be	signed.

int32_t	X,Xstar,E;								//	speed,	fixed-point	in	the	same	format
int32_t	U;
void	Timer0A_Handler(void){
		X	=	SE();												//	estimated	speed
		E	=	Xstar-X;									//	error
		if(E	<	-10)					U--;	//	decrease	if	too	fast

		else	if(E	>	10)	U++;	//	increase	if	too	slow
																								//	leave	as	is	if	close	enough
		if(U<2)		U=2;							//	underflow	(minimum	PWM)
		if(U>249)	U=249;					//	overflow	(maximum	PWM)
		PWM0A_Duty(U);								//	output	to	actuator,	Section	2.8
		TIMER0_ICR_R	=	0x01;		//	acknowledge	timer0A	periodic	timer
}
Program	10.2.	Incremental	control	software	for	a	DC	motor.

Checkpoint	10.3:In	what	ways	would	the	controller	behave	differently	if -
10 and +10 were	to	be	changed	to 0 ?	

Checkpoint	10.4:	What	happens	if	the	interrupt	period	is	too	small	(i.e.,	executes
too	frequently)?	

Observation:	It	is	a	good	debugging	strategy	to	observe	the	assembly	listing
generated	by	the	compiler	when	performing	calculations	on	variables	of	mixed
types	(signed/unsigned,	char/short).

Observation:	Incremental	control	will	work	moderately	well	(accurate	and
stable)	for	an	extremely	wide	range	of	applications.	Its	only	short-coming	is	that
the	controller	response	time	can	be	quite	slow.

10.6.	PID	Controllers

10.6.1.	General	Approach	to	a	PID	Controller
The	simple	controllers	presented	in	the	last	section	are	easy	to	implement,	but	will
have	either	large	errors	or	very	slow	response	times.	In	order	to	make	a	faster	and
more	 accurate	 system,	 we	 can	 use	 linear	 control	 theory	 to	 develop	 the	 digital
controller.	 There	 are	 three	 components	 of	 a	 proportional	 integral	 derivative	 PID
controller.

The	error,	E(t),	is	defined	as	the	present	set-point,	X*(t),	minus	the	measured	value	of
the	controlled	variable,	X’(t).	See	Figure	10.16.

	 E(t)=X*(t)-	X’(t)
	

Figure	10.16.	Block	diagram	of	a	linear	control	system	in	the	frequency
domain.

The	 PID	 controller	 calculates	 its	 output	 by	 summing	 three	 terms.	 The	 first	 term	 is
proportional	to	the	error.	The	second	is	proportional	to	the	integral	of	the	error	over
time,	and	the	third	is	proportional	to	the	rate	of	change	(first	derivative)	of	the	error
term.	The	values	of	Kp,	Ki	and	Kd	are	design	parameters	and	must	be	properly	chosen
in	order	for	the	control	system	to	operate	properly.	The	proportional	term	of	the	PID
equation	contributes	an	amount	 to	 the	control	output	 that	 is	directly	proportional	 to
the	 current	 process	 error.	 The	 gain	 term	Kp	 adjusts	 exactly	 how	much	 the	 control
output	response	should	change	in	response	to	a	given	error	level.	The	larger	the	value
of	Kp,	 the	 greater	 the	 system	 reaction	 to	 differences	 between	 the	 set-point	 and	 the
actual	 state	 variable.	 However,	 if	 Kp	 is	 too	 large,	 the	 response	 may	 exhibit	 an
undesirable	degree	of	oscillation	or	even	become	unstable.	On	the	other	hand,	if	Kp	is
too	 small,	 the	 system	 will	 be	 slow	 or	 unresponsive.	 An	 inherent	 disadvantage	 of
proportional-only	control	is	its	inability	to	eliminate	the	steady	state	errors	(offsets)

that	occur	after	a	set-point	change	or	a	sustained	load	disturbance.

The	integral	term	converts	the	first	order	proportional	controller	into	a	second	order
system	 capable	 of	 tracking	 process	 disturbances.	 It	 adds	 to	 the	 controller	 output	 a
factor	 that	 takes	 corrective	 action	 for	 any	 changes	 in	 the	 load	 level	 of	 the	 system.
This	integral	term	is	scaled	to	the	sum	of	all	previous	process	errors	in	the	system.
As	long	as	there	is	a	process	error,	the	integral	term	will	add	more	amplitude	to	the
controller	output	until	the	sum	of	all	previous	errors	is	zero.	Theoretically,	as	long	as
the	 sign	 of	 Ki	 is	 correct,	 any	 value	 of	 Ki	 will	 eliminate	 offset	 errors.	 But,	 for
extremely	small	values	of	Ki,	the	controlled	variables	will	return	to	the	set-point	very
slowly	after	a	load	upset	or	set-point	change	occurs.	On	the	other	hand,	if	Ki	 is	 too
large,	it	tends	to	produce	oscillatory	response	of	the	controlled	process	and	reduces
system	stability.	The	undesirable	effects	of	too	much	integral	action	can	be	avoided
by	proper	 tuning	 (adjusting)	 the	 controller	 or	 by	 including	derivative	 action	which
tends	to	counteract	the	destabilizing	effects.

The	derivative	action	of	a	PID	controller	adds	a	term	to	the	controller	output	scaled
to	the	slope	(rate	of	change)	of	the	error	term.	The	derivative	term	“anticipates”	the
error,	 providing	 a	 greater	 control	 response	when	 the	 error	 term	 is	 changing	 in	 the
wrong	 direction	 and	 a	 dampening	 response	when	 the	 error	 term	 is	 changing	 in	 the
correct	direction.	The	derivative	term	tends	to	improve	the	dynamic	response	of	the
controlled	 variable	 by	 decreasing	 the	 process	 setting	 time,	 the	 time	 it	 takes	 the
process	 to	 reach	 steady	 state.	But	 if	 the	process	measurement	 is	noisy,	 that	 is,	 if	 it
contains	 high-frequency	 random	 fluctuations,	 then	 the	 derivative	 of	 the	 measured
(controlled)	variable	will	change	wildly,	and	derivative	action	will	amplify	the	noise
unless	the	measurement	is	filtered.

Checkpoint	10.5:	What	happens	in	a	PID	controller	if	the	sign	of	Ki	is	incorrect?	

We	can	also	use	 just	 some	of	 the	 terms.	For	example	a	proportional/integrator	 (PI)
controller	drops	the	derivative	term.	We	will	analyze	the	digital	control	system	in	the
frequency	domain.	Let	X(s)	be	the	Laplace	transform	of	the	state	variable	x(t).		Let	X*
(s)	 be	 the	 Laplace	 transform	 of	 the	 desired	 state	 variable	 x*(t).	 Let	 E(s)	 be	 the
Laplace	transform	of	the	error

E(s)	=	X*(s)	-	X(s)

Let	G(s)	 be	 the	 transfer	 equation	 of	 the	 PID	 linear	 controller.	 PID	 controllers	 are
unique	in	this	aspect.	In	other	words,	we	cannot	write	a	transfer	equation	for	a	bang-
bang,	incremental	or	fuzzy	logic	controller.

Let	H(s)	be	the	transfer	equation	of	the	physical	plant.	If	we	assume	the	physical	plant
(e.g.,	 a	 DC	 motor)	 has	 a	 simple	 single	 pole	 behavior,	 then	 we	 can	 specify	 its
response	in	the	frequency	domain	with	two	parameters.		m	is	the	DC	gain	and	t	is	its
time	constant.	The	transfer	function	of	this	simple	motor	is

H(s)	=	m/(1+ts)

The	overall	gain	of	the	control	system	is

	
Theoretically	we	can	choose	controller	constants,	Kp	Ki	and	Kd,	to	create	the	desired
controller	response.	Unfortunately	it	can	be	difficult	to	estimate	m	and	t.	If	a	load	is
applied	to	the	motor,	then	m	and	t	will	change.

To	simplify	the	PID	controller	implementation,	we	break	the	controller	equation	into
separate	proportion,	integral	and	derivative	terms.	I.e.,	let

U(t)	=	P(t)	+	I(t)	+	D(t)

where	U(t)is	the	actuator	output,	and 	P(t),	I(t)	and	D(t)	are	the	proportional,	integral
and	 derivative	 components	 respectively.	 The	 proportional	 term	makes	 the	 actuator
output	linearly	related	to	the	error.	Using	a	proportional	term	creates	a	control	system
that	 applies	 more	 energy	 to	 the	 plant	 when	 the	 error	 is	 large.	 To	 implement	 the
proportional	term,	we	simply	convert	it	to	discrete	time.

where	the	index	“n”	refers	to	the	discrete	time	input	of	E(n)	and	output	of	P(n).

Observation:	In	order	to	develop	digital	signal	processing	equations,	it	is
imperative	that	the	control	system	be	executed	on	a	regular	and	periodic	rate.

Common	error:		If	the	sampling	rate	varies,	then	controller	errors	will	occur.	

The	integral	term	makes	the	actuator	output	related	to	the	integral	of	the	error.	Using
an	integral	term	often	will	improve	the	steady	state	error	of	the	control	system.	If	a
small	error	accumulates	for	a	long	time,	this	term	can	get	large.	Some	control	systems
put	upper	and	lower	bounds	on	this	term,	called	anti-reset-windup,	to	prevent	it	from
dominating	the	other	terms.	The	implementation	of	the	integral	term	requires	the	use
of	a	discrete	 integral	or	 sum.	 If	 I(n)	 is	 the	 current	 control	 output,	 and	 I(n-1)	 is	 the
previous	calculation,	the	integral	term	is	simply

where	∆t	is	the	sampling	rate	of	E(n).

The	derivative	term	makes	the	actuator	output	related	to	the	derivative	of	the	error.
This	 term	 is	 usually	 combined	with	 either	 the	 proportional	 and/or	 integral	 term	 to
improve	 the	 transient	 response	 of	 the	 control	 system.	The	 proper	 value	 of	Kd	 will
provide	 for	 a	 quick	 response	 to	 changes	 in	 either	 the	 set	 point	 or	 loads	 on	 the
physical	plant.	An	incorrect	value	may	create	an	overdamped	(very	slow	response)
or	an	underdamped	(unstable	oscillations)	response.	There	are	a	couple	of	ways	to
implement	the	discrete	time	derivative.	The	simple	approach	is

In	practice,	this	first	order	equation	is	quite	susceptible	to	noise.	Figure	10.17	shows
a	sequence	of	E(n)	with	some	added	noise.	Notice	 that	huge	errors	occur	when	 the
above	equation	is	used	to	calculate	derivative.

Figure	10.17.	Illustration	of	the	effect	noise	plays	on	the	calculation	of
discrete	derivative.

In	most	practical	 control	 systems,	 the	derivative	 is	 calculated	using	 the	 average	of
two	derivatives	calculated	across	different	time	spans.	For	example

that	simplifies	to

Linear	 regression	 through	multiple	points	can	yield	 the	slope	and	yet	be	 immune	 to
noise.

Checkpoint	10.6:	How	is	the	continuous	integral	related	to	the	discrete	integral?	

Checkpoint	10.7:	How	is	the	continuous	derivative	related	to	the	discrete
derivative?	

10.6.2.	Design	Process	for	a	PID	Controller
The	first	design	step	is the	analysis	phase,	where	we	determine	specifications	such	as
range,	accuracy,	stability,	and	response	time	for	our	proposed	control	system.	A	data
acquisition	 system	 will	 be	 used	 to	 estimate	 the	 state	 variables.	 Thus,	 its	 range,
accuracy	 and	 response	 time	 must	 be	 better	 than	 the	 desired	 specifications	 of	 the
control	system.	We	can	use	time-based	techniques	using	input	capture,	or	develop	an
ADC-based	state	estimator.	In	addition,	we	need	to	design	an	actuator	to	manipulate
the	 state	 variables.	 It	 too	 must	 have	 a	 range	 and	 response	 time	 better	 than	 the
controller	specifications.	The	actuator	resolution	is	defined	as	the	smallest	reliable
change	 in	output.	For	example,	a	100	Hz	PWM	output	generated	by	a	1	µsec	clock
has	 10,000	 different	 outputs.	 For	 this	 actuator,	 the	 actuator	 resolution	 is
MaxPower/10000.	 We	 wish	 to	 relate	 the	 actuator	 performance	 to	 the	 overall
objective	 of	 controller	 accuracy.	 Thus,	 we	 need	 to	 map	 the	 effect	 on	 the	 state

variable	caused	a	change	in	actuator	output.	This	change	in	state	variable	should	be
less	than	or	equal	to	the	desired	controller	accuracy.

After	the	state	estimator	and	actuator	are	implemented,	the	controller	settings	(KP,	KI
and	KD)	must	be	adjusted	so	that	the	system	performance	is	satisfactory.	This	activity
is	referred	to	as	controller	tuning	or	field	tuning.	If	you	perform	controller	tuning	by
guessing	the	initial	setting	then	adjusting	them	by	trial	and	error,	it	can	be	tedious	and
time	 consuming.	 Thus,	 it	 is	 desirable	 to	 have	 good	 initial	 estimates	 of	 controller
settings.	A	good	first	setting	may	be	available	from	experience	with	similar	control
loops.	Alternatively,	 initial	estimates	of	controller	settings	can	be	derived	from	the
transient	 response	 of	 the	 physical	 plant.	 A	 simple	 open-loop	 method,	 called	 the
process	 reaction	 curve	 approach,	 was	 first	 proposed	 by	 Ziegler/Nichols	 and
Cohen/Coon	 in	 1953.	 In	 this	 discussion,	 the	 term	 “process”	 as	 defined	 by
Ziegler/Nichols	means	the	same	thing	as	the	“physical	plant”	described	earlier	in	this
chapter.	This	open-loop	method	requires	only	that	a	single	step	input	be	imposed	on
the	process.	The	process	reaction	method	is	based	on	a	single	experimental	test	that
is	made	with	 the	 controller	 in	 the	manual	mode.	 A	 small	 step	 change,	ΔU,	 in	 the
controller	 output	 is	 introduced	 and	 the	measured	 process	 response	 is	 recorded,	 as
shown	in	Figure	10.18.	To	obtain	parameters	of	the	process,	a	tangent	is	drawn	to	the
process	 reaction	curve	at	 its	point	of	maximum	slope	 (at	 the	 inflection	point).	This
slope	is	R,	which	is	called	the	process	reaction	rate.	The	intersection	of	this	tangent
line	with	the	original	base	line	gives	an	indication	of	L,	the	process	lag.		L	is	really	a
measure	of	equivalent	dead	time	for	the	process.		If	the	tangent	drawn	at	the	inflection
point	is	extrapolated	to	a	vertical	axis	drawn	at	the	time	when	the	step	was	imposed,
the	amount	by	which	this	value	is	below	the	horizontal	base	line	will	be	represented
by	the	product	L*R.	Δ T 	is	the	time	step	for	the	digital	controller.	It	is	recommended
to	run	P	and	PI	controllers	with	Δ T	=	0.1L ,	and	a	PID	controller	at	a	rate	20	times
faster	 (Δ T	=	0.05L .)	Using	 these	 parameters,	 Ziegler	 and	Nichol	 proposed	 initial
controller	settings	as

Proportional	Controller
Kp= Δ U/(L*R)

	
Proportional-Integral	Controller
Kp	=	0.9 Δ U/(L*R)
Ki	=	Kp	/(3.33L)

	
Proportional-Integral-Derivative	Controller
Kp	=	1.2 Δ U/(L*R)
Ki	=	0.5	Kp	/L
Kd	=	0.5	Kp	L

Figure	10.18.		A	process	reaction	curve	used	to	determine	controller
settings.

	
Checkpoint	10.8:	Are	the	Ziegler/Nichol	equations	consistent	from	a	dimensional
analysis	perspective?		In	other	words,	are	the	units	correct?	

The	response	time	 is	 the	delay	 after	X*	 is	 changed	 for	 the	 system	 to	 reach	 a	new
constant	state.	Steady	state	controller	accuracy	is	defined	as	the	average	difference
between	X*	and	X’.	Overshoot	is	defined	as	the	maximum	positive	error	that	occurs
when	X*	 is	 increased.	 Similarly,	undershoot	 is	 defined	 as	 the	maximum	 negative
error	that	occurs	when	X*	is	decreased.		During	the	testing	phase,	it	is	appropriate	to
add	minimally	 intrusive	debugging	software	 that	specifically	measures	performance
parameters,	such	as	response	time,	accuracy,	overshoot,	and	undershoot.	In	addition,
we	can	add	instruments	 that	allow	us	 to	observe	 the	 individual	P(n),	 I(n)	and	D(n)
components	of	the	PID	equation	and	their	relation	to	controller	error	E(n).

Once	the	initial	parameters	are	selected,	a	simple	empirical	method	can	be	used	to
fine-tune	the	controller.	This	empirical	approach	starts	with	proportional	term	(Kp).
As	 the	 proportional	 term	 is	 adjusted	 up	 or	 down,	 evaluate	 the	 quickness	 and
smoothness	of	 the	controller	 response	 to	changes	 in	 set-point	and	 to	changes	 in	 the
load.		Kp	is	too	big	if	the	actuator	saturates	both	at	the	maximum	and	minimum	after
X*	 is	 changed.	The	next	 step	 is	 to	 adjust	 the	 integral	 term	 (Ki)	 a	 little	 at	 a	 time	 to
improve	the	steady	state	controller	accuracy	without	adversely	affecting	the	response
time.	Don’t	change	both	Kp	and	Ki	at	once.	Rather,	you	should	vary	them	one	at	a	time.
If	 the	 response	 time,	 overshoot,	 undershoot	 and	 accuracy	 are	 within	 acceptable
limits,	then	a	PI	controller	is	adequate.	On	the	other	hand,	if	accuracy	and	response
are	OK	 but	 overshoot	 and	 undershoot	 are	 unacceptable,	 adjust	 the	 derivative	 term
(Kd)	to	reduce	the	overshoots	and	undershoots.	

We	will	design	a	proportional-integral	motor	control	system.	The	overall	objective	is
to	control	the	speed	of	an	object	with	an	accuracy	of	0.1	RPM	and	a	range	of	0	to	100

RPM	as	shown	in	Figure	10.1.	Let	X*	be	the	desired	state	variable.		In	this	example,
X*	will	be	a	decimal	fixed-point	number	and	is	set	by	the	main	program.	Let	X’	be
the	estimated	state	variable	that	comes	from	the	state	estimator,	which	encodes	the
current	 position	 as	 the	 period	of	 a	 squarewave,	 interfaced	 to	an	 input	 capture	 pin.
The	 period	 output	 of	 the	 sensor	 is	 linearly	 related	 to	 the	 position	X	 with	 a	 fixed
offset.	The	accuracy	of	the	state	estimator	needs	to	match	the	0.1	RPM	specification
of	the	controller.	If	p	is	the	measured	period	in	0.1	ms	and	X’	is	the	estimated	speed
in	0.1	RPM,	the	state	estimator	measures	the	period	and	calculates	X’.

X’	=	p-100
	

Let	U	be	the	actuator	control	variable	(100≤U≤19900).	This	system	uses	pulse	width
modulation	with	a	100	Hz	squarewave	 that	applies	energy	 to	 the	physical	plant	as
shown	in	Figure	10.19.	U	will	be	the	number	of	clock	cycles	(out	of	20000)	that	the
output	 is	 high.	There	 is	 an	 external	 friction	 force	 slowing	down	on	 the	motor.	The
PWM	output	from	the	computer	creates	a	force	causing	the	motor	to	spin	faster.

Figure	10.19.	Pulse	width	modulated	actuator	signals.

The	process	reaction	curve	shown	previously	in	Figure	10.18	was	measured	for	this
system	after	 the	actuator	was	changed	from	250	 to	2000,	 thus	ΔU	 is	1750	(units	of
clock	cycles).	From	Figure	10.18,	the	lag	L	is	4.0	sec	and	the	process	reaction	rate	R
is	7.5RPM/sec.	The	controller	rate	is	selected	to	be	about	10	times	faster	than	the	lag
L,	so	Δ T=	0.4	sec .	In	this	way,	the	controller	runs	at	a	rate	faster	than	the	physical
plant.	 	 We	 calculate	 the	 initial	 PI	 controller	 settings	 using	 the	 Ziegler/Nichol
equations.

Kp=	0.9 Δ U/(L•R)	=	0.9*1750/(4.0*7.5)	=	52.5	cycles/RPM
Ki	=	Kp	/(3.33L)	=	52.5/(3.33*4.0)	=	3.94144	cycles/RPM/sec

	
We	 will	 execute	 the	 PI	 control	 equation	 once	 every	 0.4	 second.	 X*	 and	 X’	 are
decimal	 fixed-point	 numbers	 with	 a	 resolution	 of	 0.1	 RPM.	 The	 constant	 52.5	 is
expressed	 as	 105/2.	 The	 extra	 divide	 by	 10	 handles	 the	 decimal	 fixed-point
representation	of	X*	and	X’.

P(n)	=	Kp	•(X*-X’)/10	=	105•(X*-X’)/20

We	will	 also	 execute	 the	 integral	 control	 equation	 once	 every	 0.4	 second.	 Binary
fixed-point	is	used	to	approximate	1.57658	as	101/64.

I(n)	=	I(n-1)	+	Ki	•(X*-X’)•	Δ T /10
								=	I(n-1)	+	3.94144	•(X*-X’)•0.4/10		=	I(n-1)	+	101•(X*-X’)/640

	

Program	10.3	shows	an	interrupt	service	handler,	which	runs	at10	kHz.	The	handler
will	 establish	 the	 current Time 	 in	 0.1	ms.	After	 4000	 interrupts	 (0.4	 second),	 the
control	algorithm	is	implemented.

uint32_t	Time;	//	Time	in	0.1	msec
int32_t	X;													//	Estimated	speed	in	0.1	RPM,	0	to	1000
int32_t	Xstar;									//	Desired	speed	in	0.1	RPM,	0	to	1000
int32_t	E;													//	Speed	error	in	0.1	RPM,	-1000	to	+1000
int32_t	U,I,P;									//	Actuator	duty	cycle,	100	to	19900	cycles
uint32_t	Cnt;		//	incremented	every	0.1	msec
uint32_t	Told;	//	used	to	measure	period
void	Timer0A_Handler(void){
		Time++;												//	used	to	measure	period
		if((Cnt++)==4000){	//	every	0.4	sec
				Cnt	=	0;									//	0<X<100,	0<Xstar<100,	100<U<19900
				E	=	Xstar-X;	
				P	=	(105*E)/20;
				I	=	I+(101*E)/640;
				if(I	<	-500)	I=-500;		//	anti-reset	windup
				if(I	>	4000)	I=4000;
				U	=	P+I;													//	PI	controller	has	two	parts
				if(U	<	100)	U=100;			//	Constrain	actuator	output
				if(U>19900)	U=19900;
				PWM0A_Duty(U);							//	output	to	actuator,	Section	2.8
		}
		TIMER0_ICR_R	=	0x01;			//	acknowledge	timer0A	periodic	timer
}
Program	10.3.	PI	control	software.

Checkpoint	10.9:	What	is	the	output	U	of	the	controller	if	the	speed	X	is	much
greater	than	the	set-point	X*?		In	this	situation,	what	does	the	object	do?

Observation:	PID	control	will	work	extremely	well	(fast,	accurate	and	stable)	if
the	physical	plant	can	be	described	with	a	set	of	linear	differential	equations.

10.7.	Fuzzy	Logic	Control
There	are	a	number	of	reasons	to	consider	fuzzy	logic	approach	to	control.	It	is	much
simpler	 than	PID	 systems.	 It	will	 require	 less	memory	 and	 execute	 faster.	 In	 other
words,	 an	 8-bit	 fuzzy	 system	 may	 perform	 as	 well	 (same	 steady	 state	 error	 and
response	time)	as	a	16-bit	PID	system.	When	complete	knowledge	about	the	physical
plant	is	known,	then	a	good	PID	controller	can	be	developed.	Since	the	fuzzy	logic
control	is	more	robust	(still	works	even	if	the	parameter	constants	are	not	optimal),
then	the	fuzzy	logic	approach	can	be	used	when	complete	knowledge	about	the	plant
is	 not	 known	 or	 can	 change	 dynamically.	 Choosing	 the	 proper	 PID	 parameters
requires	 knowledge	 about	 the	 plant.	 The	 fuzzy	 logic	 approach	 is	 more	 intuitive,
following	more	closely	to	the	way	a	“human”	would	control	the	system.	It	is	easy	to
modify	an	existing	fuzzy	control	system	into	a	new	problem.	The	framework	allows
rapid	prototyping.

Fuzzy	logic	was	conceived	in	the	mid-1960s	by	Lotfi	Zadeh	while	at	the	University
of	 California	 at	 Berkeley.	 However,	 the	 first	 commercial	 application	 didn’t	 come
until	1987,	when	the	Matsushita	Industrial	Electric	used	it	to	control	the	temperature
in	a	shower	head.	Named	after	 the	nineteenth-century	mathematician	George	Boole,
Boolean	 logic	 is	 an	 algebra	 where	 values	 are	 either	 true	 or	 false.	 This	 algebra
includes	operations	of	AND	OR	and	NOT.	Fuzzy	logic	is	also	an	algebra,	but	where
conditions	may	exist	 in	 the	continuum	between	 true	and	false.	While	Boolean	 logic
defines	 two	states,	8-bit	 fuzzy	 logic	consists	of	256	states	all	 the	way	from	“not	at
all”	(0)	to	“definitely	true”	(255).	“128”	means	half	way	between	true	and	false.	The
fuzzy	 logic	 algebra	 also	 includes	 the	 operations	 of	 AND	 OR	 and	 NOT.	 A	 fuzzy
membership	 set,	 a	 fuzzy	 variable,	 and	 a	 fuzzy	 set	 all	 refer	 to	 the	 same	 entity,
which	 is	 a	 software	 variable	 describing	 the	 level	 of	 correctness	 for	 a	 condition
within	fuzzy	logic.	If	we	have	a	fuzzy	membership	set	for	the	condition	“hungry”,	then
as	 the	value	of	hungry	moves	 from	0	 to	255,	 the	condition	“hungry”	becomes	more
and	more	true.

	0.....32.....64.....96.....128.....160.....192.....224.....255
							Not	at	all					...					a	little	bit				...				somewhat						...						mostly				...				pretty	much			...				
definitely
	

The	 design	 process	 for	 a	 fuzzy	 logic	 controller	 solves	 the	 following	 eight
components.	These	components	are	 listed	 in	 the	order	we	would	draw	a	data	 flow
graph,	starting	with	the	state	variables,	progressing	through	the	controller,	and	ending
with	the	actuator	output.

•	The	Physical	plant	has	real	state	variables.
•	 The	 Data	 Acquisition	 System	 monitors	 these	 signals	 creating	 the	 estimated	 state

variables.

•	The	Preprocessor	may	calculate	relevant	parameters	called	crisp	inputs.
•	Fuzzification	will	convert	crisp	inputs	into	input	fuzzy	membership	sets.
•	The	Fuzzy	Logic	is	a	set	of	rules	that	calculate	output	fuzzy	membership	sets.
•	Defuzzification	will	convert	output	sets	into	crisp	outputs.
•	The	Postprocessor	modify	crisp	outputs	into	a	more	convenient	format.
•	The	Actuator	System	affects	the	Physical	plant	based	on	these	output.

We	will	work	through	the	concepts	of	fuzzy	logic	by	considering	examples	of	how	we
as	 humans	 control	 things	 like	 driving	 a	 car	 at	 a	 constant	 speed.	 During	 the	 initial
stages	of	the	design,	we	study	the	physical	plant	and	decide	which	state	variables	to
consider.	For	example,	if	we	wish	to	control	speed,	then	speed	is	obviously	a	state
variable,	but	it	might	be	also	useful	to	know	other	forces	acting	on	the	object	such	as
gravity	(e.g.,	going	up	and	down	hills),	wind	speed	and	friction	(e.g.,	rain	and	snow
on	 the	 roadway).	 The	 purpose	 of	 the	 data	 acquisition	 system	 is	 to	 accurately
measure	the	state	variables.	It	is	at	this	stage	that	the	system	converts	physical	signals
into	binary	numbers	 to	be	processed	by	 the	 software	controller.	We	have	 seen	 two
basic	 approaches	 in	 this	 book	 for	 this	 conversion:	 the	 measurement	 of
period/frequency	 using	 input	 capture	 and	 the	 analog	 to	 digital	 conversion	 using	 an
ADC.	The	preprocessor	calculates	crisp	inputs,	which	are	variables	describing	the
input	 parameters	 in	 our	 software	 having	 units	 (like	miles/hr).	 For	 example,	 if	 we
measured	 speed,	 then	 some	 crisp	 inputs	 we	 might	 calculate	 would	 include	 speed
error,	 and	 acceleration.	 Just	 like	 the	 PID	 controller,	 the	 accuracy	 of	 the	 data
acquisition	system	must	be	better	than	the	desired	accuracy	of	the	control	system	as	a
whole.

The	 next	 stage	 of	 the	 design	 is	 to	 consider	 the	 actuator	 and	 postprocessor.	 It	 is
critical	to	be	able	to	induce	forces	on	the	physical	plant	in	a	precise	and	fast	manner.
The	 step	 response	 of	 the	 actuator	 itself	 (time	 from	 software	 command	 to	 the
application	of	 force	on	 the	plant)	must	be	 faster	 than	 the	step	 response	of	 the	plant
(time	from	the	application	of	force	to	the	change	in	state	variable.)	Consider	the	case
where	we	wish	to	control	the	temperature	of	a	pot	of	water	using	a	stove.	The	speed
of	 the	 actuator	 is	 the	 time	 between	 turning	 the	 stove	 on	 and	 the	 time	when	 heat	 is
applied	to	the	pot.	The	actuator	on	a	gas	stove	is	much	faster	than	the	actuator	on	an
electric	 stove.	The	 resolution	of	 an	 actuator	 is	 the	 smallest	 change	 in	output	 it	 can
reliably	 generate.	 Just	 like	 the	 PID	 controller,	 the	 resolution	 of	 the	 actuator
(converted	 into	 equivalent	 units	 on	 the	 input)	 must	 be	 smaller	 than	 the	 desired
accuracy	 of	 the	 control	 system	 as	 a	whole.	A	 crisp	 output	 is	 a	 software	 variable
describing	the	output	parameters	having	units	(like	watts,	Newtons,	dynes/cm2	etc.).
The	postprocessor	converts	the	crisp	output	into	a	form	that	can	be	directly	output	to
the	 actuator.	 	 The	 postprocessor	 can	 verify	 the	 output	 signals	 are	within	 the	 valid
range	 of	 the	 actuator.	 One	 of	 the	 advantages	 of	 fuzzy	 logic	 design	 is	 the	 usage	 of
human	intuition.	Think	carefully	about	how	you	control	the	actuator	(gas	pedal)	when
attempting	 to	 drive	 a	 car	 at	 a	 constant	 speed.	There	 is	 no	 parameter	 in	 your	 brain
specifying	 the	 exact	 position	 of	 the	 pedal	 (e.g.,	 50%	 pressed,	 65%	 pressed	 etc.),
unless	of	course	you	are	city	 taxicab	driver	(where	your	brain	allows	two	actuator
states:	full	gas	and	full	brake.)	Rather,	what	your	brain	creates	as	actuator	commands

are	statements	like	“press	the	pedal	little	harder”	and	“press	the	pedal	a	lot	softer.”	
So,	the	crisp	output	of	fuzzy	logic	controller	might	be	change	in	pedal	pressure	ΔU,
and	 the	 postprocessor	would	 calculate	U	 =	U+ΔU,	 then	 check	 to	make	 sure	U	 is
within	an	acceptable	range.

We	continue	the	design	of	a	fuzzy	logic	controller	by	analyzing	its	crisp	inputs.	As	a
design	step,	we	create	a	list	of	true/false	conditions	that	together	describe	the	current
state	 of	 the	 physical	 plant.	 In	 particular,	we	 define	 input	 fuzzy	membership	 sets,
which	 are	 fuzzy	 logic	 variables	 describing	 conditions	 related	 to	 the	 state	 of	 the
physical	plant.	These	fuzzy	variables	do	not	need	to	be	orthogonal.	In	other	words,	it
is	acceptable	to	have	variables	that	are	related	to	each	other.	When	designing	a	speed
controller,	we	could	define	multiple	fuzzy	variables	referring	 to	similar	conditions,
such	 asWayTooFast , Fast ,	 and LittleBitFast .	 Given	 the	 scenario	where	we	 are
driving	 too	 fast,	 there	 should	 be	 generous	 overlap	 in	 conditions,	 such	 that	 two	 or
even	 three	 fuzzy	 sets	 are	 simultaneously	 partially	 true.	 On	 the	 other	 hand,	 it	 is
important	 that	 the	entire	list	of	 input	membership	fuzzy	sets,	when	considered	as	an
ensemble,	form	a	complete	definition	of	the	status	of	the	physical	plant.	For	example,
if	 we	 are	 attempting	 to	 drive	 a	 car	 at	 a	 constant	 speed,
then SlowingUp , GoingSteady ,	 and SpeedingUp 	 might	 be	 input	 fuzzy	 variables
describing	the	car’s	acceleration.	Fuzzification	 is	 the	mathematical	step	converting
the	 crisp	 inputs	 into	 input	 fuzzy	 membership	 sets.	When	 implementing	 fuzzy	 logic
explicitly	with	C	code,	we	will	have	available	the	full	set	of	AND,	OR,	NOT	fuzzy
logic	operations.

The	heart	of	a	 fuzzy	 logic	controller	 is	 the	 fuzzy	 logic	 itself,	which	 is	 set	of	 logic
equations	that	calculate	fuzzy	outputs	as	a	function	of	fuzzy	inputs.	An	output	fuzzy
membership	 setis	 a	 fuzzy	 logic	 variable	 describing	 a	 condition	 related	 to	 the
actuator. QuickStop , SlowDown , JustRight ,MorePower ,	 andMaxPower 	 are
examples	 of	 output	 fuzzy	 variables	 that	 might	 be	 used	 to	 describe	 the	 action	 to
perform	on	the	gas	pedal.	Like	input	fuzzy	variables,	output	fuzzy	variables	exist	 in
the	 continuum	 from	 definitely	 false	 (0)	 to	 definitely	 true	 (1).	 Just	 like	 the	 input
specification,	 it	 is	 also	 important	 to	 create	 a	 list	 of	 output	membership	 fuzzy	 sets,
when	considered	as	an	ensemble,	form	a	complete	characterization	of	what	we	wish
to	be	able	to	do	with	the	actuator.	We	write	fuzzy	logic	equations	using	AND	and	OR
functions	in	a	way	similar	to	Boolean	logic.	The	fuzzy	logic	AND	is	calculated	as	the
minimum	 value	 of	 the	 two	 inputs,	 and	 the	 fuzzy	 logic	 OR	 is	 calculated	 as	 the
maximum	value	of	 the	 two	inputs.	The	design	of	 the	rules,	 like	 the	other	aspects	of
fuzzy	control,	follows	the	human	intuition.

	
SlowDown	=	WayTooFast	+	SpeedingUp*LittleBitFast

	
Checkpoint	10.10:IfWayTooFast is	50,	SpeedingUp is	40,	and LittleBitFast is
60,	then	what	would	be	the	calculated	value	for SlowDown ?

The	defuzzification	 stage	of	 the	controller	 converts	 the	output	 fuzzy	variables	 into

crisp	outputs.	Although	any	function	could	be	used,	an	effective	approach	is	to	use	a
weighted	 average.	Consider	 the	 case	where	 the	pedal	 pressure	U	 varies	 from	0	 to
100,	thus	the	crisp	output	ΔUcan	take	on	values	from	-100	to	+100.	We	think	about
what	crisp	output	we	want	if	justQuickStop 	were	to	be	true.	In	this	case,	we	wish
to	 make	 ΔUequal	 to	 -100.	 We	 then	 define	 crisp	 output	 values
for SlowDown , JustRight ,MorePower ,	andMaxPower 	as	-10,	0,	+10,	and	+100
respectfully.	We	can	combine	the	five	factors	using	a	weighted	average.

	
Because	 the	 fuzzy	 controller	 is	modular,	 we	 begin	 by	 testing	 each	 of	 the	modules
separately.	The	system-level	 testing	of	a	fuzzy	logic	controller	follows	a	procedure
similar	 to	 the	PID	controller	 tuning.	Debugging	 instruments	can	be	added	 to	 record
the	 crisp	 inputs,	 fuzzy	 inputs,	 fuzzy	 outputs,	 and	 crisp	 outputs	 during	 the	 real-time
operation	of	the	system.	Fuzzification	parameters	are	adjusted	so	that	the	status	of	the
plant	is	captured	in	the	set	of	values	contained	in	the	fuzzy	input	variables.	Next,	the
rules	are	adjusted	so	that	fuzzy	output	variables	properly	describe	what	we	want	to
do	with	the	actuator.	Lastly,	the	defuzzification	parameters	are	adjusted	so	the	proper
crisp	outputs	are	created.

Next	we	will	design	a	fuzzy	logic	motor	controller.	The	actuator	is	a	PWM	(Figure
10.2).	The	power	 to	 the	motor	 is	 controlled	by	varying	 the	8-bit	PWM	duty	cycle.
The	motor	speed	is	estimated	with	a	tachometer	connected	to	an	input	capture	pin.

	
Our	system	has:
•	two	control	inputs

S*	 the	desired	motor	speed	in	RPM
S’	 the	current	estimated	motor	speed	RPM

•	one	control	output
N the	digital	value	that	we	write	to	the	PWM

To	utilize	8-bit	math,	we	change	the	units	of	speed	to	1000/256=3.90625	RPM.
T*	=(256•S*)/1000 the	desired	motor	speed	in	3.9	RPM
T’	=(256•S’)/1000 the	current	estimated	motor	speed	3.9	RPM

For	example,	if	the	desired	speed	is	500	RPM,	then	T*	will	be	128.	Notice	that	the
estimated	speed,	T’,	is	measured	by	the	input	capture	pin.	In	other	words,	the	control
system	functions	(estimate	state	variables,	control	equation	calculations,	and	actuator
output)	 are	 performed	 on	 a	 regular	 and	 periodic	 basis,	 every	 ∆t	 time	 units.	 This
allows	signal	processing	techniques	to	the	used.	We	will	let	T’(n)	refer	to	the	current
measurement	and	T’(n-1)	refer	to	the	previous	measurement,	i.e.,	the	one	measured	∆t
time	ago.

In	the	fuzzy	logic	approach,	we	begin	by	considering	how	a	“human”	would	control
the	motor.	Assume	your	hand	were	on	a	 joystick	 (or	your	 foot	on	a	gas	pedal)	and
consider	how	you	would	adjust	the	joystick	to	maintain	a	constant	speed.	We	select

crisp	inputs	and	outputs	to	base	our	control	system	on.	It	is	logical	to	look	at	the	error
and	 the	change	 in	speed	when	developing	a	control	 system.	Our	 fuzzy	 logic	system
will	have	two	crisp	inputs

E	=	T*-T’	 the	error	in	motor	speed	in	3.9rpm
D	=	T’(n)-T’(n-1) the	change	in	motor	speed	in	3.9rpm/time

Notice	 that	 if	we	 perform	 the	 calculations	 of	D	 on	 periodic	 intervals,	 then	D	 will
represent	the	derivative	of	T’,	dT’/dt.	T*	and	T’	are	8-bit	unsigned	numbers,	so	 the
potential	range	of	E	varies	from	-255	to	+255.	Errors	beyond	±127	will	be	adjusted
to	the	extremes	+127	or	-128	without	loss	of	information.

int8_t	static	Subtract(uint8_t	N,	uint8_t	M){		
//	returns	N-M
uint32_t	N16,M16;
int32_t	Result16;
					N16	=	N;														//	Promote	N,M
					M16	=	M;
					Result16	=	N16-M16;			//	-255≤Result16≤+255
					if(Result16<-128)	Result16	=	-128;
					if(Result16>127)		Result16	=	127;
					return(Result16);}
Program	10.4.	Subtraction	with	overflow/underflow	checking.

These	are	the	global	definitions	of	the	input	signals	and	fuzzy	logic	crisp	input,

uint8_t	Ts;					//	Desired	Speed	in	3.9	rpm	units
uint8_t	T;						//	Current	Speed	in	3.9	rpm	units
uint8_t	Told;			//	Previous	Speed	in	3.9	rpm	units
int8_t	D;						//	Change	in	Speed	in	3.9	rpm/time	units
int8_t	E;							//	Error	in	Speed	in	3.9	rpm	units
Program	10.5.	Inputs	and	crisp	inputs.

Common	error:	Neglecting	overflow	and	underflow	can	cause	significant	errors.	

The	need	for	the	special Subtract 	function	can	be	demonstrated	with	the	following
example:

					E	=	Ts-T;		//	if	Ts=200	and	T=50	then	E	will	be	-106!!
	

This	function	can	be	used	to	calculate	both	E	and	D,

void	CrispInput(void){
					E				=	Subtract(Ts,T);
					D				=	Subtract(T,Told);
					Told	=	T;}					//	Set	up	Told	for	next	time
Program	10.6.	Calculation	of	crisp	inputs.

Now,	 if Ts=200 and T=50 thenE 	 will	 be	 +127.	 To	 control	 the	 actuator,	we	 could
simply	choose	a	new	PWM	value	N	as	the	crisp	output.	Instead,	we	will	select,	∆N
that	is	the	change	in	N,	rather	than	N	 itself	because	it	better	mimics	how	a	“human”
would	 control	 it.	 Again,	 think	 about	 how	 you	 control	 the	 speed	 of	 your	 car	 when
driving.	You	do	not	adjust	the	gas	pedal	to	a	certain	position,	but	rather	make	small
or	large	changes	to	its	position	in	order	to	speed	up	or	slow	down.	Similarly,	when
controlling	 the	 temperature	 of	 the	water	 in	 the	 shower,	 you	do	 not	 set	 the	 hot/cold
controls	to	certain	absolute	positions.	Again	you	make	differential	changes	to	affect
the	 “actuator”	 in	 this	 control	 system.	 	Our	 fuzzy	 logic	 system	will	 have	 one	 crisp
output:

∆N change	in	output,	N=N+∆N	in	PWM	units
	

Next	we	 introduce	 fuzzy	membership	 sets	 that	 define	 the	 current	 state	 of	 the	 crisp
inputs	and	outputs.	Fuzzy	membership	sets	are	variables	that	have	true/false	values.
The	value	of	a	 fuzzy	membership	set	 ranges	from	definitely	 true	(255)	 to	definitely
false	(0).	For	example,	if	a	fuzzy	membership	set	has	a	value	of	128,	you	are	stating
the	 condition	 is	 half	 way	 between	 true	 and	 false.	 	 For	 each	membership	 set,	 it	 is
important	 to	 assign	 a	 meaning	 or	 significance	 to	 it.	 The	 calculation	 of	 the	 input
membership	 sets	 is	 called	Fuzzification.	 For	 this	 simple	 fuzzy	 controller,	we	will
define	6	membership	sets	for	the	crisp	inputs:

Slow True	if	the	motor	is	spinning	too	slow
OK True	if	the	motor	is	spinning	at	the	proper	speed
Fast True	if	the	motor	is	spinning	too	fast
Up True	if	the	motor	speed	is	getting	larger
Constant True	if	the	motor	speed	is	remaining	the	same
Down True	if	the	motor	speed	is	getting	smaller.

	
We	will	define	3	membership	sets	for	the	crisp	output:

Decrease True	if	the	motor	speed	should	be	decreased
Same True	if	the	motor	speed	should	remain	the	same
Increase True	if	the	motor	speed	should	be	increased

	
The	 fuzzy	 membership	 sets	 are	 usually	 defined	 graphically,	 but	 software	 must	 be
written	 to	 actually	 calculate	 each.	 In	 this	 implementation,	 we	 will	 define	 three
adjustable	 thresholds,	 TE,	 TD	 and	 TN.	 These	 are	 software	 constants	 and	 provide
some	fine	tuning	to	the	control	system.	We	will	set	each	threshold	to	20.	If	you	build
one	of	these	fuzzy	systems,	try	varying	one	threshold	at	a	time	and	observe	the	system
behavior	(steady	state	controller	error	and	transient	response.)	If	 the	error,	E,	 is	-5
(3.9rpm	units),	the	fuzzy	logic	will	say	that	Fast	is	64	(25%	true),	OK	 is	192	(75%
true),	 and	Slow	 is	0	 (definitely	 false.)	 If	 the	error,	E,	 is	+21	 (in	3.9rpm	units),	 the
fuzzy	logic	will	say	that	Fast	 is	0	 (definitely	 false),	OK	 is	0	 (definitely	 false),	and
Slow	is	255	(definitely	true.)		TE	is	defined	to	be	the	error	(e.g.,	20	in	3.9	rpm	units
is	 78	 rpm)	 above	 which	 we	 will	 definitely	 consider	 the	 speed	 to	 be	 too	 fast.

Similarly,	if	the	error	is	less	than	-TE,	then	the	speed	is	definitely	too	slow.

Figure	10.20.	Fuzzification	of	the	error	input.

In	 this	 fuzzy	 system,	 the	 input	 membership	 sets	 are	 continuous	 piece-wise	 linear
functions.	Also,	for	each	crisp	input	value,	Fast,	OK,	Slow	sum	to	255.	In	general,	it
is	possible	 for	 the	 fuzzy	membership	sets	 to	be	nonlinear	or	discontinuous,	and	 the
membership	 values	 do	 not	 have	 to	 sum	 to	 255.	 The	 other	 three	 input	 fuzzy
membership	 sets	 depend	 on	 the	 crisp	 input,	D.	TD	 is	 defined	 to	 be	 the	 change	 in
speed	(e.g.,	20	in	3.9	rpm/time	units	is	78	rpm/time)	above	which	we	will	definitely
consider	the	speed	to	be	going	up.	Similarly,	if	the	change	in	speed	is	less	than	-TD,
then	the	speed	is	definitely	going	down.

Figure	10.21.	Fuzzification	of	the	acceleration	input.

	
In	C,	we	could	define	a	fuzzy	function	 that	 takes	 the	crisp	 inputs	and	calculates	 the
fuzzy	membership	set	values.	Again	TE	and	TD	are	software	constants	that	will	affect
the	controller	error	and	response	time.

#define	TE	20
uint8_t	Fast,	OK,	Slow,	Down,	Constant,	Up;
#define	TD	20
uint8_t	Increase,Same,Decrease;
#define	TN	20
void	InputMembership(void){
						if(E	<=	-TE)	{											//	E≤-TE
								Fast	=	255;
								OK	=	0;
								Slow	=	0;}
						else
								if(E	<	0){													//	-TE<E<0		

										Fast	=	(255*(-E))/TE;
										OK	=	255-Fast;
										Slow	=	0;}
								else
										if(E	<	TE){											//		0<E<TE		
												Fast	=	0;
												Slow	=	(255*E)/TE;
												OK	=	255-Slow;}
										else	{																//	+TE≤E				
												Fast	=	0;
												OK	=	0;
												Slow	=	255;}
						if(D	<=	-TD)	{												//	D≤-TD	
								Down	=	255;
								Constant	=	0;
								Up	=	0;}
						else
								if(D	<	0){														//	-TD<D<0		
										Down	=	(255*(-D))/TD;
										Constant	=	255-Down;
										Up	=	0;}
								else
										if(D	<	TD){											//	0<D<TD	
												Down	=	0;
												Up	=	(255*D)/TD;
												Constant	=	255-Up;}
										else{																//	+TD≤D				
												Down	=	0;
												Constant	=	0;
												Up	=	255;}
}
Program	10.7.	Calculation	of	the	fuzzy	membership	variables	in	C.

The	fuzzy	rules	specify	the	relationship	between	the	input	fuzzy	membership	sets	and
the	output	fuzzy	membership	values.	It	is	in	these	rules	that	one	builds	the	intuition	of
the	controller.	For	example,	if	the	error	is	within	reasonable	limits	and	the	speed	is
constant,	then	the	output	should	not	be	changed.	In	fuzzy	logic	we	write:

If	OK			and	Constant	then	Same
	

If	 the	 error	 is	 within	 reasonable	 limits	 and	 the	 speed	 is	 going	 up,	 then	 the	 output
should	be	reduced	to	compensate	for	the	increase	in	speed.	I.e.,

If	OK			and	Up							then	Decrease
	

If	the	motor	is	spinning	too	fast	and	the	speed	is	constant,	then	the	output	should	be
reduced	to	compensate	for	the	error.	I.e.,

If	Fast	and	Constant	then	Decrease
	

If	the	motor	is	spinning	too	fast	and	the	speed	is	going	up,	then	the	output	should	be
reduced	to	compensate	for	both	the	error	and	the	increase	in	speed.	I.e.,

If	Fast	and	Up							then	Decrease
	

If	the	error	is	within	reasonable	limits	and	the	speed	is	going	down,	then	the	output
should	be	increased	to	compensate	for	the	drop	in	speed.	I.e.,

If	OK			and	Down					then	Increase
	

If	the	motor	is	spinning	too	slowly	and	the	speed	is	constant,	then	the	output	should	be
increased	to	compensate	for	the	error.	I.e.,

If	Slow	and	Constant	then	Increase
	

If	 the	 motor	 is	 spinning	 too	 slowly	 and	 the	 speed	 is	 going	 down,	 then	 the	 output
should	be	increase	to	compensate	for	both	the	error	and	the	drop	in	speed.	I.e.,

If	Slow	and	Down					then	Increase
	

These	7	rules	can	be	illustrated	in	a	table	form.

Figure	10.22.	Fuzzy	logic	rules	shown	in	table	form.

It	 is	 not	 necessary	 to	 provide	 a	 rule	 for	 all	 situations.	 For	 example,	 we	 did	 not
specify	what	to	do	if	Fast&Down	or	for	Slow&Up.	Although	we	could	have	added
(but	did	not):

If	Fast			and	Down	then	Same
If	Slow			and	Up		then	Same

	
When	more	than	one	rule	applied	to	an	output	membership	set,	then	we	can	combine
the	rules:

Same=(OKandConstant)
Decrease=(OKandUp)or(FastandConstant)or(FastandUp)
Increase=(OKandDown)or(SlowandConstant)or(SlowandDown)

	
In	 fuzzy	 logic,	 the	 and	 operation	 is	 performed	 by	 taking	 the	 minimum	 and	 the	 or
operation	is	 the	maximum.	Thus	the	C	function	that	calculates	the	three	output	fuzzy
membership	sets	is

uint8_t	static	min(uint8_t	u1,uint8_t	u2){
					if(u1>u2)	return(u2);
					else	return(u1);}
uint8_t	static	max(uint8_t	u1,uint8_t	u2){
					if(u1<u2)	return(u2);
					else	return(u1);}
void	OutputMembership(void){
					Same					=	min(OK,Constant);
					Decrease	=	min(OK,Up)
					Decrease	=	max(Decrease,min(Fast,Constant));
					Decrease	=	max(Decrease,min(Fast,Up));
					Increase	=	min(OK,Down)
					Increase	=	max(Increase,min(Slow,Constant));
					Increase	=	max(Increase,min(Slow,Down));}
Program	10.8.	Calculation	of	the	output	fuzzy	membership	variables	in	C.

The	calculation	of	the	crisp	outputs	is	called	Defuzzification.	The	fuzzy	membership
sets	 for	 the	 output	 specifies	 the	 crisp	 output,	∆N,	 as	 a	 function	 of	 the	membership
value.	For	example,	 if	 the	membership	set	Decrease	were	 true	 (255)	 and	 the	other
two	were	 false	 (0),	 then	 the	 change	 in	output	 should	be	 -TN	 (where	TN	 is	 another
software	 constant).	 If	 the	membership	 set	Same	were	 true	 (255)	 and	 the	 other	 two
were	false	(0),	then	the	change	in	output	should	be	0.	If	the	membership	set	Increase
were	true	(255)	and	the	other	two	were	false	(0),	then	the	change	in	output	should	be
+TN.

Figure	10.23.	Defuzzification	of	the	∆N	crisp	output.
	

In	 general,	 we	 calculate	 the	 crisp	 output	 as	 the	 weighted	 average	 of	 the	 fuzzy
membership	sets:

∆N=(Decrease•(-TN)	+	Same•0	+Increase•TN)/(Decrease+Same+Increase)

	
The	C	compiler	will	promote	the	calculations	to	32	bits,	and	perform	the	calculation
using	 32-bit	 signed	 math	 that	 will	 eliminate	 overflow	 on	 intermediate	 terms.	 The
output,	 dN,	 will	 be	 bounded	 in	 between	 -TN	 and	+TN.	 Thus	 the	 C	 function	 that
calculates	the	crisp	output	is

int32_t	dN;
void	CrispOutput(void){
		dN=(TN*(Increase-Decrease))/(Decrease+Same+Increase);
}

Program	10.9.	Calculation	of	the	crisp	output	in	C.

void	Timer0A_Handler(void){
		T	=	SE();												//	estimate	speed,	set	T,	0	to	255
		CrispInput();								//	Calculate	E,D	and	new	Told
		InputMembership();			//	Sets	Fast,OK,Slow,Down,Constant,Up
		OutputMembership();		//	Sets	Increase,Same,Decrease
		CrispOutput();							//	Sets	dN
		N	=	max(0,min(N+dN,255));
		PWM0A_Duty(N);							//	output	to	actuator,	Section	2.8
		TIMER0_ICR_R	=	0x01;	//	acknowledge	timer0A	periodic	timer
}
Program	10.10.	Periodic	interrupt	service	for	fuzzy	logic	controller.

Observation:	Fuzzy	logic	control	will	work	extremely	well	(fast,	accurate	and
stable)	if	the	designer	has	expert	knowledge	(intuition)	of	how	the	physical	plant
behaves.

	

10.8.	Exercises
10.1	For	each	term	give	a	definition	in	16	words	or	less.
a)	State	variable b)	State	estimator c)	Closed	loop
d)	Transient	response e)	Stability f)	Steady	state	accuracy
g)	Process	reaction	curve h)	Process	reaction	rate i)	Anti-reset	windup
	
10.2	For	each	control	algorithm	give	a	definition	in	16	words	or	less.
a)	Open	loop b)	Bang-bang c)	Incremental
d)	PID	 e)	Input	PI	 f)	Fuzzy	logic
	
10.3	For	each	Fuzzy	Logic	term	give	a	definition	in	16	words	or	less.
a)	Crisp	input b)	Fuzzification	 c)	Fuzzy	membership	set
d)	Fuzzy	logic e)	Defuzzification f)	Crisp	output
10.4	Briefly	explain	why	it	is	important	to	choose	the	proper	update	rate	for	a	fuzzy
logic	controller.	In	particular,	explain	what	happens	to	a	fuzzy	logic	controller	if	the
controller	 is	 executed	 too	 infrequently.	 Similarly,	 explain	what	 happens	 to	 a	 fuzzy
logic	controller	if	the	controller	is	executed	too	frequently.
	
10.5.	Assume	 you	 have	 an	 8-bit	 fuzzy	 logic	 system	 like	 the	 ones	 described	 in	 this
chapter.	Write	 formal	descriptions	 for	 the	complement	and	exclusive	or	 fuzzy	 logic
operations.	Show	C	code	implementations	for	these	two	functions.
	
10.6	 	 	The	objective	 of	 this	 problem	 is	 to	 use	 the	Ziegler	 and	Nichol	 approach	 to
develop	the	PI	controller	equations	that	allow	an	embedded	system	to	control	a	DC
motor.	The	state	variable	is	speed,	which	is	measured	using	16-bit	input	capture	and
has	a	measurement	resolution	of	1	RPM.	The	input	capture	device	driver	repeatedly
updates	a	global	variable,	called Speed .	This	16-bit	unsigned	variable	has	units	of
RPM	and	a	range	of	0	to	20000.		The	microcontroller	uses	pulse-width	modulation	to
control	 power	 to	 the	 motor.	 The	 controller	 software	 writes	 to	 a	 global	 variable,
called Duty ,	which	ranges	from	0	(0%)	to	10000	(100%).	The	following	plot	shows
an	 experimental	 measurement	 obtained	 whenDuty is	 changed	 from	 2500	 to	 5000.
The	 desired	 speed	 is	 stored	 in	 the	 global	 variable, Desired ,	 which	 has	 the	 same
units	as Speed .	Design	 a	 fixed-point	PI	 controller	 that	 takes Speed and Desired as
inputs	and	calculates Duty 	 as	an	output.	From	 the	 response	graph	 in	Figure	10.24,
estimate	the	L	and	Rparameters	of	the	Ziegler	and	Nichol	method.	How	often	should
the	 controller	 be	 executed?	 Show	 just	 the	 equations	 (no	 software	 or	 hardware	 is
required),	calculatingDuty as	a	function	of Speed and Desired .

Figure	10.24.		A	process	reaction	curve	for	the	DC	motor.

10.7	The	 objective	 of	 this	 problem	 is	 to	 use	 the	 Ziegler	 and	 Nichol	 approach	 to
develop	the	PID	controller	equations	 that	allow	an	embedded	system	to	control	 the
DC	motor	presented	in	Question	10.6.	I.e.,	work	through	the	steps	of	Question	10.6
for	a	PID	system.
	
10.8	Create	a	definition	for	Fuzzy	Logic	complement.	Let	~A	be	the	complement	of
A.	Some	of	 these	 logic	 equations	 are	valid	 for	Fuzzy	Logic	and	 some	are	not.	For
each	 valid	 equation,	 present	 a	 formal	 proof	 of	 its	 correctness.	 For	 each	 invalid
equation,	give	a	counter	example.
a)	A*B	=	B*A b)	A+B	=	B+A
c)	(A*B)*C	=	A*(B*C) d)	(A+B)+C	=	A+(B+C)
e)	(A+B)*C	=	(A*C)+(B*C) f)	A	+	~A	=	true
g)	A	*	~A	=	false h)	(A*B)+A	=	A

Appendix	1.	Glossary
1/f	 noise	A	 fundamental	 noise	 in	 resistive	 devices	 arising	 from	 fluctuating	 conductivity.
Same	as	pink	noise.
2’s	complement	(see	two’s	complement).
60	Hz	noise	An	added	noise	 from	electromagnetic	 fields	caused	by	either	magnetic	 field
induction	or	capacitive	coupling.
accumulator	High-speed	memory	 located	 in	 the	 processor	 used	 to	 perform	arithmetic	 or
logical	functions.	The	accumulators	on	the	ARM	Cortex	M	are	Registers	R0	through	R12.
accuracy	A	measure	of	how	close	our	instrument	measures	the	desired	parameter	referred
to	the	NIST.
acknowledge	Clearing	the	interrupt	flag	bit	that	requested	the	interrupt.
active	thread		A	thread	that	is	in	the	ready-to-run	circular	linked	list.	It	is	either	running	or
is	ready	to	run.
actuator	Electro-mechanical	or	electro-chemical	device	 that	 allows	computer	commands
to	affect	the	external	world.
ADC	 	Analog	to	digital	converter,	an	electronic	device	that	converts	analog	signals	(e.g.,
voltage)	into	digital	form	(i.e.,	integers).
address	 bus	 A	 set	 of	 digital	 signals	 that	 connect	 the	 CPU,	 memory	 and	 I/O	 devices,
specifying	the	location	to	read	or	write	for	each	bus	cycle.		See	also	control	bus	and	data
bus.
aging		A	technique	used	in	priority	schedulers	that	temporarily	increases	the	priority	of	low
priority	treads	so	they	are	run	occasionally.	(See	starvation)
aliasing	When	digital	values	sampled	at	fs	contain	frequency	components	above	½	fs,	then
the	apparent	frequency	of	the	data	is	shifted	into	the	0	to	½	fs	range.	See	Nyquist	Theory.
alternatives	The	total	number	of	possibilities.	E.g.,	an	8-bit	number	scheme	can	represent
256	 different	 numbers.	 	 An	 8-bit	 digital	 to	 analog	 converter	 (DAC)	 can	 generate	 256
different	analog	outputs.
anode	The	positive	side	of	a	diode.	Current	enters	the	anode	side	of	a	diode.	Contrast	with
cathode.
answer	modem	The	device	that	receives	the	telephone	call.
anti-reset-windup	Establishing	an	upper	bound	on	the	magnitude	of	 the	integral	 term	in	a
PID	controller,	so	this	term	will	not	dominate,	when	the	errors	are	large.
arithmetic	logic	unit	(ALU)	Component	of	the	processor	that	performs	arithmetic	and	logic
operations.
arm	Activate	so	that	interrupts	are	requested.	Trigger	flags	that	can	request	interrupts	will
have	a	corresponding	arm	bit	to	allow	or	disallow	that	flag	to	request	interrupts.	Contrast	to
enable.
armature		The	moving	structure	in	a	relay,	the	part	that	moves	when	the	relay	is	activated.
Contrast	to	frame.
ASCII	 American	 Standard	 Code	 for	 Information	 Interchange,	 a	 code	 for	 representing
characters,	symbols,	and	synchronization	messages	as	7	bit,	8-bit	or	16-bit	binary	values.
assembler		System	software	that	converts	an	assembly	language	program	(human	readable
format)	into	object	code		(machine	readable	format).

assembly	 directive	 Operations	 included	 in	 the	 program	 that	 are	 not	 executed	 by	 the
computer	 at	 run	 time,	 but	 rather	 are	 interpreted	 by	 the	 assembler	 during	 the	 assembly
process.	Same	as	pseudo-op.
assembly	 listing	 Information	 generated	 by	 the	 assembler	 in	 human	 readable	 format,
typically	 showing	 the	 object	 code,	 the	 original	 source	 code,	 assembly	 errors,	 and	 the
symbol	table.
asynchronous	bus	A	communication	protocol	without	a	central	clock	where	is	the	data	is
transferred	using	two	or	three	control	lines	implementing	a	handshaked	interaction	between
the	memory	and	the	computer.
asynchronous	 protocol	 A	 protocol	 where	 the	 two	 devices	 have	 separate	 and	 distinct
clocks
atomic		Software	execution	that	cannot	be	divided	or	interrupted.	Once	started,	an	atomic
operation	 will	 run	 to	 its	 completion	 without	 interruption.	 Most	 assembly	 language
instructions	are	atomic.	All	instructions	on	the	Cortex-Mprocessor	are	atomic	except	store
and	load	multiple, STM	LDM .
autoinitialization	The	process	of	automatically	 reloading	 the	address	 registers	and	block
size	 counters	 at	 the	 end	 of	 a	 previous	 block	 transfer,	 so	 that	 DMA	 transfer	 can	 occur
indefinitely	without	software	interaction.
availability	The	portion	of	the	total	time	that	the	system	is	working.	MTBF	is	the	mean	time
between	 failures,	 MTTR	 is	 the	 mean	 time	 to	 repair,	 and	 availability	 is
MTBF/(MTBF+MTTR).
bandwidth	 	 In	 communication	 systems,	 the	 information	 transfer	 rate,	 the	 amount	 of	 data
transferred	per	second.	Same	as	 throughput.	In	analog	circuits,	 the	frequency	at	which	the
gain	 drops	 to	 0.707	of	 the	 normal	 value.	For	 a	 low	pass	 system,	 the	 frequency	 response
ranges	from	0	to	a	maximum	value.		For	a	high	pass	system,	the	frequency	response	ranges
from	a	minimum	value	 to	 infinity.	 For	 a	 bandpass	 system,	 the	 frequency	 response	 ranges
from	a	minimum	to	a	maximum	value.	Compare	to	frequency	response.

bandwidth	coupling	Module	A	is	connected	to	Module	B,	because	data	flows	from	A	to	B.
bang-bang	A	control	system	where	the	actuator	has	only	two	states,	and	the	system	“bangs”
all	the	way	in	one	direction	or	“bangs”	all	the	way	in	the	other,	same	as	binary	controller.
bank-switched	memory	A	memory	module	with	two	banks	that	interfaces	to	two	separate
address/data	buses.	At	any	given	time	one	memory	bank	is	attached	to	one	address/data	bus
the	other	bank	is	attached	to	the	other	bus,	but	this	attachment	can	be	switched.
basis		Subset	from	which	linear	combinations	can	be	used	to	reconstruct	the	entire	set.
baud	rate	In	general,	the	baud	rate	is	the	total	number	of	bits	(information,	overhead,	and
idle)	per	time	that	are	transmitted.	In	a	modem	application	it	is	the	total	number	of	sounds
per	time	are	transmitted
bi-directional	Digital	signals	that	can	be	either	input	or	output.
biendian	The	ability	to	process	numbers	in	both	big	and	little-endian	formats.
big	endian	Mechanism	for	storing	multiple	byte	numbers	such	that	the	most	significant	byte
exists	first	(in	the	smallest	memory	address).		See	also	little	endian.
binary	A	system	that	has	two	states,	on	and	off.
binary	controller	Same	as	bang-bang.
binary	recursion	A	recursive	technique	that	makes	two	calls	to	itself	during	the	execution

of	the	function.	See	also	recursion,	linear	recursion,	and	tail	recursion.
binary	semaphore		A	semaphore	that	can	have	two	values.	The	value=1	means	OK	and	the
value=0	means	busy.	Compare	to	counting	semaphore.
bipolar	transistor	Either	a	NPN	or	PNP	transistor.
bipolar	stepper	motor	A	stepper	motor	where	the	current	flows	in	both	directions	(in/out)
along	the	interface	wires;	a	stepper	with	four	interface	wires.	Contrast	to	unipolar	stepper
motor.
bit	Basic	unit	of	digital	information	taking	on	the	value	of	either	0	or	1.
bit	rate	 The	 information	 transfer	 rate,	 given	 in	 bits	 per	 second.	 Same	 as	 bandwidth	 and
throughput.
bit	time	The	basic	unit	of	time	used	in	serial	communication.	With	serial	channel	bit	time	is
1/baud	rate.
blind-cycle	 	 A	 software/hardware	 synchronization	 method	 where	 the	 software	 waits	 a
specified	 amount	 of	 time	 for	 the	 hardware	 operation	 to	 complete.	 The	 software	 has	 no
direct	information	(blind)	about	the	status	of	the	hardware.
block	 correction	 code	 (BCC)	A	 code	 (e.g.,	 horizontal	 parity)	 attached	 to	 the	 end	 of	 a
message	used	to	detect	and	correct	transmission	errors.
blocked	 thread	 	 A	 thread	 that	 is	 not	 scheduled	 for	 running	 because	 it	 is	 waiting	 on	 an
external	event.
blocking	 semaphore	 	 A	 semaphore	 where	 the	 threads	 will	 block	 (so	 other	 threads	 can
perform	useful	functions)	when	they	execute	wait	on	a	busy	semaphore.	Contrast	to	spinlock
semaphore.
Bluetooth	A	low-power,	wireless	personal	area	network	that	allows	pairing,	which	is	two
devices	communicating	with	each	other.
Board	Support	Package	(BSP)	A	set	of	software	routines	that	abstract	the	I/O	hardware
such	that	the	same	high-level	code	can	run	on	multiple	computers.
borrow	During	subtraction,	if	the	difference	is	too	small,	then	we	use	a	borrow	to	pass	the
excess	 information	 into	 the	next	higher	place.	For	 example,	 in	decimal	 subtraction	36-27
requires	a	borrow	from	the	ones	to	tens	place	because	6-7	is	too	small	to	fit	into	the	0	to	9
range	of	decimal	numbers.
bounded	waiting	The	condition	where	once	a	thread	begins	to	wait	on	a	resource,	there	are
a	finite	number	of	threads	that	will	be	allowed	to	proceed	before	this	thread	is	allowed	to
proceed.
break-before-make	In	a	double-throw	relay	or	double-throw	switch,	there	is	one	common
contact	and	two	separate	contacts.	Break-before-make	means	as	the	common	contact	moves
from	one	of	 separate	contacts	 to	another,	 it	will	break	off	 (finish	bouncing	and	no	 longer
touch)	 the	 first	 contact	 before	 it	 makes	 (begins	 to	 bounce	 and	 starts	 to	 touch)	 the	 other
contact.	A	form	C	relay	has	a	break-before-make	operation.
break	or	trap		A	break	or	a	trap	is	a	debugging	instrument	that	halts	the	processor.	With	a
resident	 debugger,	 the	 break	 is	 created	 by	 replacing	 specific	 op	 code	 with	 a	 software
interrupt	 instruction.	 When	 encountered	 it	 will	 stop	 your	 program	 and	 jump	 into	 the
debugger.	Therefore,	a	break	halts	the	software.		The	condition	of	being	in	this	state	is	also
referred	to	as	a	break.
breakdown	A	transducer	that	stops	functioning	when	its	input	goes	above	a	maximum	value

or	below	a	minimum	value.	Contrast	to	dead	zone.
breakpoint		The	place	where	a	break	is	inserted,	the	time	when	a	break	is	encountered,	or
the	time	period	when	a	break	is	active.
brushed	DC	motor		A	motor	where	the	current	reversals	are	produced	with	brushes
between	the	stator	and	rotor.	They	are	less	expensive	than	brushless	DC	motors.
brushless	DC	motor	(BLDC)	A	motor	where	the	current	reversals	are	produced	with	shaft
sensors	and	an	electronic	controller.	They	are	faster	and	more	reliable	than	brushed	DC
motors.
buffered	I/O		A	FIFO	queue	is	placed	in	between	the	hardware	and	software	in	an	attempt
to	increase	bandwidth	by	allowing	both	hardware	and	software	to	run	in	parallel.
burn	The	process	of	programming	a	ROM,	PROM	or	EEPROM.
burst	DMA	An	I/O	synchronization	scheme	that	transfers	an	entire	block	of	data	all	at	once
directly	from	an	input	device	into	memory,	or	directly	from	memory	to	an	output	device.
bus	A	set	of	digital	 signals	 that	connect	 the	CPU,	memory	and	 I/O	devices,	 consisting	of
address	signals,	data	signals	and	control	signals.	See	also	address	bus,	control	bus	and	data
bus.
bus	 bandwidth	 The	 number	 of	 bytes	 transferred	 per	 second	 between	 the	 processor	 and
memory.
bus	interface	unit	(BIU)	Component	of	the	processor	that	reads	and	writes	data	from	the
bus.	The	BIU	drives	the	address	and	control	buses.
busy-wait	 synchronization	 	 A	 software/hardware	 synchronization	 method	 where	 the
software	 continuously	 reads	 the	 hardware	 status	 waiting	 for	 the	 hardware	 operation	 to
complete.	The	software	usually	performs	no	work	while	waiting	for	the	hardware.	Same	as
gadfly.
byte	Digital	information	containing	eight	bits.
carrier	frequency		the	average	or	midvalue	sound	frequency	in	the	modem.
cathode	The	negative	side	of	a	diode.	Current	exits	the	cathode	side	of	a	diode.	Contrast	to
anode.
causal	The	property	where	the	output	depends	on	the	present	and	past	inputs,	but	not	on	any
future	inputs.
ceiling	Establishing	an	upper	bound	on	the	result	of	an	operation.	See	also	floor.
certification	A	process	where	a	governing	body	(e.g.,	FDA,	NASA,	FCC,	DOD	etc.)	gives
approval	for	the	use	of	the	device.	It	usually	involves	demonstrating	the	device	meets	or
exceeds	safety	and	performance	criteria.
channel	The	hardware	that	allows	communication	to	occur.
characteristic	A	Bluetooth	functionalities	that	allows	data	to	be	exchanged.
checksum	The	simple	sum	of	the	data,	usually	in	finite	precision	(e.g.,	8,	16,	24	bits).
closed-loop	control	system	A	control	system	that	includes	sensors	to	measure	the	current
state	variables.	These	inputs	are	used	to	drive	the	system	to	the	desired	state.
CMOS	A	 digital	 logic	 system	 called	 complementary	 metal	 oxide	 semiconductor.	 It	 has
properties	of	low	power	and	small	size.	Its	power	is	a	function	of	the	number	of	transitions
per	second.	Its	speed	is	often	limited	by	capacitive	loading.
cohesion	A	cohesive	module	is	one	such	that	all	parts	of	the	module	are	related	to	each
other	to	satisfy	a	common	objective.

common	mode	 For	 a	 system	 with	 differential	 inputs,	 the	 common	 mode	 properties	 are
defined	as	signals	applied	to	both	inputs	simultaneously.		Contrast	to	differential	mode.
common	mode	 input	 impedance	Common	mode	 input	voltage	divided	by	common	mode
input	current.
common	 mode	 rejection	 ratio	 For	 a	 differential	 amplifier,	 CMRR	 is	 the	 ratio	 of	 the
common	mode	gain	divided	by	the	differential	mode	gain.	A	perfect	CMRR	would	be	zero.
compiler	System	 software	 that	 converts	 a	 high-level	 language	 program	 (human	 readable
format)	into	object	code		(machine	readable	format).
complex	instruction	set	computer	(CISC)	A	computer	with	many	instructions,	instructions
that	have	varying	lengths,	 instructions	that	execute	 in	varying	times,	many	instructions	can
access	 memory,	 one	 instruction	 may	 both	 read	 and	 write	 memory,	 fewer	 and	 more
specialized	registers,	and	many	different	types	of	addressing	modes.	Contrast	to	RISC.
compression	ratio	The	ratio	of	the	number	of	original	bytes	to	the	number	of	compressed
bytes.
concurrent	programming	A	software	system	that	supports	two	tasks	to	be	active	at	the
same	time.	A	computer	with	interrupts	implements	concurrent	programming.	Compare	to
distributed	and	parallel.
condition	 code	 register	 (CCR)	 Register	 in	 the	 processor	 that	 contains	 the	 status	 of	 the
previous	ALU	operation,	as	well	as	some	operating	mode	flags	such	as	the	interrupt	enable
bit.

control	coupling	Module	A	is	connected	to	Module	B,	because	actions	in	A	affect	the	control	path
in	B.

control	unit	(CU)	Component	of	the	processor	that	determines	the	sequence	of	operations.
cooperative	multi-tasking		A	scheduler	that	cannot	suspend	execution	of	a	thread	without
the	 thread's	 permission.	 The	 thread	 must	 cooperate	 and	 suspend	 itself.	 Same	 as
nonpreemptive	scheduler.
counting	semaphore	 	A	semaphore	 that	can	have	any	signed	 integer	value.	The	value>0	
means	OK	and	the	value≤0	means	busy.	Compare	to	binary	semaphore.
CPU	bound	 	A	 situation	where	 the	 input	 or	 output	 device	 is	 faster	 than	 the	 software.	 In
other	words,	it	takes	less	time	for	the	I/O	device	to	process	data,	than	for	the	software	to
process	data.	Contrast	to	I/O	bound.
CPU	 cycle	 A	 memory	 bus	 cycle	 where	 the	 address	 and	 R/W	 are	 controlled	 by	 the
processor.	On	microcontrollers	without	DMA,	all	cycles	are	CPU	cycles.	Contrast	to	DMA
cycle.
crisp	 inputAn	 input	 parameter	 to	 the	 fuzzy	 logic	 system,	 usually	 with	 units	 like	 cm,
cm/sec, C	etc.
crisp	output	An	output	parameter	from	the	fuzzy	logic	system,	usually	with	units	like	dynes,
watts	etc.
critical	section		Locations	within	a	software	module,	which	if	an	interrupt	were	to	occur	at
one	of	 these	 locations,	 then	an	error	could	occur	 (e.g.,	data	 lost,	corrupted	data,	program
crash,	etc.)		Same	as	vulnerable	window.
cross-assembler	 	An	 assembler	 that	 runs	 on	 one	 computer	 but	 creates	 object	 code	 for	 a
different	computer.
cross-compiler	A	compiler	that	runs	on	one	computer	but	creates	object	code	for	a	different

computer.
cycle	 steal	DMA	 An	 I/O	 synchronization	 scheme	 that	 transfers	 data	 one	 item	 at	 a	 time
directly	 from	an	 input	device	 into	memory,	or	directly	 from	memory	 to	an	output	device.
Same	as	single	cycle	DMA.
cycle	 stretch	 The	 action	 where	 some	 memory	 cycles	 are	 longer	 allowing	 time	 for
communication	with	slower	memories,	sometimes	the	memory	itself	requests	the	additional
time	and	 sometimes	 the	 computer	has	 a	preprogrammed	cycle	 stretch	 for	 certain	memory
addresses
DAC	 	Digital	 to	analog	converter,	an	electronic	device	 that	converts	digital	 signals	 (i.e.,
integers)	to	analog	form	(e.g.,	voltage).
data	acquisition	system	A	system	that	collects	information,	same	as	instrument.
data	bus	A	set	of	digital	signals	that	connect	the	CPU,	memory	and	I/O	devices,	specifying
the	value	that	is	being	read	or	written	for	each	bus	cycle.		See	also	address	bus	and	control
bus.
data	 communication	 equipment	 (DCE)	 A	 modem	 or	 printer	 connected	 a	 serial
communication	network.
data	 terminal	 equipment	 (DTE)	 A	 computer	 or	 a	 terminal	 connected	 a	 serial
communication	network.
deadline	The	time	when	a	task	should	complete.	Compare	to	slack	time.
dead	zone	A	condition	of	a	transducer	when	a	large	change	in	the	input	causes	little	or	no
change	in	the	output.	Contrast	to	breakdown.
deadlock	 	A	scenario	that	occurs	when	two	or	more	threads	are	all	blocked	each	waiting
for	the	other	with	no	hope	of	recovery.
defuzzification	Conversion	from	the	fuzzy	logic	output	variables	to	the	crisp	outputs.
desk	 checking	 or	 dry	 run	 	 We	 perform	 a	 desk	 check	 (or	 dry	 run)	 by	 determining	 in
advance,	 either	 by	 analytical	 algorithm	 or	 explicit	 calculations,	 the	 expected	 outputs	 of
strategic	 intermediate	 stages	 and	 final	 results	 for	 a	 set	 of	 typical	 inputs.	We	 then	 run	our
program	can	compare	the	actual	outputs	with	this	template	of	expected	results.
device	driver		A	collection	of	software	routines	that	perform	I/O	functions.
differential	mode	For	a	system	with	differential	inputs,	the	differential	mode	properties	are
defined	 as	 signals	 applied	 as	 a	 difference	 between	 the	 two	 inputs.	 	Contrast	 to	 common
mode.
differential	mode	input	impedance	Differential	mode	input	voltage	divided	by	differential
mode	input	current.
digital	 signal	processing	 Processing	 of	 data	with	 digital	 hardware	 or	 software	 after	 the
signal	 has	 been	 sampled	 by	 the	 ADC,	 e.g.,	 filters,	 detection	 and
compression/decompression.
direct	memory	access	(DMA)	the	ability	to	transfer	data	between	two	modules	on	the	bus,
this	 transfer	 is	usually	 initiated	by	 the	hardware	 (device	needs	 service)	and	 the	 software
configures	 the	communication,	but	 the	data	 is	 transferred	without	explicit	 software	action
for	each	piece	of	data
direction	register	Specifies	whether	a	bi-directional	I/O	pin	is	an	input	or	an	output.	We
set	a	direction	register	bit	to	0	(or	1)	to	specify	the	corresponding	I/O	pin	to	be	input	(or
output.)

disarm	Deactivate	so	that	interrupts	are	not	requested,	performed	by	clearing	the	arm	bit.
Discrete	Fourier	Transform	(DFT)	A	technique	to	convert	data	in	the	time	domain	to	data
in	the	frequency	domain.	N	data	points	are	sampled	at	fs.	The	resulting	frequency	resolution
is	fs	/N.
distributed	processing	A	system	implemented	across	separate	computers	connected	with
I/O	or	a	network,	so	that	two	or	more	programs	are	executed	at	the	same	time.	Compare	to
concurrent	and	parallel.
DMA	 	Direct	Memory	Access	 is	 a	 software/hardware	 synchronization	method	where	 the
hardware	 itself	 causes	 a	 data	 transfer	 between	 the	 I/O	 device	 and	 memory	 at	 the
appropriate	time	when	data	needs	to	be	transferred.	The	software	usually	can	perform	other
work	while	waiting	for	 the	hardware.	No	software	action	 is	 required	for	each	 individual
byte.
DMA	cycle	A	memory	bus	cycle	where	the	address	and	R/W	are	controlled	by	the	DMA
controller.	Contrast	to	CPU	cycle.
double	byte		Two	bytes	containing	16	bits.	Same	as	halfword.
double-pole	 relay	 Two	 separate	 and	 complete	 relays,	 which	 are	 activated	 together.
Contrast	to	single	pole.
double-pole	 switch	 Two	 separate	 and	 complete	 switches.	 The	 two	 switches	 are
electrically	 separate,	 but	 mechanically	 connected.	 Such	 that	 both	 switches	 are	 activated
together.	Contrast	to	single	pole.
double-throw	relay	A	relay	with	three	contact	connections,	one	common	and	two	throws.
The	common	will	be	connected	to	exactly	of	one	the	two	throws	(see	single-throw).
double-throw	switch	A	switch	with	three	contact	connections.	The	center	contact	will	be
connected	exactly	one	of	the	other	two	contacts.		Contrast	with	single-throw.
double	word		Two	words	containing	64	bits.
download	The	process	of	transferring	object	code	from	the	host	(e.g.,	the	PC)	to	the	target
microcontroller.
drop-out	An	error	that	occurs	after	a	right	shift	or	a	divide,	and	the	consequence	is	that	an
intermediate	 result	 loses	 its	 ability	 to	 represent	all	of	 the	values.	E.g.,	 I=100*(N/51)	can
only	 result	 in	 the	 values	 0,	 100,	 or	 200,	 whereas	 I=(100*N)/51	 properly	 calculates	 the
desired	result.
dual	 address	DMA	 Direct	memory	 access	 that	 requires	 two	 bus	 cycles	 to	 transfer	 data
from	an	input	device	into	memory,	or	from	memory	to	an	output	device.
dual	port	memory	A	memory	module	 that	 interfaces	 to	 two	separate	address/data	buses,
and	allows	both	systems	read/write	access	the	data.
duty	cycle	For	a	periodic	digital	wave,	it	is	the	percentage	of	time	the	signal	is	high.	When
an	 LED	 display	 is	 scanned,	 it	 is	 the	 percentage	 of	 time	 each	 LED	 is	 active.	 A	 motor
interfaced	using	pulse-width-modulation	 allows	 the	 computer	 to	 control	 delivered	power
by	adjusting	the	duty	cycle.
dynamic	 allocation	 	 Data	 structures	 like	 the	 TCB	 that	 are	 created	 at	 runtime	 by	 calling
malloc()	and	exist	until	the	software	releases	the	memory	block	back	to	the	heap	by	calling
free().	See	static	allocation.
dynamic	RAM	Volatile	 read/write	 storage	 built	 from	 a	 capacitor	 and	 a	 single	 transistor
having	a	low	cost,	but	requiring	refresh.	Contrast	with	static	RAM.

EEPROM	Electrically	erasable	programmable	 read	only	memory	 that	 is	nonvolatile	 and
easy	 to	 reprogram.	 	EEPROM	can	be	erased	and	reprogrammed	multiple	 times.	Also	see
Flash	EEPROM.
embedded	computer	system	A	system	that	performs	a	specific	dedicated	operation	where
the	computer	is	hidden	or	embedded	inside	the	machine.		
emulator		An	in-circuit	emulator	is	an	expensive	debugging	hardware	tool	that	mimics	the
processor	pin	outs.	To	debug	with	an	emulator,	you	would	remove	the	processor	chip	and
attach	 the	 emulator	 cable	 into	 the	 processor	 socket.	 The	 emulator	 would	 sense	 the
processor	 input	 signals	 and	 recreate	 the	 processor	 outputs	 signals	 on	 the	 socket	 as	 if	 an
actual	 processor	were	 actually	 there,	 running	 at	 full	 speed.	 Inside	 the	 emulator	 you	have
internal	read/write	access	to	the	registers	and	processor	state.	Most	emulators	allow	you	to
visualize/record	 strategic	 information	 in	 real-time	without	 halting	 the	 program	 execution.
You	can	also	remove	ROM	chips	and	insert	the	connector	of	a	ROM-emulator.	This	type	of
emulator	is	less	expensive,	and	it	allows	you	to	debug	ROM-based	software	systems.
EPROM	Same	as	PROM.	Electrically	programmable	read	only	memory	that	is	nonvolatile
and	requires	external	devices	to	erase	and	reprogram.	It	is	usually	erased	using	UV	light.
erase	The	process	of	clearing	the	information	in	a	PROM	or	EEPROM,	using	electricity	or
UV	light.	The	information	bits	are	usually	all	set	to	logic	1.
EVB	 Evaluation	Board,	 a	 board-level	 product	 used	 to	 develop	microcontroller	 systems.
Same	as	LaunchPad.
even	parity		A	communication	protocol	where	the	number	of	ones	in	the	data	plus	a	parity
bit	is	an	even	number.	Contrast	with	odd	parity.
event	 thread	A	 thread	 that	 is	 executed	 or	 triggered	 in	 response	 to	 an	 event.	 They	 are
similar	to	ISR,	but	scheduled	by	the	OS.	Typcially,	the	event	is	a	change	in	hardware	status,
such	as	input	ready,	output	idle,	or	periodically.	The	trigger	could	also	be	a	software	event.
Event	threads	cannot	sleep,	block,	or	be	killed.	Once	they	respond	to	the	event,	they	simply
return.	Compare	to	main	thread.
external	fragmentation	A	condition	when	the	largest	file	or	memory	block	that	can	be
allocated	is	less	than	the	total	amount	of	free	space	on	the	disk	or	memory.
fan	out	 	The	number	of	 inputs	 that	 a	 single	output	 can	drive	 if	 the	devices	are	all	 in	 the
same	logic	family.
Fast	Fourier	Transform	(FFT)	A	fast	technique	to	convert	data	in	the	time	domain	to	data
in	the	frequency	domain.	N	data	points	are	sampled	at	fs.	The	resulting	frequency	resolution
is	fs	/N.	Mathematically,	the	FFT	is	the	same	as	the	DFT,	just	faster.
FET	Field	effect	transistor,	also	JFET.
filter	 In	 the	 debugging	 context,	 a	 filter	 is	 a	 Boolean	 function	 or	 conditional	 test	 used	 to
make	run-time	decisions.	For	example,	if	we	print	information	only	if	two	variables	x,y	are
equal,	then	the	conditional	(x==y)	is	a	filter.	Filters	can	involve	hardware	status	as	well.
finite	impulse	response	filter	(FIR)	A	digital	filter	where	the	output	is	a	function	of	a	finite
number	of	current	and	past	data	samples,	but	not	a	function	of	previous	filter	outputs.
Finite	State	Machine	(FSM)	An	abstract	design	method	to	build	a	machine	with	inputs	and
outputs.	The	machine	can	be	in	one	of	a	finite	number	of	states.	Which	state	the	system	is	in
represents	memory	of	previous	inputs.	The	output	and	next	state	are	a	function	of	the	input.
There	may	be	time	delays	as	well.

firm	real-time	A	system	that	expects	all	critical	tasks	to	complete	on	time.	Once	a	deadline
as	passed,	 there	 is	no	value	 to	completing	 the	 task.	However,	 the	consequence	of	missed
deadlines	is	real	but	the	overall	system	operates	with	reduced	quality.	Streaming	audio	and
video	are	typical	examples.	Compare	to	hard	real-time	and	soft	real-time.
fixed-point	A	 technique	where	 calculations	 involving	 nonintegers	 are	 performed	 using	 a
sequence	 of	 integer	 operations.	 E.g.,	 0.123*x	 is	 performed	 in	 decimal	 fixed-point	 as
(123*x)/1000	or	in	binary	fixed-point	as	(126*x)>>10.
flash	EEPROM	Electrically	erasable	programmable	read	only	memory	that	is	nonvolatile
and	easy	to	reprogram.	Flash	EEPROMs	are	typically	larger	than	regular	EEPROM.
floating	A	logic	state	where	the	output	device	does	not	drive	high	or	pull	low.	The	outputs
of	open	collector	and	tristate	devices	can	be	in	the	floating	state.	Same	as	HiZ.
floor	Establishing	a	lower	bound	on	the	result	of	an	operation.	See	also	ceiling.
fork	The	dynamic	action	of	creating	a	new	thread	or	process	at	run	time.	See	also	join.
frame		A	complete	and	distinct	packet	of	bits	occurring	in	a	serial	communication	channel.
frame		The	fixed	structure	in	a	relay	or	transducer.	Contrast	to	armature.
framing	error	An	error	when	the	receiver	expects	a	stop	bit	(1)	and	the	input	is	0.
frequency	response	The	frequency	at	which	the	gain	drops	to	0.707	of	the	normal	value.
For	a	low	pass	system,	the	frequency	response	ranges	from	0	to	a	maximum	value.		For	a
high	pass	 system,	 the	 frequency	 response	 ranges	 from	a	minimum	value	 to	 infinity.	For	 a
bandpass	 system,	 the	 frequency	 response	 ranges	 from	 a	 minimum	 to	 a	 maximum	 value.
Same	as	bandwidth.
frequency	 shift	 key	 (FSK)	 A	 modem	 that	 modulates	 the	 digital	 signals	 into	 frequency
encoded	sine	waves.
friendly	Friendly	software	modifies	just	the	bits	that	need	to	be	modified,	leaving	the	other
bits	unchanged,	making	to	easier	to	combine	modules.
full	 duplex	 channel	 Hardware	 that	 allows	 bits	 (information,	 error	 checking,
synchronization	 or	 overhead)	 to	 transfer	 simultaneously	 in	 both	 directions.	Contrast	with
simplex	and	half	duplex	channels.
full	duplex	communication	A	system	that	allows	information	(data,	characters)	to	transfer
simultaneously	in	both	directions.
functional	 debugging	 	 The	 process	 of	 detecting,	 locating,	 or	 correcting	 functional	 and
logical	 errors	 in	 a	 program,	 typically	 not	 involving	 time.	The	process	 of	 instrumenting	 a
program	for	such	purposes	is	called	functional	debugging	or	often	simply	debugging.
fuzzification	Conversion	from	the	crisp	inputs	to	the	fuzzy	logic	input	variables.
fuzzy	logic	Boolean	logic	(true/false)	that	can	take	on	a	range	of	values	from	true	(255)	to
false	(0).	Fuzzy	logic	and	is	calculated	as	the	minimum.	Fuzzy	logic	or	is	the	maximum.
gadfly	 	 A	 software/hardware	 synchronization	 method	 where	 the	 software	 continuously
reads	 the	 hardware	 status	waiting	 for	 the	 hardware	 operation	 to	 complete.	 The	 software
usually	performs	no	work	while	waiting	for	the	hardware.	Same	as	busy	wait.
gauge	factor	The	sensitivity	of	a	strain	gauge	transducer,	i.e.,	slope	of	the	resistance	versus
displacement	response.

gibibyte	(GiB)	230	or	1,073,741,824	bytes.	Compare	to	gigabyte,	which	is	1,000,000,000	bytes.
half	 duplex	 channel	 Hardware	 that	 allows	 bits	 (information,	 error	 checking,
synchronization	or	overhead)	 to	 transfer	 in	both	directions,	but	 in	only	one	direction	at	 a

time.	Contrast	with	simplex	and	full	duplex	channels.
half	duplex	communication	A	system	that	allows	information	to	transfer	in	both	directions,
but	in	only	one	direction	at	a	time.
halfword		Two	bytes	containing	16	bits.	Same	as	double	byte.
handshake	A	software/hardware	synchronization	method	where	control	and	status	signals
go	both	directions	between	the	transmitter	and	receiver.	The	communication	is	interlocked
meaning	each	device	will	wait	for	the	other.
hard	 real-time	 A	 system	 that	 can	 guarantee	 that	 a	 process	will	 complete	 a	 critical	 task
within	a	certain	specified	range.	In	data	acquisition	systems,	hard	real-time	means	there	is
an	upper	bound	on	the	latency	between	when	a	sample	is	supposed	to	be	taken	(every	1/fs)
and	when	the	ADC	is	actually	started.	Hard	real-time	also	implies	that	no	ADC	samples	are
missed.	Compare	to	hard	real-time	and	firm	real-time.
heartbeat	A	debugging	monitor,	such	as	a	flashing	LED,	we	add	for	the	purpose	of	seeing
if	our	program	is	running.
hexadecimal		A	number	system	that	uses	base	16.
HiZ	A	logic	state	where	the	output	device	does	not	drive	high	or	pull	low.	The	outputs	of
open	collector	and	tristate	devices	can	be	in	the	floating	state.	Same	as	floating.
hold	time		When	latching	data	into	a	device	with	a	rising	or	falling	edge	of	a	clock,	the	hold
time	is	the	time	after	the	active	edge	of	the	clock	that	the	data	must	continue	to	be	valid.	See
setup	time.
hook	An	indirect	function	call	added	to	a	software	system	that	allows	the	user	to	attach
their	programs	to	run	at	strategic	times.	These	attachments	are	created	at	run	time	and	do	not
require	recompiling	the	entire	system.
horizontal	parity		A	parity	calculated	across	the	entire	message	on	a	bit	by	bit	basis,	e.g.,
the	horizontal	parity	bit	0	is	the	parity	calculated	on	all	the	bit	0’s	of	the	entire	message,	can
be	even	or	odd	parity
hysteresis	A	condition	when	the	output	of	a	system	depends	not	only	on	the	input,	but	also
on	the	previous	outputs,	e.g.,	a	transducer	that	follows	a	different	response	curve	when	the
input	is	increasing	than	when	the	input	is	decreasing.
I/O	bound	 	A	 situation	where	 the	 input	 or	 output	 device	 is	 slower	 than	 the	 software.	 In
other	 words,	 it	 takes	 longer	 for	 the	 I/O	 device	 to	 process	 data	 than	 for	 the	 software	 to
process	data.	Contrast	to	CPU	bound.
I/O	device	Hardware	and	software	components	capable	of	bringing	 information	from	the
external	 environment	 into	 the	 computer	 (input	 device),	 or	 sending	 data	 out	 from	 the
computer	to	the	external	environment	(output	device.)
I/O	port		A	hardware	device	that	connects	the	internal	software	with	external	hardware.
IIH		Input	current	when	the	signal	is	high.
IIL		Input	current	when	the	signal	is	low.
immediate		An	addressing	mode	where	the	operand	is	a	fixed	data	or	address	value.
impedance	loading	A	condition	when	the	input	of	stage	n+1	of	an	analog	system	affects	the
output	 of	 stage	 n,	 because	 the	 input	 impedance	 of	 stage	 n+1	 is	 too	 small	 and	 the	 output
impedance	of	stage	n	is	too	large.
impedance	The	ratio	of	 the	effort	(voltage,	force,	pressure)	divided	by	the	flow	(current,
velocity,	flow).

incremental	control	system	A	control	system	where	the	actuator	has	many	possible	states,
and	the	system	increments	or	decrements	the	actuator	value	depending	on	either	in	error	is
positive	or	negative.
indexed		An	addressing	mode	where	the	data	or	address	value	for	the	instruction	is	located
in	memory	pointed	to	by	an	index	register.
infinite	impulse	response	filter	(IIR)	A	digital	filter	where	the	output	 is	a	function	of	an
infinite	 number	 of	 past	 data	 samples,	 usually	 by	 making	 the	 filter	 output	 a	 function	 of
previous	filter	outputs.
input	bias	current	Difference	between	currents	of	the	two	op	amp	inputs.
input	capture	A	mechanism	to	set	a	flag	and	capture	the	current	time	(TCNT	value)	on	the
rising,	falling	or	rising&falling	edge	of	an	external	signal.	The	input	capture	event	can	also
request	an	interrupt.
input	impedance	Input	voltage	divided	by	input	current.
instruction	 register	 (IR)	 Register	 in	 the	 control	 unit	 that	 contains	 the	 op	 code	 for	 the
current	instruction.
instrument		An	instrument	is	the	code	injected	into	a	program	for	debugging	or	profiling.	
This	code	is	usually	extraneous	to	the	normal	function	of	a	program	and	may	be	temporary
or	 permanent.	 	 Instruments	 injected	 during	 interactive	 sessions	 are	 considered	 to	 be
temporary	 because	 these	 instruments	 can	 be	 removed	 simply	 by	 terminating	 a	 session.	
Instruments	 injected	 in	 source	 code	 are	 considered	 to	 be	 permanent	 because	 removal
requires	editing	and	recompiling	the	source.	An	example	of	a	temporary	instrument	occurs
when	the	debugger	replaces	a	regular	op	code	with	a	breakpoint	instruction.	This	temporary
instrument	can	be	removed	dynamically	by	restoring	the	original	op	code.	A	print	statement
added	 to	 your	 source	 code	 is	 an	 example	 of	 a	 permanent	 instrument,	 because	 removal
requires	editing	and	recompiling.
instrument	An	embedded	system	that	collects	information,	same	as	data	acquisition	system.
instrumentation		The	debugging	process	of	injecting	or	inserting	an	instrument.
instrumentation	amp	A	 differential	 amplifier	 analog	 circuit,	which	 can	 have	 large	 gain,
large	input	impedance,	small	output	impedance,	and	a	good	common	mode	rejection	ration.
internal	fragmentation	Storage	that	is	allocated	for	the	convenience	of	the	operating
system	but	contains	no	information.	This	space	is	wasted.
interrupt	 	 A	 software/hardware	 synchronization	 method	 where	 the	 hardware	 causes	 a
special	software	program	(interrupt	handler)	to	execute	when	its	operation	to	complete.	The
software	usually	can	perform	other	work	while	waiting	for	the	hardware.
interrupt	flag	A	status	bit	that	is	set	by	the	timer	hardware	to	signify	an	external	event	has
occurred.
interrupt	mask	A	control	bit	that,	if	programmed	to	1,	will	cause	an	interrupt	request	when
the	associated	flag	is	set.	Same	as	arm.
interrupt	service	routine	(ISR)	Program	that	runs	as	a	result	of	an	interrupt.
interrupt	vector	32-bit	values	in	ROM	specifying	where	the	software	should	execute	after
an	interrupt	request.	There	is	a	unique	interrupt	vector	for	each	type	of	interrupt	including
reset.
intrusive	The	debugger	itself	affects	the	program	being	tested.			See	nonintrusive.
Inverse	Discrete	Fourier	Transform	(IDFT)	A	technique	to	convert	data	in	the	frequency

domain	to	data	in	the	time	domain.	If	there	are	N	data	points	and	the	sampling	rate	is	fs,	the
resulting	frequency	resolution	will	be	fs	/N.

invocation	coupling	Module	A	is	connected	to	Module	B,	because	A	calls	B.
I/O	mapped	I/O	A	configuration	where	the	I/O	devices	are	interfaced	to	the	computer	in	a
manner	different	than	the	way	memories	are	connected,	from	an	interfacing	perspective	I/O
devices	 and	 memory	 modules	 have	 separate	 bus	 signals,	 from	 a	 programmer’s	 point	 of
view	the	I/O	devices	have	their	own	I/O	address	map	separate	from	the	memory	map,	and
I/O	device	access	requires	the	use	of	special	I/O	instructions
IOH		Output	current	when	the	signal	is	high.	This	is	the	maximum	current	that	has	a	voltage
above	VOH.
IOL		Output	current	when	the	signal	is	low.	This	is	the	maximum	current	that	has	a	voltage
below	VOL.
jerk		The	change	in	acceleration;	the	derivative	of	the	acceleration.
Johnson	noise	A	fundamental	noise	in	resistive	devices	arising	from	the	uncertainty	about
the	position	and	velocity	of	individual	molecules.	Same	as	thermal	noise	and	white	noise.
join	The	dynamic	action	of	combining	multiple	threads	or	processes	at	run	time.	The	fork
operation	will	take	one	thread/process	and	create	multiple	children.	The	join	operation	will
take	the	multiple	threads/processes	and	convert	it	back	to	one.	See	also	fork.

kibibyte	(KiB)	210	or	1024	bytes.	Compare	to	kilobyte,	which	is	1000	bytes.
latch	As	a	noun,	it	means	a	register.	As	a	verb,	it	means	to	store	data	into	the	register.
latched	input	port	 	An	input	port	where	the	signals	are	latched	(saved)	on	an	edge	of	an
associated	strobe	signal.
latency		In	this	book	latency	usually	refers	to	the	response	time	of	the	computer	to	external
events.	For	example,	the	time	between	new	input	becoming	available	and	the	time	the	input
is	read	by	the	computer.	For	example,	the	time	between	an	output	device	becoming	idle	and
the	time	the	input	is	the	computer	writes	new	data	to	it.	There	can	also	be	latency	for	an	I/O
device,	 which	 is	 the	 response	 time	 of	 the	 external	 I/O	 device	 hardware	 to	 a	 software
command.
LCD		Liquid	Crystal	Display,	where	the	computer	controls	the	reflectance	or	transmittance
of	 the	 liquid	 crystal,	 characterized	by	 its	 flexible	display	patterns,	 low	power,	 and	 slow
speed.
LED		Light	Emitting	Diode,	where	the	computer	controls	the	electrical	power	to	the	diode,
characterized	by	its	simple	display	patterns,	medium	power,	and	high	speed.
light-weight	process		Same	as	a	thread.	
linear	filter	A	filter	where	the	output	is	a	linear	combination	of	its	inputs.
linear	 recursion	 A	 recursive	 technique	 that	 makes	 only	 one	 call	 to	 itself	 during	 the
execution	of	the	function.	Linear	recursive	functions	are	easier	to	implement	iteratively.	We
draw	the	execution	pattern	as	a	straight	or	linear	path.	See	also	recursion,	binary	recursion,
and	tail	recursion.
little	endian	Mechanism	 for	 storing	multiple	 byte	 numbers	 such	 that	 the	 least	 significant
byte	exists	first	(in	the	smallest	memory	address).	Contrast	with	big	endian.
loader	 	System	software	that	places	the	object	code	into	the	microcontroller’s	memory.	If
the	object	code	is	stored	in	EPROM,	the	loader	is	also	called	a	EPROM	programmer.

Local	Area	Network	(LAN)	A	connection	between	computers	confined	to	a	small	space,
such	as	a	room	or	a	building.
logic	analyzer		A	hardware	debugging	tool	that	allows	you	to	visualize	many	digital	logic
signals	versus	time.	Real	logic	analyzers	have	at	least	32	channels	and	can	have	up	to	200
channels,	with	 sophisticated	 techniques	 for	 triggering,	 saving	 and	 analyzing	 the	 real-time
data.	In	TExaS,	logic	analyzers	have	only	8	channels	and	simply	plot	digital	signals	versus
time.
LSB		The	least	significant	bit	in	a	number	system	is	the	bit	with	the	smallest	significance,
usually	the	right-most	bit.	With	signed	or	unsigned	integers,	the	significance	of	the	LSB	is	1.
maintenance	 	 Process	 of	 verifying,	 changing,	 correcting,	 enhancing,	 and	 extending	 a
system.
make	before	break	in	a	double-throw	relay	or	double-throw	switch,	there	is	one	common
contact	and	two	separate	contacts.	Make	before	break	means	as	the	common	contact	moves
from	 one	 of	 separate	 contacts	 to	 another,	 it	 will	 make	 (finishing	 bouncing)	 the	 second
contact	before	 it	breaks	off	 (start	bouncing)	 the	 first	contact.	A	 form	D	 relay	has	a	make
before	break	operation.
mailbox	A	formal	communication	structure,	similar	to	a	FIFO	queue,	where	the	source	task
puts	data	into	the	mailbox	and	the	sink	task	gets	data	from	the	mailbox.	The	mailbox	can
hold	at	most	one	piece	of	data	at	a	time,	and	has	two	states:	mailbox	has	valid	data	or
mailbox	is	empty.
main	thread	A	thread	runs	like	a	main	program.	If	it	is	static,	it	is	created	on	startup	and
runs	forever	by	the	scheduler.	It	could	also	be	dynamic,	created	at	run	time.	Main	threads
can	sleep,	block,	and	be	killed.	Compare	to	event	thread.
mark	A	digital	value	of	true	or	logic	1.	Contrast	with	space.
mask		As	a	verb,	mask	is	the	operation	that	selects	certain	bits	out	of	many	bits,	using	the
logical	and	operation.	The	bits	 that	are	not	being	selected	will	be	cleared	 to	zero.	When
used	as	a	noun,	mask	refers	to	the	specific	bits	that	are	being	selected.

Mealy	FSM	A	FSM	where	the	both	the	output	and	next	state	are	a	function	of	the	input	and	state
measurand	A	signal	measured	by	a	data	acquisition	system.

mebibyte	(MiB)	220	or	1,048,576	bytes.	Compare	to	megabyte,	which	is	1,000,000	bytes.
membership	sets	Fuzzy	logic	variables	that	can	take	on	a	range	of	values	from	true	(255)	to
false	(0).
memory	A	computer	component	capable	of	storing	and	recalling	information.
memory-mapped	I/O	A	configuration	where	the	I/O	devices	are	interfaced	to	the	computer
in	a	manner	identical	to	the	way	memories	are	connected,	from	an	interfacing	perspective
I/O	devices	and	memory	modules	shares	the	same	bus	signals,	from	a	programmer’s	point
of	view	the	I/O	devices	exist	as	locations	in	the	memory	map,	and	I/O	device	access	can	be
performed	using	any	of	the	memory	access	instructions.
microcomputer	 A	 small	 electronic	 device	 capable	 of	 performing	 input/output	 functions
containing	a	microprocessor,	memory,	and	I/O	devices,	where	small	means	you	can	carry	it.
microcontroller	A	single	chip	microcomputer	 like	 the	TI	MSP430,	Freescale	9S12,	 Intel
8051,	PIC16,	or	the	Texas	Instruments	TM4C123.
mnemonicThe	symbolic	name	of	an	operation	code,	like mov	str	push .
modem	An	 electronic	 device	 that	MOdulates	 and	DEModulates	 a	 communication	 signal.

Used	in	serial	communication	across	telephone	lines.
monitor	or	debugger	window		A	monitor	is	a	debugger	feature	that	allows	us	to	passively
view	 strategic	 software	 parameters	 during	 the	 real-time	 execution	 of	 our	 program.	 An
effective	monitor	 is	 one	 that	 has	minimal	 effect	 on	 the	 performance	 of	 the	 system.	When
debugging	software	on	a	windows-based	machine,	we	can	often	set	up	a	debugger	window
that	displays	the	current	value	of	certain	software	variables.
Moore	FSM	A	FSM	where	the	both	the	output	is	only	a	function	of	the	state	and	the	next
state	is	a	function	of	the	input	and	state
MOSFET	Metal	oxide	semiconductor	field	effect	transistor.
MSB	The	most	significant	bit	in	a	number	system	is	 the	bit	with	the	greatest	significance,
usually	the	left-most	bit.	If	the	number	system	is	signed,	then	the	MSB	signifies	positive	(0)
or	negative	(1).
multiple	access	circular	queue	MACQ	A	data	structure	used	in	data	acquisition	systems	to
hold	the	current	sample	and	a	finite	number	of	previous	samples.
multithreaded	 	A	system	with	multiple	 threads	 (e.g.,	main	program	and	 interrupt	 service
routines)	that	cooperate	towards	a	common	overall	goal.	
mutual	exclusion	or	mutex		Thread	synchronization	where	at	most	one	thread	at	a	time	is
allowed	to	enter.	
negative	feedback	An	analog	system	with	negative	gain	feedback	paths.	These	systems	are
often	stable.
negative	 logic	A	signal	where	 the	 true	value	has	a	 lower	voltage	 than	 the	false	value,	 in
digital	 logic	 true	 is	0	and	 false	 is	1,	 in	TTL	 logic	 true	 is	 less	 than	0.7	volts	and	 false	 is
greater	 than	2	volts,	 in	RS232	protocol	 true	 is	 -12	volts	 and	 false	 is	+12	volts.	Contrast
with	positive	logic.
nibble		4	binary	bits	or	1	hexadecimal	digit.
nonatomic	 	Software	 execution	 that	 can	be	divided	or	 interrupted.	Most	 lines	of	C	code
require	multiple	assembly	language	instructions	to	execute,	therefore	an	interrupt	may	occur
in	the	middle	of	a	line	of	C	code.	The	instructionsstore	and	load	multiple, STM	LDM ,	are
nonatomic.
nonintrusive	A	characteristic	when	the	presence	of	the	collection	of	information	itself	does
not	affect	the	parameters	being	measured.			Nonintrusiveness	is	the	characteristic	or	quality
of	 a	 debugger	 that	 allows	 the	 software/hardware	 system	 to	 operate	 normally	 as	 if	 the
debugger	 did	 not	 exist.	 Intrusiveness	 is	 used	 as	 a	measure	 of	 the	 degree	 of	 perturbation
caused	in	program	performance	by	an	instrument.	For	example,	a	print	statement	added	to
your	source	code	and	single-stepping	are	very	intrusive	because	they	significantly	affect	the
real-time	 interaction	 of	 the	 hardware	 and	 software.	When	 a	 program	 interacts	with	 real-
time	events,	 the	performance	is	significantly	altered.	On	the	other	hand,	an	instrument	that
toggles	an	LED	on	and	off	(requiring	less	than	a	1	µs	to	execute)	is	much	less	intrusive.	A
logic	analyzer	that	passively	monitors	the	address	and	data	by	is	completely	nonintrusive.	
An	in-circuit	emulator	is	also	non-intrusive	because	the	software	input/output	relationships
will	be	the	same	with	and	without	the	debugging	tool.
nonlinear	filter	 A	 filter	where	 the	 output	 is	 not	 a	 linear	 combination	 of	 its	 inputs.	 E.g.,
median,	minimum,	maximum	are	examples	of	nonlinear	filters.	Contrast	to	linear	filter.
nonpreemptive	scheduler	 	A	scheduler	that	cannot	suspend	execution	of	a	thread	without

the	thread's	permission.	The	thread	must	cooperate	and	suspend	itself.	Same	as	cooperative
multi-tasking.
nonreentrant	 	 A	 software	 module	 which	 once	 started	 by	 one	 thread,	 should	 not	 be
interrupted	 and	 executed	 by	 a	 second	 thread.	 A	 nonreentrant	 modules	 usually	 involve
nonatomic	accesses	to	global	variables	or	I/O	ports:	read	modify	write,	write	followed	by
read,	or	a	multistep	write.
nonvolatile	A	 condition	 where	 information	 is	 not	 lost	 when	 power	 is	 removed.	 When
power	 is	 restored,	 then	 the	 information	 is	 in	 the	 state	 that	occurred	when	 the	power	was
removed.
Nyquist	 Theorem	 If	 a	 input	 signal	 is	 captured	 by	 an	 ADC	 at	 the	 regular	 rate	 of	 fs
samples/sec,	 then	 the	 digital	 sequence	 can	 accurately	 represent	 the	 0	 to	 ½	 fs	 frequency
components	of	the	original	signal.
object	code		Programs	in	machine	readable	format	created	by	the	compiler	or	assembler.
odd	parity	A	communication	protocol	where	the	number	of	ones	in	the	data	plus	a	parity	bit
is	an	odd	number.	Contrast	with	even	parity.
op	amp	An	integrated	analog	component	with	two	inputs,	(V2,V1)	and	an	output	(Vout),	where
Vout=K•(V2-V1).	The	amp	has	a	very	large	gain,	K.	Same	as	operational	amplifier.
op	code,	opcode,	or	operation	code	A	specific	instruction	executed	by	the	computer.	The
op	 code	 along	 with	 the	 operand	 completely	 specifies	 the	 function	 to	 be	 performed.	 In
assembly	 language	programming,	 the	op	code	 is	 represented	by	 its	mnemonic,	 like	MOV.
During	execution,	the	op	code	is	stored	as	a	machine	code	loaded	in	memory.
open	collector		A	digital	logic	output	that	has	two	states	low	and	HiZ.	Same	as	open	drain
and	wire-or-mode.
open	drain		A	digital	logic	output	that	has	two	states	low	and	HiZ.	Same	as	open	collector
and	wire-or-mode.
open	 loop	control	system	A	control	 system	 that	does	not	 include	 sensors	 to	measure	 the
current	state	variables.	An	analog	system	with	no	feedback	paths.
operand	The	second	part	of	an	instruction	that	specifies	either	the	data	or	the	address	for
that	 instruction.	 An	 assembly	 instruction	 typically	 has	 an	 op	 code	 (e.g.,	 MOV)	 and	 an
operand	 (e.g.,	 R0,#55).	 Instructions	 that	 use	 inherent	 addressing	 mode	 have	 no	 operand
field.
operating	 system	 System	 software	 for	 managing	 computer	 resources	 and	 facilitating
common	functions	like	input/output,	memory	management,	and	file	system.
originate	modem	the	device	that	places	the	telephone	call.
oscilloscope	 	A	hardware	debugging	 tool	 that	 allows	you	 to	visualize	one	or	 two	analog
signals	versus	time.
output	compare	A	mechanism	to	cause	a	flag	to	be	set	and	an	output	pin	to	change	when	the
timer	matches	a	preset	value.	The	output	compare	event	can	also	request	an	interrupt.
output	impedance	Open	circuit	output	voltage	divided	by	short	circuit	output	current.
overflow	An	 error	 that	occurs	when	 the	 result	 of	 a	 calculation	 exceeds	 the	 range	 of	 the
number	system.	For	example,	with	8-bit	unsigned	integers,	200+57	will	yield	the	incorrect
result	of	1.
overrun	error	An	 error	 that	 occurs	when	 the	 receiver	 gets	 a	 new	 frame	 but	 the	 receive
FIFO	and	shift	register	already	have	information.

paged	memory		A	memory	organization	where	logical	addresses	(used	by	software)	have
multiple	and	distinct	components	or	fields.	The	number	of	bits	in	the	least	significant	field
defines	 the	 page	 size.	 The	 physical	 memory	 is	 usually	 continuous	 having	 sequential
addresses.	There	is	a	dynamic	address	translation	(logical	to	physical).
parallel	port		A	port	where	all	signals	are	available	simultaneously.	In	this	book	the	ports
are	8	bits	wide.
parallel	processing	A	system	that	supports	two	or	more	programs	being	executed	at	the
same	time.	A	computer	with	multiple	cores	implements	parallel	programming.	Compare	to
concurrent	and	distributed.
partially	 asynchronous	 bus	 	 a	 communication	 protocol	 that	 has	 a	 central	 clock	 but	 the
memory	module	can	dynamically	extend	the	length	of	a	bus	cycle	(cycle	stretch)	if	it	needs
more	time
path	expression	A	software	technique	to	guarantee	subfunctions	within	a	module	are
executed	in	a	proper	sequence.	For	example,	it	forces	the	user	to	initialize	I/O	device
before	attempting	to	perform	I/O.
PC-relative	addressing	An	addressing	mode	where	the	effective	address	is	calculated	by
its	position	relative	to	the	current	value	of	the	program	counter.
performance	 debugging	 or	 profiling	 	 The	 process	 of	 acquiring	 or	 modifying	 timing
characteristics	 and	 execution	 patterns	 of	 a	 program	 and	 the	 process	 of	 instrumenting	 a
program	for	such	purposes	is	called	performance	debugging	or	profiling.
periodic	 polling	 	 A	 software/hardware	 synchronization	 method	 that	 is	 a	 combination	 of
interrupts	and	busy	wait.	An	interrupt	occurs	at	a	regular	rate	(periodic)	independent	of	the
hardware	status.	The	interrupt	handler	checks	the	hardware	device	(polls)	 to	determine	if
its	operation	is	complete.	The	software	usually	can	perform	other	work	while	waiting	for
the	hardware.
Personal	Area	Network	(PAN)	A	connection	between	computers	controlled	by	a	single
person	or	all	working	toward	for	a	well-defined	single	task.
phase	shift	key	(PSK)	a	protocol	that	encodes	the	information	as	phase	changes	between
the	sounds.
photosensor	A	transducer	that	converts	reflected	or	transmitted	light	into	electric	current.
physical	plant	The	physical	device	being	controlled.
PID	controller	A	control	system	where	the	actuator	output	depends	on	a	linear	combination
of	the	current	error	(P),	the	integral	of	the	error	(I)	and	the	derivative	of	the	error	(D).
pink	noise	A	fundamental	noise	 in	 resistive	devices	arising	from	fluctuating	conductivity.
Same	as	1/f	noise.
pole	A	place	in	the	frequency	domain	where	the	filter	gain	is	infinite.
polling	A	 software	 function	 to	 look	 and	 see	which	of	 the	potential	 sources	 requested	 the
interrupt.
port	External	pins	through	which	the	microcontroller	can	perform	input/output.	Same	as	I/O
port.
positive	feedback	An	analog	system	with	positive	gain	feedback	paths.	These	systems	will
saturate.
positive	 logic	a	 signal	where	 the	 true	 value	 has	 a	 higher	 voltage	 than	 the	 false	 value,	 in
digital	 logic	true	is	1	and	false	is	0,	 in	TTL	logic	true	is	greater	than	2	volts	and	false	is

less	than	0.7	volts,	in	RS232	protocol	true	is	+12	volts	and	false	is	-12	volts.	Contrast	with
negative	logic.
potentiometer	A	transducer	that	converts	position	into	electric	resistance.
precision	 A	 term	 specifying	 the	 degrees	 of	 freedom	 from	 random	 errors.	 For	 an	 input
signal,	it	is	the	number	of	distinguishable	input	signals	that	can	be	reliably	detected	by	the
measurement.	For	an	output	signal,	it	is	the	number	of	different	output	parameters	that	can
be	 produced	 by	 the	 system.	For	 a	 number	 system,	 precision	 is	 the	 number	 of	 distinct	 or
different	values	of	a	number	system	 in	units	of	“alternatives”.	The	precision	of	a	number
system	is	also	the	number	of	binary	digits	required	to	represent	all	its	numbers	in	units	of
“bits”.
preemptive	scheduler	 	A	 scheduler	 that	 has	 the	 power	 to	 suspend	 execution	of	 a	 thread
without	the	thread's	permission.
priority	 	 When	 two	 requests	 for	 service	 are	 made	 simultaneously,	 priority	 determines
which	order	to	process	them.
private		Can	be	accessed	only	by	software	modules	in	that	local	group.
private	variable	A	global	variable	that	is	used	by	a	single	thread,	and	not	shared	with	other
threads.
process	 	 The	 execution	 of	 software	 that	 does	 not	 necessarily	 cooperate	 with	 other
processes.	
producer-consumer	A	multithreaded	 system	where	 the	producers	generate	new	data,	 and
the	consumers	process	or	output	the	data.
profile	A	collection	of	services	implemented	by	Bluetooth.
profiling		See	performance	debugging.	
program	counter	(PC)	A	register	in	the	processor	that	points	to	the	memory	containing	the
instruction	to	execute	next.
PROM	Same	as	EPROM.	Programmable	read	only	memory	that	is	nonvolatile	and	requires
external	devices	to	erase	and	reprogram.	It	is	usually	erased	using	UV	light.
promotion	 Increasing	 the	 precision	 of	 a	 number	 for	 convenience	 or	 to	 avoid	 overflow
errors	during	calculations.
pseudo	interrupt	vector	A	secondary	place	for	the	interrupt	vectors	for	the	convenience	of
the	debugger,	because	the	debugger	cannot	or	does	not	want	the	user	to	modify	the	real
interrupt	vectors.	They	provide	flexibility	for	debugging	but	incur	a	run	time	delay	during
execution.
pseudo	op	Operations	included	in	the	program	that	are	not	executed	by	the	computer	at	run
time,	 but	 rather	 are	 interpreted	 by	 the	 assembler	 during	 the	 assembly	 process.	 Same	 as
assembly	directive.
pseudo-code	 A	 shorthand	 for	 describing	 a	 software	 algorithm.	 The	 exact	 format	 is	 not
defined,	 but	 many	 programmers	 use	 their	 favorite	 high-level	 language	 syntax	 (like	 C)
without	paying	rigorous	attention	to	the	punctuation.
public		Can	be	accessed	by	any	software	module.
public	variable	A	global	variable	that	is	shared	by	multiple	programs	or	threads.
pulse	width	modulation	A	technique	to	deliver	a	variable	signal	(voltage,	power,	energy)
using	an	on/off	signal	with	a	variable	percentage	of	time	the	signal	is	on	(duty	cycle).	Same
as	variable	duty	cycle.

Q	 The	 Q	 of	 a	 bandpass	 filter	 (passes	 fmin	 to	 fmax)	 is	 the	 center	 pass	 frequency	 (fo=
(fmax+fmin)/2)	divided	by	the	width	of	the	pass	region,	Q=fo/(fmax-fmin).	The	Q	of	a	bandreject
filter	(rejects	fmin	to	fmax)	is	the	center	reject	frequency	(fo=(fmax+fmin)/2)	divided	by	the	width
of	the	reject	region,	Q=fo/(fmax-fmin).
quadrature	amplitude	modem	(QAM)	a	protocol	that	used	both	the	phase	and	amplitude
to	encode	up	to	6	bits	onto	each	baud.
qualitative	DAS	A	DAS	that	collects	information	not	in	the	form	of	numerical	values,	but
rather	 in	 the	 form	of	 the	 qualitative	 senses,	 e.g.,	 sight,	 hearing,	 smell,	 taste	 and	 touch.	A
qualitative	DAS	may	also	detect	the	presence	or	absence	of	conditions.
quantitative	DAS	A	DAS	that	collects	information	in	the	form	of	numerical	values.
RAM	Random	Access	Memory,	a	type	of	memory	where	is	the	information	can	be	stored
and	retrieved	easily	and	quickly.	Since	it	is	volatile	the	information	is	lost	when	power	is
removed.
range	Includes	both	the	smallest	possible	and	the	largest	possible	signal	(input	or	output).
The	 difference	 between	 the	 largest	 and	 smallest	 input	 that	 can	 be	 measured	 by	 the
instrument.	The	units	are	 in	 the	units	of	 the	measurand.	When	precision	 is	 in	alternatives,
range=precision•resolution.		Same	as	span
read	cycle	data	flows	from	the	memory	or	 input	device	 to	 the	processor,	 the	address	bus
specifies	the	memory	or	input	device	location	and	the	data	bus	contains	the	information	at
that	address
read	data	available	The	time	interval	(start,end)	during	which	the	data	will	be	valid	during
a	read	cycle,	determined	by	the	memory	module
real-time	A	characteristic	of	a	system	that	can	guarantee	an	upper	bound	(worst	case)	on
latency.
real-time	system	A	system	where	time-critical	operations	occur	when	needed.
recursion	A	programming	technique	where	a	function	calls	itself.
reduced	instruction	set	computer	(RISC)	A	computer	with	a	few	instructions,	instructions
with	 fixed	 lengths,	 instructions	 that	execute	 in	1	or	2	bus	cycles,	only	 load	and	store	can
access	memory,	no	one	instruction	can	both	read	and	write	memory,	many	identical	general
purpose	registers,	and	a	limited	number	of	addressing	modes.		Contrast	to	CISC.
reentrant	 	A	software	module	that	can	be	started	by	one	thread,	interrupted	and	executed
by	a	second	thread.	A	reentrant	module	allows	both	threads	to	properly	execute	the	desired
function.		Contrast	with	non-reentrant.
registers	 High-speed	 memory	 located	 in	 the	 processor.	 The	 registers	 in	 the	 ARM®
Cortex™-M	include	R0	through	R15.
relay		A	mechanical	switch	that	can	be	turned	on	and	off	by	the	computer.
reliability	 	 The	 ability	 of	 a	 system	 to	 operate	 within	 specified	 parameters	 for	 a	 stated
period	of	time.	Given	in	terms	of	mean	time	between	failures	(MTBF).
reproducibility	 (or	 repeatability)	 A	 parameter	 specifying	 how	 consistent	 over	 time	 the
measurement	is	when	the	input	remains	fixed.
requirements	document	A	formal	description	of	what	the	system	will	do	in	a	very
complete	way,	but	not	including	how	it	will	be	done.	It	should	be	unambiguous,	complete,
verifiable,	and	modifiable.
reset	 vector	 The	 32-bit	 value	 at	 memory	 locations	 0x0000.0004	 specifying	 where	 the

software	should	start	after	power	is	turned	on	or	after	a	hardware	reset.
resolution	For	an	input	signal,	 it	 is	the	smallest	change	in	the	input	parameter	that	can	be
reliably	detected	by	the	measurement.	For	an	output	signal,	it	is	the	smallest	change	in	the
output	 parameter	 that	 can	 be	 produced	 by	 the	 system,	 range	 equals	 precision	 times
resolution.	 	The	units	are	in	the	units	of	the	measurand.	When	precision	is	in	alternatives,
range=precision•resolution.
response	time	 	Similar	 to	 latency,	 it	 is	 the	delay	between	when	 the	 time	an	event	occurs
and	the	time	the	software	responds	to	the	event.
ritual	 	 Software,	 usually	 executed	 once	 at	 the	 beginning	 of	 the	 program,	 that	 defines	 the
operational	modes	of	the	I/O	ports.
ROM	Read	Only	Memory,	a	type	of	memory	where	is	the	information	is	programmed	into
the	 device	 once,	 but	 can	 be	 accessed	 quickly.	 It	 is	 low	 cost,	must	 be	 purchased	 in	 high
volume	 and	 can	 be	 programmed	 only	 once.	 See	 also	 EPROM,	 EEPROM,	 and	 flash
EEPROM.

rotor	The	part	of	a	motor	that	rotates.
round	robin	scheduler		A	scheduler	that	runs	each	active	thread	equally.
roundoff	The	error	that	occurs	in	a	fixed-point	or	floating-point	calculation	when	the	least
significant	 bits	 of	 an	 intermediate	 calculation	 are	 discarded	 so	 the	 result	 can	 fit	 into	 the
finite	precision.
sample	and	hold	A	circuit	used	to	latch	a	rapidly	changing	analog	signal,	capturing	its	input
value	and	holding	its	output	constant.
sampling	rate	The	rate	at	which	data	is	collected	in	a	data	acquisition	system.
saturation	A	device	 that	 is	 no	 longer	 sensitive	 to	 its	 inputs	when	 its	 input	goes	 above	 a
maximum	value	or	below	a	minimum	value.
scan	or	scanpoint	 	Any	 instrument	used	 to	produce	a	side	effect	without	causing	a	break
(halt)	 is	 a	 scan.	 	 Therefore,	 a	 scan	 may	 be	 used	 to	 gather	 data	 passively	 or	 to	 modify
functions	of	a	program.	Examples	include	software	added	to	your	source	code	that	simply
outputs	or	modifies	a	global	variable	without	halting.	A	scanpoint	is	triggered	in	a	manner
similar	 to	 a	 breakpoint	 but	 a	 scanpoint	 simply	 records	 data	 at	 that	 time	 without	 halting
execution.
scheduler		System	software	that	suspends	and	launches	threads.
Schmitt	Trigger		A	digital	interface	with	hysteresis	making	it	less	susceptible	to	noise.
scope	 	A	 logic	analyzer	or	an	oscilloscope,	hardware	debugging	 tools	 that	allows	you	 to
visualize	multiple	digital	or	analog	signals	versus	time.
select	signal	 The	 output	 of	 the	 address	 decoder	 (each	module	 on	 the	 bus	 has	 a	 separate
address	 decoder);	 a	 Boolean	 (true/false)	 signal	 specifying	 whether	 or	 not	 the	 current
address	of	the	bus	matches	the	device	address
semaphore	A	system	function	with	two	operations	(wait	and	signal)	that	provide	for	thread
synchronization	and	resource	sharing.
sensitivity	The	sensitivity	of	a	transducer	is	the	slope	of	the	output	versus	input	response.
The	sensitivity	of	a	qualitative	DAS	that	detects	events	 is	 the	percentage	of	actual	events
that	are	properly	recognized	by	the	system.
serial	communication	A	process	where	information	is	transmitted	one	bit	at	a	time.
serial	 peripheral	 interface	 (SPI)	 A	 device	 to	 transmit	 data	 with	 synchronous	 serial

communication	protocol.	Same	as	SSI.
serial	port	An	I/O	port	with	which	the	bits	are	input	or	output	one	at	a	time.
service	A	 collection	 of	 Bluetooth	 functionalities	 that	 taken	 together	 solve	 one	 coherent
system	 function.	 Examples	 include	 blood	 pressure	 monitor	 and	 human	 interface	 device
(mouse,	keyboard).
servo	A	DC	motor	with	built	in	controller.	The	microcontroller	specifies	desired	position
and	the	servo	adds/subtracts	power	to	move	the	shaft	to	that	position.
setup	time	When	latching	data	into	a	register	with	a	clock,	it	is	the	time	before	an	edge	the
input	must	be	valid.	Contrast	with	hold	time.
shot	noise	A	fundamental	noise	that	occurs	in	devices	that	count	discrete	events.
signed	 two’s	 complement	 binary	 A	 mechanism	 to	 represent	 signed	 integers	 where	 1
followed	 by	 all	 0’s	 is	 the	most	 negative	 number,	 all	 1’s	 represents	 the	 value	 -1,	 all	 0’s
represents	the	value	0,	and	0	followed	by	all	1’s	is	the	largest	positive	number.
sign-magnitude	 binary	 A	 mechanism	 to	 represent	 signed	 integers	 where	 the	 most
significant	 bit	 is	 set	 if	 the	 number	 is	 negative,	 and	 the	 remaining	 bits	 represent	 the
magnitude	as	an	unsigned	binary.
simplex	channel	Hardware	 that	 allows	bits	 (information,	 error	 checking,	 synchronization
or	 overhead)	 to	 transfer	 only	 in	 one	 direction.	Contrast	with	 half	 duplex	 and	 full	 duplex
channels.
simplex	communication	A	system	that	allows	information	to	transfer	only	in	one	direction.
simulator		A	simulator	is	a	software	application	that	simulates	or	mimics	the	operation	of	a
processor	or	computer	system.	Most	simulators	recreate	only	simple	I/O	ports	and	often	do
not	effectively	duplicate	 the	real-time	 interactions	of	 the	software/hardware	 interface.	On
the	 other	 hand,	 they	 do	 provide	 a	 simple	 and	 interactive	 mechanism	 to	 test	 software.
Simulators	are	especially	useful	when	learning	a	new	language,	because	they	provide	more
control	and	access	to	the	simulated	machine,	than	one	normally	has	with	real	hardware.
single	 address	DMA	Direct	memory	 access	 that	 requires	 only	 one	 bus	 cycle	 to	 transfer
data	from	an	input	device	into	memory,	or	from	memory	to	an	output	device.
single	 cycle	DMA	An	 I/O	 synchronization	 scheme	 that	 transfers	 data	 one	 item	 at	 a	 time
directly	 from	an	 input	device	 into	memory,	or	directly	 from	memory	 to	an	output	device.
Same	as	cycle	steal	DMA.
single-pole	relay	A	 simple	 relay	with	 only	 one	 copy	 of	 the	 switch	mechanism.	Contrast
with	double	pole.
single-pole	 switch	 A	 simple	 switch	 with	 only	 one	 copy	 of	 the	 switch	 mechanism.	 One
switch	that	acts	independent	from	other	switches	in	the	system.	Contrast	with	double-pole.
single-throw	 switch	 A	 switch	 with	 two	 contact	 connections.	 The	 two	 contacts	 may	 be
connected	or	disconnected.		Contrast	with	double-throw.
slack	time	The	time-to-deadline	minus	the	how	long	it	will	take	to	complete	the	task.	For
example,	if	slack	time	is	zero,	then	you	could	complete	the	task	on	time	if	you	devoted
100%	of	your	resources.
slew	rate	The	maximum	slope	of	a	signal.	If	the	time-varying	signal	V(t)	is	in	volts,	the
slew	rate	is	the	maximum	dV/dt	in	volts/s.
soft	 real-time	 A	 system	 that	 implements	 best	 effort	 to	 execute	 critical	 tasks	 on	 time,
typically	using	a	priority	scheduler.	Once	a	deadline	as	passed,	the	value	of	completing	the

task	diminishes	over	time.	Compare	to	hard	real-time	and	firm	real-time.
software	interrupt	A	software	interrupt	is	similar	to	a	regular	or	hardware	interrupt:	there
is	a	trigger	that	invokes	the	execution	of	an	ISR.	On	the	CortexTM-M,	there	are	two	software
interrupts:	 supervisor	 call	 and	 PendSV	 (vectors	 at	 0x00000028	 and	 0x00000038
respectively).	 The	 difference	 between	 hardware	 and	 software	 interrupts	 is	 the	 trigger.
Hardware	 interrupts	 are	 triggered	 by	 hardware	 events,	 while	 software	 interrupts	 are
triggered	explicitly	by	software.	For	example,	to	invoke	a	PendSV,	the	software	sets	bit	28
of	the	NVIC_INT_CTRL_R	register.	Same	as	trap.
software	maintenance	Process	of	verifying,	changing,	correcting,	enhancing,	and	extending
software.
solenoid		A	discrete	motion	device	(on/off)	that	can	be	controlled	by	the	computer	usually
by	activating	an	electromagnet.	For	example,	electronic	door	locks	on	automobiles.
source	code		Programs	in	human	readable	format	created	with	an	editor.
space	A	digital	value	of	false	or	logic	0.	Contrast	with	mark.
span		Same	as	range.
spatial	 resolution	 The	 volume	 over	 which	 the	 DAS	 collects	 information	 about	 the
measurand.
specificity	The	 specificity	 of	 a	 transducer	 is	 the	 relative	 sensitivity	 of	 the	 device	 to	 the
signal	 of	 interest	 versus	 the	 sensitivity	 of	 the	 device	 to	 other	 unwanted	 signals.	 The
sensitivity	of	a	qualitative	DAS	that	detects	events	is	the	percentage	of	events	detected	by
the	system	that	are	actually	true	events.
spinlock	 semaphore	 	 A	 semaphore	 where	 the	 threads	 will	 spin	 (run	 but	 do	 no	 useful
function)	when	they	execute	wait	on	a	busy	semaphore.	Contrast	to	blocking	semaphore.
stabilize		The	debugging	process	of	stabilizing	a	software	system	involves	specifying	all	its
inputs.	 When	 a	 system	 is	 stabilized,	 the	 output	 results	 are	 consistently	 repeatable.
Stabilizing	a	system	with	multiple	real-time	events,	like	input	devices	and	time-dependent
conditions,	can	be	difficult	to	accomplish.	It	often	involves	replacing	input	hardware	with
sequential	reads	from	an	array	or	disk	file.
stack	 Last	 in	 first	 out	 data	 structure	 located	 in	 RAM	 and	 used	 to	 temporarily	 save
information.
stack	pointer	(SP)	A	register	in	the	processor	that	points	to	the	RAM	location	of	the	stack.
start	 bit	 An	 overhead	 bit(s)	 specifying	 the	 beginning	 of	 the	 frame,	 used	 in	 serial
communication	 to	 synchronize	 the	 receiver	 shift	 register	with	 the	 transmitter	 clock.	 	 See
also	stop	bit,	even	parity	and	odd	parity.
starvation		A	condition	that	occurs	with	a	priority	scheduler	where	low	priority	threads	are
never	run.
static	allocation	 	Data	structures	such	as	an	FSM	or	TCB	that	are	defined	at	assembly	or
compile	time	and	exist	throughout	the	life	of	the	software.	Contrast	to	dynamic	allocation.
static	RAM	Volatile	read/write	storage	built	from	three	transistors	having	fast	speed,	and
not	requiring	refresh.	Contrast	with	dynamic	RAM.

stator	The	part	of	a	motor	that	remains	stationary.	Same	as	frame.
stepper	motor		A	motor	that	moves	in	discrete	steps.
stop	bit		An	overhead	bit(s)	specifying	the	end	of	the	frame,	used	in	serial	communication
to	separate	one	frame	from	the	next.	See	also	start	bit,	even	parity	and	odd	parity.

strain	gauge	A	transducer	that	converts	displacement	into	electric	resistance.	It	can	also	be
used	to	measure	force	or	pressure.
string	A	sequence	of	ASCII	characters,	usually	terminated	with	a	zero.
symbol	 table	 A	 mapping	 from	 a	 symbolic	 name	 to	 its	 corresponding	 16-bit	 address,
generated	by	the	assembler	in	pass	one	and	displayed	in	the	listing	file.
synchronous	bus	a	communication	protocol	 that	has	a	central	clock;	 there	 is	no	feedback
from	the	memory	to	the	processor,	so	every	memory	cycle	takes	exactly	the	same	time;	data
transfers	(put	data	on	bus,	take	data	off	bus)	are	synchronized	to	the	central	clock
synchronous	protocol	a	system	where	the	two	devices	share	the	same	clock.
synchronous	 serial	 interface	 (SSI)	A	 device	 to	 transmit	 data	 with	 synchronous	 serial
communication	protocol.	Same	as	SPI.
tachometer	a	sensor	that	measures	the	revolutions	per	second	of	a	rotating	shaft.
tail	recursion	A	 technique	where	 the	recursive	call	occurs	as	 the	 last	action	 taken	by	 the
function.	See	also	recursion,	binary	recursion,	and	linear	recursion.
thermal	noise	A	fundamental	noise	in	resistive	devices	arising	from	the	uncertainty	about
the	position	and	velocity	of	individual	molecules.	Same	as	Johnson	noise	and	white	noise.
thermistor	A	nonlinear	transducer	that	converts	temperature	into	electric	resistance.
thermocouple	A	transducer	that	converts	temperature	into	electric	voltage.
thread	 	The	execution	of	software	 that	cooperates	with	other	 threads.	A	thread	embodies
the	action	of	 the	 software.	One	concept	describes	a	 thread	as	 the	 sequence	of	operations
including	the	input	and	output	data.
thread	control	block	TCB		Information	about	each	thread.	
three-pole	 relay	 Three	 separate	 and	 complete	 relays,	which	 are	 activated	 together	 (see
single	pole).
three-pole	switch	 	 Three	 separate	 and	 complete	 switches.	The	 switches	 are	 electrically
separate,	 but	mechanically	 connected.	The	 three	 switches	 turned	on	 and	off	 together	 (see
single	pole).
throughput		The	information	transfer	rate,	the	amount	of	data	transferred	per	second.	Same
as	bandwidth.
time	constant	The	time	to	reach	63.2%	of	the	final	output	after	the	input	is	instantaneously
increased.
time	profile	 and	 execution	profile	 	 Time	 profile	 refers	 to	 the	 timing	 characteristic	 of	 a
program	and	execution	profile	refers	to	the	execution	pattern	of	a	program.
time	to	deadline	The	time	between	now	and	the	deadline.
tolerance		The	maximum	deviation	of	a	parameter	from	a	specified	value.
total	harmonic	distortion	(THD)	A	measure	of	the	harmonic	distortion	present	and	is
defined	as	the	ratio	of	the	sum	of	the	powers	of	all	harmonic	components	to	the	power	of
the	fundamental	frequency.
transducer	A	device	that	converts	one	type	of	signal	into	another	type.
trap	A	trap	is	similar	to	a	regular	or	hardware	interrupt:	there	is	a	trigger	that	invokes	the
execution	of	an	ISR.	On	the	CortexTM-M,	there	are	two	software	interrupts:	supervisor	call
and	 PendSV	 (vectors	 at	 0x00000028	 and	 0x00000038	 respectively).	 The	 difference
between	hardware	and	software	interrupts	is	the	trigger.	Hardware	interrupts	are	triggered
by	 hardware	 events,	 while	 software	 interrupts	 are	 triggered	 explicitly	 by	 software.	 For

example,	to	invoke	a	PendSV,	the	software	sets	bit	28	of	the	NVIC_INT_CTRL_R	register.
Same	as	software	interrupt.
tristate		The	state	of	a	tristate	logic	output	when	off	or	not	driven.
tristate	logic		A	digital	logic	device	that	has	three	output	states	low,	high,	and	off	(HiZ).
truncation	The	act	of	discarding	bits	as	a	number	is	converted	from	one	format	to	another.
two’s	 complement	 A	 number	 system	 used	 to	 define	 signed	 integers.	 The	 MSB	 defines
whether	the	number	is	negative	(1)	or	positive	(0).	To	negate	a	two’s	complement	number,
one	first	complements	(flip	from	0	to	1	or	from	1	to	0)	each	bit,	then	add	1	to	the	number.
two-pole	relay	 two	separate	and	complete	 relays,	which	are	activated	 together	 (same	as
double	pole).
two-pole	 switch	 Two	 separate	 and	 complete	 switches.	 The	 switches	 are	 electrically
separate,	but	mechanically	connected.	The	 two	switches	 turned	on	and	off	 together	which
are	activated	together,	same	as	double-pole.
ultrasound	A	sound	with	a	frequency	too	high	to	be	heard	by	humans,	typically	40	kHz	to
100	MHz.
unbuffered	I/O		The	hardware	and	software	are	tightly	coupled	so	that	both	wait	for	each
other	during	the	transmission	of	data.
unipolar	 stepper	motor	 A	 stepper	motor	 where	 the	 current	 flows	 in	 only	 one	 direction
(on/off)	along	the	interface	wires;	a	stepper	with	5	or	6	interface	wires.
universal	 asynchronous	 receiver/transmitter	 (UART)	 A	 device	 to	 transmit	 data	 with
asynchronous	serial	communication	protocol,	same	as	ACIA.
unsigned	binary	A	mechanism	to	represent	unsigned	integers	where	all	0’s	represents	 the
value	0,	and	all	1’s	represents	is	the	largest	positive	number.
vector	A	32-bit	address	 in	ROM	containing	 the	 location	of	 the	 interrupt	service	routines.
See	also	reset	vector	and	interrupt	vector.

velocity	factor	(VF)	The	ratio	of	the	speed	at	which	information	travels	relative	to	the	speed	of
light.

vertical	parity		The	normal	parity	bit	calculated	on	each	individual	frame,	can	be	even	or
odd	parity
VOH	 	The	smallest	possible	output	voltage	when	the	signal	 is	high,	and	the	current	 is	 less
than	IOH.
VOL		The	largest	possible	output	voltage	when	the	signal	is	low,	and	the	current	is	less	than
IOL.
volatile	A	condition	where	information	is	lost	when	power	is	removed.
volatile	A	property	of	a	variable	in	C,	such	that	the	value	of	the	variable	can	change	outside
the	immediate	scope	of	the	software	accessing	the	variable.
voltage	follower	An	analog	circuit	with	gain	equal	to	1,	large	input	impedance	and	small
output	impedance.	Same	as	follower.
vulnerable	window	 	 Locations	within	 a	 software	module,	 which	 if	 an	 interrupt	were	 to
occur	at	one	of	 these	 locations,	 then	an	error	could	occur	 (e.g.,	data	 lost,	corrupted	data,
program	crash,	etc.)		Same	as	critical	section.
white	noise	A	fundamental	noise	in	resistive	devices	arising	from	the	uncertainty	about	the
position	and	velocity	of	individual	molecules.	Same	as	Johnson	noise	and	thermal	noise.

wire-or-mode	 A	 digital	 logic	 output	 that	 has	 two	 states	 low	 and	 HiZ.	 Same	 as	 open
collector.
word	Four	bytes	containing	32	bits.
workstation	A	 powerful	 general	 purpose	 computer	 system	 having	 a	 price	 in	 the	 $3K	 to
50K	range	and	used	for	handling	large	amounts	of	data	and	performing	many	calculations.
write	cycle	data	is	sent	from	the	processor	to	the	memory	or	output	device,	the	address	bus
specifies	the	memory	or	output	device	location	and	the	data	bus	contains	the	information
write	data	available	time	interval	(start,end)	during	which	the	data	will	be	valid	during	a
write	cycle,	determined	by	the	processor
write	data	required		time	interval	(start,end)	during	which	the	data	should	be	valid	during
a	write	cycle,	determined	by	the	memory	module
XON/XOFF	A	 protocol	 used	 by	 printers	 to	 feedback	 the	 printer	 status	 to	 the	 computer.
XOFF	is	sent	 from	the	printer	 to	 the	computer	 in	order	 to	stop	data	 transfer,	and	XON	is
sent	from	the	printer	to	the	computer	in	order	to	resume	data	transfer.
Z	 Transform	 A	 transform	 equation	 converting	 a	 digital	 time-domain	 sequence	 into	 the
frequency	domain.	In	both	the	time	and	frequency	domain	it	 is	assumed	the	signal	is	band
limited	to	0	to	½fs.
zero	A	place	in	the	frequency	domain	where	the	filter	gain	is	zero.

Appendix	2.	Solutions	to	Checkpoints
Checkpoint	1.1:	A	characteristic	of	a	system	that	can	guarantee	that	important	tasks	get	run	at	the
correct	time.	We	define	latency	as	the	difference	between	the	time	a	task	is	scheduled	to	run,	and
the	time	when	the	task	is	actually	run.	A	real-time	system	guarantees	the	latency	will	be	small	and
bounded.
Checkpoint	 1.2:	 An	 embedded	 system	 performs	 a	 specific	 dedicated	 operation	 where	 the
computer	is	hidden	or	embedded	inside	the	machine.
Checkpoint	1.3:	Minimize	size,	minimize	weight,	minimize	power,	provide	for	proper	operation
in	harsh	environments,	maximize	safety,	and	minimize	cost.
Checkpoint	 1.4:	Multiple	 busses	 allow	 multiple	 operations	 to	 occur	 in	 parallel,	 resulting	 in
higher	performance	(more	operations/sec).
Checkpoint	1.5:	The	system	does	not	run	slower	during	debugging,	because	debugger	functions
occur	simultaneously	with	program	operation.
Checkpoint	1.6:	Variables,	the	heap,	and	the	stack	go	in	RAM.	Constants	and	machine	code	go	in
ROM.	Basically,	items	that	can	change	over	time	go	in	RAM	and	items	that	do	not	change	go	in
ROM.
Checkpoint	1.7:	The	ROM	on	our	microcontroller	 is	 electrically	 erasable	programmable	 read
only	memory	 (EEPROM).	 So	 yes	 the	 software	 can	 erase	 the	memory	 and	 reprogram	 it.	Under
normal	 conditions	 however	 software	 does	 not	write	 to	 ROM.	However,	 you	 can	 create	 a	 file
system	using	a	piece	of	ROM,	where	your	software	will	be	writing	to	ROM..
Checkpoint	 1.8:	0x2200.0000	+	32*n	 +	 4*b=0x2200.0000	+	32*0x1010	+4*3	=0x2200.0000
+0x20200	+	0x0C	=	0x2202.020C.
Checkpoint	1.9:	0x2200.0000	+	32*n	+	4*b=0x2200.0000	+	32*0x10000+4*22	=0x2200.0000
+0x200000	+	0x58	=	0x2220.0058.
Checkpoint	 1.10:	 0x4200.0000	 +	 32*n	 +	 4*b=0x4200.0000	 +	 32*0x30	 +4*7	=0x4200.0000
+0x00600	+	0x1C	=	0x4200.061C.
Checkpoint	 1.11:	R13	 is	 the	 stack	 pointer,	 used	 to	 create	 temporary	 storage	 (also	 called	SP).
R14	is	the	link	register	(also	called	LR),	containing	the	return	address	when	a	function	is	called.
R15	is	the	program	counter,	containing	the	address	of	the	instruction	as	software	executes	(also
called	PC).
Checkpoint	1.12:	The	I	bit	in	bit	0	of	the	PRIMASK	register.	If	I=0	interrupts	are	enabled.	If	I=1
interrupts	are	disabled	(postponed).
Checkpoint	1.13:	A	pin	is	an	individual	wire	on	the	microcontroller,	pins	can	be	used	for	input,
output,	debugging,	or	power.	A	port	is	a	collection	of	input/output	pins	with	a	common	operation.
Checkpoint	1.14:	Parallel,	serial,	analog	and	time.
Checkpoint	1.15:	The	addressing	mode	specifies	how	the	instruction	accesses	data.
Checkpoint	1.16:	Data	are	numbers	and	addresses	are	memory	locations	that	point	to	data.	The
processor	 does	 not	 know	 if	 a	 value	 in	R0	 is	 data	 or	 an	 address.	 It	 is	 the	 responsibility	 of	 the
programmer	 (you)	 to	use	data	as	numbers	and	addresses	as	pointers	 in	 the	way	you	write	your
programs.
Checkpoint	1.17:	Since	this	instruction	pushes	4	registers,	the	SP	is	decremented	by	16.
Checkpoint	1.18:	The	return	address	is	saved	in	the	link	register,	R14	or	LR.	However,	when	a
first	function	calls	a	second	function,	the	first	function	must	save	the	LR	onto	the	stack.

Checkpoint	 1.19:	Standards	 allows	 software	 written	 by	 one	 company	 to	 work	 properly	 with
software	 written	 by	 another	 company.	 A	 similar	 concept	 is	 CMSIS,	 which	 allows	 the
standardization	 of	 I/O	 functions,	 see
http://www.keil.com/pack/doc/CMSIS/General/html/index.html.
Checkpoint	1.20:	A	pointer	is	an	address	that	points	to	data.	Pointers	are	important	because	they
allow	us	to	pass	large	amounts	of	data	with	a	single	32-bit	entity.
Checkpoint	1.21:	An	array	of	10	elements	is	accessed	with	indices	from	0	to	9.
Checkpoint	 1.22:	A	 linked	 list	 is	 a	 collection	of	 nodes,	where	 each	node	 contains	 data	 and	 a
pointer	to	the	next	node.	The	advantage	of	linked	list	is	the	data	can	grow	and	shrink	in	size,	and
you	can	sort	the	order	dynamically.	In	real-time	systems	we	must	guarantee	execution	of	important
tasks	occur	at	the	proper	time,	so	we	will	be	careful	when	implementing	flexible	behavior,	which
in	 some	 instances	 may	 not	 finish.	 Sometimes	 we	 sacrifice	 flexibility	 of	 linked	 lists	 for	 the
stability	and	simplicity	of	arrays.
Checkpoint	1.23:	This	is	internal	fragmentation	because	it	is	wasted	space	for	efficiency	or	the
convenience	of	the	operating	system.
Checkpoint	1.24:	Search	the	free	list	to	see	if	the	address &Heap[SIZE*i] 	is	free.
Checkpoint	1.25:	Ignore	size	parameter,	return	100	bytes	regardless	of	the	request.
Checkpoint	1.26:	The	block	is	lost.	This	is	an	example	of	a	memory	leak.
Checkpoint	1.27:	Sort	the	free	blocks	by	size	using	a	binary	tree.	This	way	it	will	be	faster	to
search	for	the	best	free	block	during	allocation.
Checkpoint	 1.28:	Each	 block	 has	 two	 counters.	 Dividing	 a	 block	 into	 two	 creates	 one	 more
block.	There	needs	to	be	two	more	counters	for	the	new	block.
Checkpoint	 1.29:	Weird	 and	 crazy	 bugs	will	 occur,	 because	 that	memory	may	be	 allocated	 to
another	task.
Checkpoint	1.30:	The	existence	of	 the	 instrument	has	a	 small	but	 inconsequential	effect	on	 the
system	performance.	The	 time	 to	execute	 the	 instrument	 is	 small	compared	 to	 the	 time	between
executions	 of	 the	 instrument.	There	 are	 three	 advantages	 of	 leaving	 the	 instruments	 in	 the	 final
system.	 First,	 the	 system	 was	 tested	 with	 the	 instruments	 and	 works	 to	 specification	 with	 the
instruments.	 There	 is	 no	 guarantee	 the	 system	 will	 still	 work	 if	 the	 instruments	 are	 removed.
Second,	the	instruments	could	provide	run	time	checks	to	catch	failures	during	operation.	Third,
the	instruments	could	be	used	during	system	checkup	(recalibration,	diagnostic	checkup	etc.)
	
Checkpoint	2.1:	Not	all	pins	of	a	port	must	have	the	same	direction.	Some	may	be	inputs	while
others	are	outputs.	Furthermore,	some	pins	may	be	off,	meaning	neither	input	or	output.
Checkpoint	2.2:		If	we	activate	the	HFXT	to	run	the	microcontroller	at	48	MHz,	then	the	SysTick
counter	 decrements	 every	 20.83	 ns.	 To	make	 it	 interrupt	 every	 10ms,	 it	 should	 interrupt	 every
480000	cycles.	Thus,	we	set	reload	to	479999.
Checkpoint	 2.3:	 Since	 real-time	 events	 trigger	 interrupts,	 and	 the	 ISR	 software	 services	 the
requests,	disabling	interrupts	will	postpone	the	response	causing	latency	or	jitter.	The	maximum
jitter	will	be	the	maximum	time	running	with	interrupts	disabled.
Checkpoint	 2.4:	 Notice	 there	 are	 two	 disable	 interrupt	 and	 two	 enable	 interrupt	 functions,
occurring	in	this	order:	1)	disable,	2)	disable,	3)	enable,	4)	enable.	Interrupts	will	be	incorrectly
enabled	after	step	3).	Since	the	1-4	represents	a	critical	section	and	2-3	is	inside	this	section,	a
bug	will	probably	be	introduced.	In	this	example Stuff1B 	runs	with	interrupts	enabled.

Critical1 Critical2
		Disable	//	1 		Disable	//	2
		Stuff1A 		Stuff2A
		Call	Critical2 		Enable		//	3
		Stuff1B 		return
		Enable	//	4
		return
Checkpoint	2.5:	Negative	 logic	means	when	we	 touch	 the	 switch	 the	voltage	goes	 to	0	 (low).
Formally,	 negative	 logic	means	 the	 true	 voltage	 is	 lower	 than	 the	 false	 voltage.	 Positive	 logic
means	when	we	touch	the	switch	the	voltage	goes	to	+3.3	(high).	Formally,	positive	logic	means
the	true	voltage	is	higher	than	the	false	voltage.
Checkpoint	2.6:	For	PF4,	we	need	input	with	pull-up.	DIR	bit	4	is	low	(input),	AFSEL	bit	4	is
low	(not	alternate),	PUE	bit	4	high	(pull-up)	and	PDE	bit	4	 low	(not	pull-down).	For	PF0,	we
also	need	input	with	pull-down.	DIR	bit	0	is	low	(input),	AFSEL	bit	0	is	low	(not	alternate),	PUE
bit	0	high	(pull-up)	and	PDE	bit	0	low	(not	pull-down).
Checkpoint	2.7:	For	the	TM4C	one	interrupt	is	generated,	both	flags	are	set,	and	both	counts	will
be	increments.	Compare	this	to	the	MSP432	version	that	will	generate	two	sequential	interrupts
and	each	interrupt	will	service	one	request.	In	both	cases,	no	events	are	lost.
Checkpoint	 2.8:	 There	 is	 1	 byte	 of	 data	 per	 10	 bits	 of	 transmission.	 So,	 there	 are	 11520
bytes/sec.
Checkpoint	 2.9:	 The	 RxFifo	 is	 empty	 when	 there	 is	 no	 input	 data.	 Software	 is	 waiting	 for
hardware.	We	classify	 this	condition	as	I/O	bound,	because	 the	system	bandwidth	 is	 limited	by
I/O	hardware.
Checkpoint	 2.10:	The	TxFifo	 is	 empty	when	 there	 is	 no	output	 data.	Hardware	 is	waiting	 for
software.	We	classify	this	condition	as	CPU	bound,	because	the	system	bandwidth	is	limited	by
software	execution	speed.
Checkpoint	2.11:	PWM:	on	the	cycle	when	the	timer	equals	the	value	in	the	Match	Register	or
the	Interval	Load	Register.
Checkpoint	2.12:	PWM:	output	pin	cleared	(set	if	inverting	mode)	on	match	or	set	(cleared	if
inverting	mode)	on	reload.
Checkpoint	 2.13:	 1V*16384/2.5V	 =	 6553	 (or	 6554)	 .	 The	 TM4C	 range	 is	 0	 to	 3.3V,
1V*4095/3.3V	=	1241.
Checkpoint	2.14: P1OUT	^=	0x08;		GPIO_PORTA_DATA_R	^=	0x08;
#define	PA3	(*((volatile	uint32_t	*)0x40000020))
#define	Debug_HeartBeat()	(PA3	^=	0x08)
	
Checkpoint	 3.1:	 A	 program	 is	 a	 list	 of	 commands,	 while	 a	 thread	 is	 the	 action	 cause	 by	 the
execution	of	software.	For	example,	there	might	be	one	copy	of	a	program	that	searches	the	card
catalog	of	a	library,	while	separate	threads	are	created	for	each	user	that	logs	into	a	terminal	to
perform	a	search.	Similarly,	there	might	be	one	set	of	programs	that	implement	the	features	of	a
window	(open,	minimize,	maximize,	etc.),	while	there	will	be	a	separate	thread	for	each	window
created.
Checkpoint	3.2:	Threads	can’t	communicate	with	each	other	using	the	stack,	because	they	have
physically	separate	stacks.	Global	variables	will	be	used,	because	one	 thread	may	write	 to	 the

global,	and	another	can	read	from	it.
Checkpoint	3.3:	It	is	hard	real	time	because	if	the	response	is	late,	data	may	be	lost.
Checkpoint	3.4:	It	is	firm	real	time	because	it	causes	an	error	that	can	be	perceived	but	the	effect
is	harmless	and	does	not	significantly	alter	the	quality	of	the	experience.
Checkpoint	3.5:	It	is	soft	real	time	because	the	faster	it	responses	the	better,	but	the	value	of	the
system	(bandwidth	is	amount	of	data	printed	per	second)	diminishes	with	latency.
Checkpoint	3.6:	With	the	flowchart	in	Figure	3.8,	the	Status	will	be	set	twice	and	the	first	data
value	will	be	lost.	We	will	fix	this	error	in	the	next	using	a	first	in	first	out	(FIFO)	queue.
Checkpoint	 3.7:	 The	 system	will	 not	 work,	 because	 there	 is	more	work	 to	 do	 than	 there	 are
processor	resources	to	accomplish	them.
Checkpoint	3.8:	The	system	will	work	some	of	the	time,	but	there	are	times	the	system	will	not
work.
Checkpoint	 3.9:	 	 The	 functionOS_Wait 	 will	 crash	 because	 it	 is	 spinning	 with	 interrupts
disabled.
Checkpoint	3.10:	 	The	 functionOS_Wait 	 has	 a	 critical	 section	 around	 the	 read-modify-write
access	to	the	semaphore.	If	we	remove	the	mutual	exclusion,	multiple	threads	could	pass.
Checkpoint	3.11:	Notice	this	function	discards	the	new	data	on	error

void	SendMail(uint32_t	int	data){
		if(Send){
				Lost++;	//	discard	new	data
		}else{
				Mail	=	data;
				OS_Signal(&Send);
		}
}

	
	
Checkpoint	4.1:		Each	thread	runs	for	1ms,	so	each	thread	runs	every	5ms.	The	spinning	thread
will	be	run	200	times,	wasting	200ms	while	it	waits	for	its	semaphore	to	be	signaled.	This	is	a
20%	waste	of	processor	time.
Checkpoint	 4.2:	 	 Other	 threads	 run	 for	 1	 ms	 each,	 the	 semaphore	 is	 checked	 every	 4	 ms.
However,	 the	 amount	 of	 time	wasted	will	 be	 quite	 small	 because	 the	 spinning	 thread	will	 go
through	 the	 loop	once	and	suspend.	Obviously,	once	 the	semaphore	goes	above	0,	 the	OS_Wait
will	return.
Checkpoint	4.3:	 	The	worst	case	 is	you	must	 look	at	all	5	blocked	 threads,	 so	 the	while	 loop
executes	5	 times.	This	 is	 a	waste	of	5*150	=	750ns.	Since	 the	 scheduler	 runs	every	1	ms,	 this
waste	is	0.075%	of	processor	time.
Checkpoint	 4.4:	 Since	 Signal	 increments	 and	Wait	 decrements,	 we	 expect	 the	 average	 to	 be
equal.		On	average,	over	a	long	period	of	time,	the	number	of	calls	to	Wait	equals	the	number	of
calls	 to	 Signal.	 If	 Signal	 were	 called	 more	 often,	 then	 the	 semaphore	 value	 would	 become
infinite.	If	Wait	were	called	more	often,	then	all	threads	would	become	blocked/stalled.
Checkpoint	4.5:		Since	put	enters	data	and	get	removes,	we	expect	the	average	to	be	equal.		If	put
were	called	more	often,	then	the	FIFO	would	become	full	and	another	call	to	put	could	not	occur.
If	get	were	called	more	often,	then	FIFO	would	become	empty	and	another	successful	call	to	get

could	not	occur.	If	the	FIFO	can	store	N	pieces	of	data,	then	the	total	number	of	successful	puts
minus	the	total	number	of	successful	gets	must	be	a	value	between	0	and	N.	On	average,	over	a
long	period	of	time,	the	number	of	calls	to	put	equals	the	number	of	calls	to	get.
Checkpoint	4.6:		If	CurrentSize	is	0,	the	FIFO	is	empty.	If	CurrentSize	is	equal	to	FIFOSIZE,	the
FIFO	is	full.
Checkpoint	4.7:		Use	AND	instead	of	modulo	divide	when	incrementing	the	index	because	it	is
faster
PutI	=	(PutI+1)&(FIFOSIZE-1);
GetI	=	(GetI+1)&(FIFOSIZE-1);
	
Checkpoint	5.1: 	This	priority	scheduler	must	look	at	them	all,	so	it	will	run	N	times	through	the
loop.	Looking	at	all	the	threads	is	ok	if	N	is	small,	but	becomes	inefficient	if	I	is	large.
Checkpoint	5.2: 	The	maximum	latency	 is	20	ms,	because	 the	switch	will	be	 recognized	at	 the
next	interrupt.	The	minimum	latency	is	0,	and	the	latencies	are	uniformly	distributed	from	0	to	20,
so	the	average	is	10	ms.
	
Checkpoint	6.1:		At	60	Hz,	f/fs	is	1/6.

Gain		=	0.5	
Checkpoint	6.2:		If	the	gain	is	larger	than	one,	amplification	occurs.	For	example,	if	the	gain	is
1.2,	 if	 you	put	 in	 a	 sinusoidal	wave	with	 amplitude	100,	 then	 the	output	of	 the	 filter	will	 be	 a
sinusoidal	wave	with	 amplitude	 120.	This	 is	 important	 because	 a	 filtered	 signal	 from	an	 8-bit
ADC	will	not	fit	into	an	8-bit	variable.
Checkpoint	6.3:		The	Q	is	much	higher	for	 the	IIR	filter.	This	means	 it	 rejects	 just	60	Hz,	and
passes	 most	 of	 the	 other	 frequencies.	 This	 greatly	 improved	 performance	 comes	 with	 only	 a
modest	increase	the	computational	complexity.	The	additional	computation	is	2	multiplies	and	a
subtraction.	The	performance	for	the	IIR	filter	is	superior.
Checkpoint	6.4:		First,	sum	all	 the	positive	terms,	76050.	The	largest	positive	value	will	be	if
the	ADC	values	for	the	positive	terms	are	4095	and	the	ADC	values	for	the	negative	terms	is	0.
76050*4095	is	less	than	231.		Next,	sum	all	the	negative	terms,	-76048.	The	largest	negative	value
will	be	if	the	ADC	values	for	the	negative	terms	are	4095	and	the	ADC	values	for	the	positive
terms	 is	0.	 -76048*4095	 is	greater	 than	-231.	The	 input	 is	bounded	 from	0	 to	4095	because	 the
data	comes	from	the	12-bit	ADC.	The	largest	gain	in	this	filter	is	5,	the	fixed-point	coefficient	is
16384.	4095*5*16384	will	fit	in	the	32-bit	signed	intermediate	result,	sum.
Checkpoint	6.5:		Because	of	 the	 linear	phase	 the	h(n)	 filter	coefficients	are	symmetric.	Notice
that	h(k)	equals	h(50-k).	For	example,	4·x(n)+	4·x(n-50)	can	be	replaced	with	4·(x(n)+x(n-50)).
In	general,	h(k)·x(n‑k)+	h(50-k)·x(n-50-k)	 can	be	 replaced	with	h(k)·(x(n-k)+x(n-50-k)),	 saving
25	multiplies.
Checkpoint	7.1:	Both	refer	to	the	speed	of	communication.	Latency	is	the	response	time	to	a
question	and	bandwidth	is	the	information	transfer	rate.
Checkpoint	7.2:	If	we	do	not	meet	the	latency	requirement,	that	data	is	lost.	If	it	happens	every
time	the	system	doesn’t	work.	If	it	happens	occasionally,	it	will	run	slow	because	we	will	have	to
wait	for	the	disk	to	spin	around	one	revolution	and	try	it	again.
Checkpoint	7.3:	A	portion	of	the	sound	is	lost,	and	it	will	sound	like	a	skip.	We	may	also	hear	a

click	because	the	waveform	is	discontinuous.	It	is	firm	real	time	because	it	causes	an	error	that
can	 be	 perceived	 but	 the	 effect	 is	 harmless	 and	 does	 not	 significantly	 alter	 the	 quality	 of	 the
experience.
Checkpoint	7.4:	The	system	runs	slow,	because	the	transmitter	will	timeout	and	try	to	resend	the
packets.
Checkpoint	7.5:	The	bidirectional	driver	has	three	possibilities,	determined	by	two	control	pins.
An	example	of	 this	 type	of	 logic	 is	 the	74HC245.	It	can	drive	data	 left	 to	right,	making	the	 left
input	and	right	output.	 	 It	can	drive	data	right	 to	 left,	making	the	right	 input	and	left	output.	The
third	 possibility	 is	 that	 the	 device	 can	 be	 off,	 driving	 neither	 the	 left	 nor	 the	 right.	 This	 is	 a
noninverting	driver,	so	the	output	equals	the	input.
Checkpoint	7.6:	Substitute	the	four	bidirectional	data	bus	drivers	with	four	unidirectional	tristate
drivers.	All	four	data	bus	drivers	operate	 in	 the	direction	of	 the	simplex	transfer	(left	 to	right).
The	 bank-switched	 memory	 looks	 like	 a	 write-only	 memory	 to	 the	 computer	 and	 a	 read-only
memory	to	the	I/O	hardware.
Checkpoint	7.7:	The	maximum	 latency	 for	 cycle	 steal	DMA	 is	 one	bus	 cycle,	 assume	 there	 is
only	 one	 DMA	 channel	 active.	 If	 there	 is	 more	 than	 one	 DMA	 channel	 operating,	 one	 DMA
request	may	have	to	wait	for	another.
Checkpoint	7.8:	On	some	systems	the	latency	is	only	one	bus	cycle.	On	others	it	may	be	2	or	3
bus	cycles.	In	all	cases	it	is	very	short.
Checkpoint	7.9:	On	most	systems,	the	instruction	must	finish,	so	the	latency	will	be	the	maximum
instruction	length.	In	all	cases	burst	DMA	has	a	longer	latency	than	cycle	steal.
	
Checkpoint	8.1:	On	average,	each	file	wastes	½	n	bytes.	Since	this	is	inside	the	file,	this	wasted
space	is	classified	as	internal	fragmentation.
Checkpoint	8.2:	The	best	way	to	cut	the	wood	is	obviously	at	one	end	or	the	other,	generating	the
2-meter	piece	and	leaving	8	meters	free.	If	you	were	to	cut	at	the	4-meter	and	6-meter	spots,	you
would	indeed	have	the	2-meter	piece	as	needed,	but	this	cutting	would	leave	you	two	4-meter
leftover	pieces.	The	largest	available	piece	now	is	4	meters,	but	the	total	amount	free	would	be	8
meters.	This	condition	is	classified	as	external	fragmentation.
Checkpoint	8.3:	The	largest	contiguous	part	of	the	disk	is	8	blocks.	So	the	largest	new	file	can
have	8*512	bytes	of	data	(4096	bytes).	This	is	less	than	the	available	16	free	blocks,	therefore
there	is	external	fragmentation.
Checkpoint	8.4:	First	fit	would	put	the	file	in	block	1	(block	0	has	the	directory).	Best	fit	would
put	the	file	in	block	10,	because	it	is	the	smallest	free	space	that	is	big	enough.	Worst	fit	would
put	it	in	block	14,	because	it	is	the	largest	free	space.
Checkpoint	8.5:	A	gibibyte	is	230	bytes.	Each	sector	is	212	bytes,	so	there	are	218	sectors.	So	you
need	218		bits	in	the	table,	one	for	each	sector.	There	are	23	bits	in	a	byte,	so	the	table	should	be
215	(32768)	bytes	long.
Checkpoint	8.6:	2	Gibibytes	is	231	bytes.	512	bytes	is	29	bytes.	31-9	=	22,	so	it	would	take	22
bits	to	store	the	block	number.
Checkpoint	8.7:	2	Gibibytes	is	231	bytes.	32k	bytes	is	215	bytes.	31-15	=	16,	so	it	would	take	16
bits	to	store	the	block	number.
Checkpoint	8.8:	There	are	16	free	blocks,	they	can	all	be	linked	together	to	create	one	new	file.
This	means	there	is	no	external	fragmentation.

Checkpoint	8.9:	There	are	many	answers.	One	answer	is	you	could	store	a	byte	count	in	the
directory.	Another	answer	is	you	could	store	a	byte	count	in	each	block.
Checkpoint	8.10:	16+9=25.	225	is	32	Mebibytes,	which	is	the	largest	possible	disk.
Checkpoint	8.11:	There	are	231/210=221	blocks,	so	the	21-bit	block	address	will	be	stored	as	a
32-bit	number.	One	can	store	1024/4=256	index	entries	in	one	1024-byte	block.	So	the	maximum
file	size	is	256*1024	=	28*210	=	218	=	256	kibibytes.	You	can	increase	the	block	size	or	store	the
index	in	multiple	blocks.
Checkpoint	8.12:		There	are	15	free	blocks,	and	they	can	create	an	index	table	using	all	the	free
blocks	to	create	one	new	file.	This	means	there	is	no	external	fragmentation.
Checkpoint	8.13:		There	are	15	free	blocks,	they	can	create	FAT	using	all	the	free	blocks	to
create	one	new	file.	Each	block	is	512	bytes,	so	the	largest	file	is	15	time	512	bytes;	there	is	no
external	fragmentation.
Checkpoint	8.14:	Each	directory	entry	now	requires	10	bytes.	You	could	have	50	files,	leaving
some	space	for	the	free	space	management.
Checkpoint	8.15:	Change	the	1024	to	4096.
	
Checkpoint	9.1:	Most	people	communicate	in	half-duplex.	Normally,	when	we	are	talking,	the
sound	of	our	voice	overwhelms	our	ears,	so	we	usually	cannot	listen	while	we	are	talking.
Checkpoint	9.2:	Since	information	is	encoded	as	energy,	and	data	is	transferred	at	a	fixed	rate,
each	energy	packet	will	exist	for	a	finite	time.	Energy	per	time	is	power.
Checkpoint	9.3:	If	the	units	of	a	signal	x	is	something	like	volts	or	watts,	we	cannot	take	the
log10(x),	because	the	units	of	log10(x)	is	not	defined.	Whenever	we	use	the	log10	to	calculate	the
amplitude	of	a	signal,	we	always	perform	the	logarithm	on	a	value	without	dimensions.	In	other
words,	we	always	perform	the	logarithm	on	a	ratio	of	one	signal	to	another.
Checkpoint	9.4:	The	performance	measure	for	a	storage	system	is	information	density	in
bits/cm3.
Checkpoint	9.5:		With	open	collector	outputs,	the	low	will	dominate	over	HiZ.	The	signal	will
be	low.	
	
Checkpoint	10.1:	The	VOL	of	the	7406	at	40	mA	will	be	0.7V.	This	means	there	will	be	4.3V
across	the	coil.
Checkpoint	10.2:		If	 they	are	too	close,	 then	the	system	can	turn	on-off-on-off-…	very	quickly,
causing	 the	electromagnetic	 relays	 to	prematurely	fail.	 If	 they	are	 too	 far	apart,	 then	 the	 system
will	oscillate	with	large	positive	and	negative	errors.	
Checkpoint	10.3:		Every	interrupt,	the	actuator	would	be	increased	or	decreased,	causing	a	lot	of
output	changes.	
Checkpoint	 10.4:	 	 If	 the	 interrupt	 period	were	 too	 small,	 the	 actuator	would	 be	 increased	 to
maximum	or	decreased	to	minimum,	causing	it	to	behave	like	a	bang-bang	controller.	Basically,
the	plant	would	not	have	time	to	react	to	changes	in	the	actuator.	
Checkpoint	10.5:		The	output	will	saturate.	The	error	increases	to	a	very	large	positive	value	or
decreases	down	to	a	very	large	negative	value.	
Checkpoint	10.6:		The	limit	of	the	discrete	integral	as	Δt	goes	to	zero	is	the	continuous	integral.	
Checkpoint	 10.7:	 	 The	 limit	 of	 the	 discrete	 derivative	 as	 Δt	 goes	 to	 zero	 is	 the	 continuous
derivative.

Checkpoint	10.8:		Yes.	Let	watts	be	the	units	of	the	actuator	output	and	RPM	be	the	units	of	the
sensor	input.	The	units	of	the	lag	L	is	sec.	The	units	of	the	rate	R	is	cm/sec.	The	units	of	ΔU	 is
watts.

Proportional	 KP	=	1.2	ΔU/(L*R)	 watts/(sec*(RPM	sec))	=	watts/	RPM
Integral 	 KI		=	0.5	KP	/L	 watts/(RPM-sec)
Derivative	 KD	=	0.5	KP	L	 (watts-sec)/RPM

Checkpoint	 10.9:	 	 E	 =	 X*-X,	 so	 the	 error	 is	 very	 negative,	 causing	 the	 P	 term	 to	 be	 very
negative,	making	U=100.	This	removes	power	and	gravity	will	force	it	down.
Checkpoint	10.10:		SlowDown=WayTooFast+SpeedingUp*LittleBitFast=50+(40*60)=50
	

The	true	engineering	experience	occurs	not	with	your	eyes	and	ears,	but	rather	with	your
fingers	and	elbows.	In	other	words,	engineering	education	does	not	happen	by	listening	in
class	or	reading	a	book;	rather	it	happens	by	designing	under	the	watchful	eyes	of	a	patient
mentor.	So,	go	build	something	today,	then	show	it	to	someone	you	respect!

Reference	Material
Vector
address

Number IRQ ISR	name	in	Startup.s NVIC Priority
bits

0x00000038 14 -2 PendSV_Handler NVIC_SYS_PRI3_R 23	–	21
0x0000003C 15 -1 SysTick_Handler NVIC_SYS_PRI3_R 31	–	29
0x00000040 16 0 GPIOPortA_Handler NVIC_PRI0_R 7	–	5
0x00000044 17 1 GPIOPortB_Handler NVIC_PRI0_R 15	–	13
0x00000048 18 2 GPIOPortC_Handler NVIC_PRI0_R 23	–	21
0x0000004C 19 3 GPIOPortD_Handler NVIC_PRI0_R 31	–	29
0x00000050 20 4 GPIOPortE_Handler NVIC_PRI1_R 7	–	5
0x00000054 21 5 UART0_Handler NVIC_PRI1_R 15	–	13
0x00000058 22 6 UART1_Handler NVIC_PRI1_R 23	–	21
0x0000005C 23 7 SSI0_Handler NVIC_PRI1_R 31	–	29
0x00000060 24 8 I2C0_Handler NVIC_PRI2_R 7	–	5
0x00000064 25 9 PWMFault_Handler NVIC_PRI2_R 15	–	13
0x00000068 26 10 PWM0_Handler NVIC_PRI2_R 23	–	21
0x0000006C 27 11 PWM1_Handler NVIC_PRI2_R 31	–	29
0x00000070 28 12 PWM2_Handler NVIC_PRI3_R 7	–	5
0x00000074 29 13 Quadrature0_Handler NVIC_PRI3_R 15	–	13
0x00000078 30 14 ADC0_Handler NVIC_PRI3_R 23	–	21
0x0000007C 31 15 ADC1_Handler NVIC_PRI3_R 31	–	29
0x00000080 32 16 ADC2_Handler NVIC_PRI4_R 7	–	5
0x00000084 33 17 ADC3_Handler NVIC_PRI4_R 15	–	13
0x00000088 34 18 WDT_Handler NVIC_PRI4_R 23	–	21
0x0000008C 35 19 Timer0A_Handler NVIC_PRI4_R 31	–	29
0x00000090 36 20 Timer0B_Handler NVIC_PRI5_R 7	–	5
0x00000094 37 21 Timer1A_Handler NVIC_PRI5_R 15	–	13
0x00000098 38 22 Timer1B_Handler NVIC_PRI5_R 23	–	21
0x0000009C 39 23 Timer2A_Handler NVIC_PRI5_R 31	–	29
0x000000A0 40 24 Timer2B_Handler NVIC_PRI6_R 7	–	5
0x000000A4 41 25 Comp0_Handler NVIC_PRI6_R 15	–	13
0x000000A8 42 26 Comp1_Handler NVIC_PRI6_R 23	–	21
0x000000AC 43 27 Comp2_Handler NVIC_PRI6_R 31	–	29
0x000000B0 44 28 SysCtl_Handler NVIC_PRI7_R 7	–	5
0x000000B4 45 29 FlashCtl_Handler NVIC_PRI7_R 15	–	13
0x000000B8 46 30 GPIOPortF_Handler NVIC_PRI7_R 23	–	21
0x000000BC 47 31 GPIOPortG_Handler NVIC_PRI7_R 31	–	29
0x000000C0 48 32 GPIOPortH_Handler NVIC_PRI8_R 7	–	5
0x000000C4 49 33 UART2_Handler NVIC_PRI8_R 15	–	13
0x000000C8 50 34 SSI1_Handler NVIC_PRI8_R 23	–	21
0x000000CC 51 35 Timer3A_Handler NVIC_PRI8_R 31	–	29
0x000000D0 52 36 Timer3B_Handler NVIC_PRI9_R 7	–	5
0x000000D4 53 37 I2C1_Handler NVIC_PRI9_R 15	–	13
0x000000D8 54 38 Quadrature1_Handler NVIC_PRI9_R 23	–	21
0x000000DC 55 39 CAN0_Handler NVIC_PRI9_R 31	–	29
0x000000E0 56 40 CAN1_Handler NVIC_PRI10_R 7	–	5
0x000000E4 57 41 CAN2_Handler NVIC_PRI10_R 15	–	13
0x000000E8 58 42 Ethernet_Handler NVIC_PRI10_R 23	–	21
0x000000EC 59 43 Hibernate_Handler NVIC_PRI10_R 31	–	29
0x000000F0 60 44 USB0_Handler NVIC_PRI11_R 7	–	5

0x000000F4 61 45 PWM3_Handler NVIC_PRI11_R 15	–	13
0x000000F8 62 46 uDMA_Handler NVIC_PRI11_R 23	–	21
0x000000FC 63 47 uDMA_Error NVIC_PRI11_R 31	–	29

Table	2.6.	Some	of	the	interrupt	vectors	for	the	TM4C.

Memory	access	instructions
			LDR			Rd,	[Rn]							;	load	32-bit	number	at	[Rn]	to	Rd
			LDR			Rd,	[Rn,#off]	;	load	32-bit	number	at	[Rn+off]	to	Rd
			LDR			Rd,	[Rn,#off]!	;	load	32-bit	number	at	[Rn+off]	to	Rd,	preindex
			LDR			Rd,	[Rn],#off		;	load	32-bit	number	at	[Rn]	to	Rd,	postindex
			LDRT		Rd,	[Rn,#off]	;	load	32-bit	number	unprivileged
			LDR			Rd,	=value				;	set	Rd	equal	to	any	32-bit	value	(PC	rel)
			LDRH		Rd,	[Rn]							;	load	unsigned	16-bit	at	[Rn]	to	Rd
			LDRH		Rd,	[Rn,#off]	;	load	unsigned	16-bit	at	[Rn+off]	to	Rd
			LDRH		Rd,	[Rn,#off]!	;	load	unsigned	16-bit	at	[Rn+off]	to	Rd,	pre
			LDRH		Rd,	[Rn],#off	;	load	unsigned	16-bit	at	[Rn]	to	Rd,	postindex
			LDRHT		Rd,	[Rn,#off]	;	load	unsigned	16-bit	unprivileged
			LDRSH	Rd,	[Rn]							;	load	signed	16-bit	at	[Rn]	to	Rd
			LDRSH	Rd,	[Rn,#off]	;	load	signed	16-bit	at	[Rn+off]	to	Rd
			LDRSH	Rd,	[Rn,#off]!	;	load	signed	16-bit	at	[Rn+off]	to	Rd,	pre
			LDRSH	Rd,	[Rn],#off	;	load	signed	16-bit	at	[Rn]	to	Rd,	postindex
			LDRSHT	Rd,	[Rn,#off]	;	load	signed	16-bit	unprivileged
			LDRB		Rd,	[Rn]							;	load	unsigned	8-bit	at	[Rn]	to	Rd
			LDRB		Rd,	[Rn,#off]	;	load	unsigned	8-bit	at	[Rn+off]	to	Rd
			LDRB		Rd,	[Rn,#off]!	;	load	unsigned	8-bit	at	[Rn+off]	to	Rd,	pre
			LDRB		Rd,	[Rn],#off	;	load	unsigned	8-bit	at	[Rn]	to	Rd,	postindex
			LDRBT		Rd,	[Rn,#off]	;	load	unsigned	8-bit	unprivileged
			LDRSB	Rd,	[Rn]							;	load	signed	8-bit	at	[Rn]	to	Rd
			LDRSB	Rd,	[Rn,#off]	;	load	signed	8-bit	at	[Rn+off]	to	Rd
			LDRSB	Rd,	[Rn,#off]!	;	load	signed	8-bit	at	[Rn+off]	to	Rd,	pre
			LDRSB	Rd,	[Rn],#off	;	load	signed	8-bit	at	[Rn]	to	Rd,	postindex
			LDRSBT	Rd,	[Rn,#off]	;	load	signed	8-bit	unprivileged
		LDRD	Rd,Rd2,[Rn,#off]	;	load	64-bit	at	[Rn+off]	to	Rd,Rd2
		LDRD	Rd,Rd2,[Rn,#off]!;	load	64-bit	at	[Rn+off]	to	Rd,Rd2,pre
		LDRD	Rd,Rd2,[Rn],#off	;	load	64-bit	at	[Rn]	to	Rd,Rd2,	postindex
			LDMFD		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(inc),	!update	Rn
			LDMIA		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(inc),	!update	Rn
			LDMDB		Rn{!},	Reglist	;	load	reg	from	list	at	Rn(dec),	!update	Rn
			STMIA		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(inc),	!update	Rn
			STMFD		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(dec),	!update	Rn
			STMDB		Rn{!},	Reglist	;	store	reg	from	list	to	Rn(dec),	!update	Rn
			STR			Rt,	[Rn]							;	store	32-bit	Rt	to	[Rn]
			STR		Rt,	[Rn,#off]	;	store	32-bit	Rt	to	[Rn+off]
			STR		Rt,	[Rn,#off]!	;	store	32-bit	Rt	to	[Rn+off],	pre
			STR		Rt,	[Rn],#off	;	store	32-bit	Rt	to	[Rn],	postindex

			STRT			Rt,	[Rn,#off]	;	store	32-bit	Rt	to	[Rn+off]	unprivileged
			STRH	Rt,	[Rn]							;	store	least	sig.	16-bit	Rt	to	[Rn]
			STRH		Rt,	[Rn,#off]	;	store	least	sig.	16-bit	Rt	to	[Rn+off]
			STRH		Rt,	[Rn,#off]!	;	store	least	sig.	16-bit	Rt	to	[Rn+off],	pre
			STRH		Rt,	[Rn],#off	;	store	least	sig.	16-bit	Rt	to	[Rn],	postindex
			STRHT		Rt,	[Rn,#off]	;	store	least	sig.	16-bit	unprivileged
			STRB		Rt,	[Rn]							;	store	least	sig.	8-bit	Rt	to	[Rn]
			STRB		Rt,	[Rn,#off]	;	store	least	sig.	8-bit	Rt	to	[Rn+off]
			STRB		Rt,	[Rn,#off]!	;	store	least	sig.	8-bit	Rt	to	[Rn+off],pre
			STRB		Rt,	[Rn],#off		;	store	least	sig.	8-bit	Rt	to	[Rn],	postindex
			STRBT		Rt,	[Rn,#off]	;	store	least	sig.	unprivileged
		STRD	Rd,Rd2,[Rn,#off]	;	store	64-bit	Rd,Rd2	to	[Rn+off]
		STRD	Rd,Rd2,[Rn,#off]!;	store	64-bit	Rd,Rd2	to	[Rn+off],	pre
		STRD	Rd,Rd2,[Rn],#off	;	store	64-bit	Rd,Rd2	to	[Rn],	postindex
		PUSH		Reglist								;	push	32-bit	registers	onto	stack
			POP			Reglist							;	pop	32-bit	numbers	from	stack	into	registers
			ADR			Rd,	label						;	set	Rd	equal	to	the	address	at	label
			MOV{S}	Rd,	<op2>						;	set	Rd	equal	to	op2
			MOV				Rd,	#im16						;	set	Rd	equal	to	im16,	im16	is	0	to	65535			
			MOVT			Rd,	#im16						;	set	Rd	bits	31-16	equal	to	im16			
			MVN{S}	Rd,	<op2>						;	set	Rd	equal	to	-op2
	
Branch	instructions
			B				label			;	branch	to	label				Always
			BEQ		label			;	branch	if	Z	==	1			Equal
			BNE		label			;	branch	if	Z	==	0			Not	equal
			BCS		label			;	branch	if	C	==	1			Higher	or	same,	unsigned	≥
			BHS		label			;	branch	if	C	==	1			Higher	or	same,	unsigned	≥
			BCC		label			;	branch	if	C	==	0			Lower,	unsigned	<
			BLO		label			;	branch	if	C	==	0			Lower,	unsigned	<
			BMI		label			;	branch	if	N	==	1			Negative
			BPL		label			;	branch	if	N	==	0			Positive	or	zero
			BVS		label			;	branch	if	V	==	1			Overflow
			BVC		label			;	branch	if	V	==	0			No	overflow
			BHI		label			;	branch	if	C==1	and	Z==0		Higher,	unsigned	>
			BLS		label			;	branch	if	C==0	or		Z==1		Lower	or	same,	unsigned	≤
			BGE		label			;	branch	if	N	==	V			Greater	than	or	equal,	signed	≥
			BLT		label			;	branch	if	N	!=	V			Less	than,	signed	<
			BGT		label			;	branch	if	Z==0	and	N==V		Greater	than,	signed	>
			BLE		label			;	branch	if	Z==1	or	N!=V		Less	than	or	equal,	signed	≤								
			BX			Rm						;	branch	indirect	to	location	specified	by	Rm
			BL		label			;	branch	to	subroutine	at	label									
			BLX		Rm						;	branch	to	subroutine	indirect	specified	by	Rm										
			CBNZ	Rn,label									;	branch	if	Rn	not	zero

			CBZ	Rn,label										;	branch	if	Rn	zero
			IT{x{y{z}}}cond							;	if	then	block	with	x,y,z	T(true)	or	F(false)
			TBB	[Rn,	Rm]										;	table	branch	byte
			TBH	[Rn,	Rm,	LSL	#1]	;	table	branch	halfword
	
Mutual	exclusive	instructions
			CLREX																													;	clear	exclusive
			LDREX{cond}		Rt,[Rn{,#offset}]				;	load	32-bit	exclusive
			STREX{cond}		Rd,Rt,[Rn{,#offset}]	;	store	32-bit	exclusive
			LDREXB{cond}	Rt,[Rn]														;	load	8-bit	exclusive
			STREXB{cond}	Rd,Rt,[Rn]											;	store	8-bit	exclusive
			LDREXH{cond}	Rt,[Rn]														;	load	16-bit	exclusive
			STREXH{cond}	Rd,Rt,[Rn]											;	store	16-bit	exclusive
	
	
Miscellaneous	instructions
			BKPT			#imm					;	execute	breakpoint,	debug	state	0	to	255
			CPSIE	F								;	clear	faultmask	F=0
			CPSIE	I								;	enable	interrupts		(I=0)
			CPSID	F								;	set	faultmask	F=1
			CPSID	I								;	disable	interrupts	(I=1)
			DMB												;	data	memory	barrier,	memory	access	to	finish
			DSB												;	data	synchronization	barrier,	instructions	to	finish
			ISB												;	instruction	synchronization	barrier,	finish	pipeline
			MRS	Rd,SpecReg		;	move	special	register	to	Rd
			MSR	Rd,SpecReg		;	move	Rd	to	special	register
			NOP													;	no	operation
			SEV													;	Send	Event
			SVC	#im8								;	supervisor	call	(0	to	255)
			WFE													;	wait	for	event
			WFI													;	wait	for	interrupt
	
Logical	instructions
			AND{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn&op2				(op2	is	32	bits)								
			BFC		Rd,#lsb,#width				;	clear	bits	in	Rn								
			BFI		Rd,Rn,#lsb,#width	;	bit	field	insert,	Rn	into	Rd							
			ORR{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn|op2				(op2	is	32	bits)
			EOR{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn^op2				(op2	is	32	bits)									
			BIC{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn&(~op2)	(op2	is	32	bits)
			ORN{S}	{Rd,}	Rn,	<op2>	;	Rd=Rn|(~op2)	(op2	is	32	bits)
			TST				Rn,	<op2>							;	Rn&op2				(op2	is	32	bits)
			TEQ				Rn,	<op2>							;	Rn^op2				(op2	is	32	bits)
			LSR{S}	Rd,	Rm,	Rs						;	logical	shift	right	Rd=Rm>>Rs		(unsigned)
			LSR{S}	Rd,	Rm,	#n						;	logical	shift	right	Rd=Rm>>n			(unsigned)

			ASR{S}	Rd,	Rm,	Rs						;	arithmetic	shift	right	Rd=Rm>>Rs	(signed)
			ASR{S}	Rd,	Rm,	#n						;	arithmetic	shift	right	Rd=Rm>>n	(signed)
			LSL{S}	Rd,	Rm,	Rs						;	shift	left	Rd=Rm<<Rs	(signed,	unsigned)
			LSL{S}	Rd,	Rm,	#n						;	shift	left	Rd=Rm<<n		(signed,	unsigned)
			REV				Rd,	Rn										;	Reverse	byte	order	in	a	word
			REV16		Rd,	Rn										;	Reverse	byte	order	in	each	halfword
			REVSH		Rd,	Rn										;	Reverse	byte	order	in	the	bottom	halfword,
																										;	and	sign	extends	to	32	bits
			RBIT		Rd,	Rn											;	Reverse	the	bit	order	in	a	32-bit	word
			SBFX	Rd,Rn,#lsb,#width	;	signed	bit	field	and	extract
			UBFX	Rd,Rn,#lsb,#width	;	unsigned	bit	field	and	extract
			SXTB	{Rd,}Rm{,ROR	#n}		;	Sign	extend	byte
			SXTH	{Rd,}Rm{,ROR	#n}		;	Sign	extend	halfword
			UXTB	{Rd,}Rm{,ROR	#n}		;	Zero	extend	byte
			UXTH	{Rd,}Rm{,ROR	#n}		;	Zero	extend	halfword
	
	
	
	
Arithmetic	instructions
			ADD{S}	{Rd,}	Rn,	<op2>	;	Rd	=	Rn	+	op2										
			ADD{S}	{Rd,}	Rn,	#im12	;	Rd	=	Rn	+	im12,	im12	is	0	to	4095
			CLZ				Rd,	Rm										;	Rd	=	number	of	leading	zeros	in	Rm
			SUB{S}	{Rd,}	Rn,	<op2>	;	Rd	=	Rn	-	op2										
			SUB{S}	{Rd,}	Rn,	#im12	;	Rd	=	Rn	-	im12,	im12	is	0	to	4095
			RSB{S}	{Rd,}	Rn,	<op2>	;	Rd	=	op2	-	Rn				
			RSB{S}	{Rd,}	Rn,	#im12	;	Rd	=	im12	–	Rn
			CMP				Rn,	<op2>							;	Rn	–	op2						sets	the	NZVC	bits
			CMN				Rn,	<op2>							;	Rn	-	(-op2)			sets	the	NZVC	bits
			MUL{S}	{Rd,}	Rn,	Rm				;	Rd	=	Rn	*	Rm							signed	or	unsigned								
			MLA				Rd,	Rn,	Rm,	Ra		;	Rd	=	Ra	+	Rn*Rm				signed	or	unsigned
			MLS				Rd,	Rn,	Rm,	Ra		;	Rd	=	Ra	-	Rn*Rm				signed	or	unsigned										
			UDIV			{Rd,}	Rn,	Rm				;	Rd	=	Rn/Rm									unsigned
			SDIV			{Rd,}	Rn,	Rm				;	Rd	=	Rn/Rm									signed
			UMULL		RdLo,RdHi,Rn,Rm	;	Unsigned	long	multiply	32by32	into	64
			UMLAL		RdLo,RdHi,Rn,Rm	;	Unsigned	long	multiply,	with	accumulate
			SMULL		RdLo,RdHi,Rn,Rm	;	Signed	long	multiply	32by32	into	64
			SMLAL		RdLo,RdHi,Rn,Rm	;	Signed	long	multiply,	with	accumulate
			SSAT		Rd,#n,Rm{,shift	#s}	;	signed	saturation	to	n	bits
			USAT		Rd,#n,Rm{,shift	#s}	;	unsigned	saturation	to	n	bits
	
Notes 	Ra	Rd	Rm	Rn	Rt	represent	32-bit	registers
					value				any	32-bit	value:	signed,	unsigned,	or	address				
					{S}						if	S	is	present,	instruction	will	set	condition	codes										

					#im8				any	value	from	0	to	255				
					#im12			any	value	from	0	to	4095				
					#im16			any	value	from	0	to	65535
					{Rd,}				if	Rd	is	present	Rd	is	destination,	otherwise	Rn						
					#n							any	value	from	0	to	31							
					#off					any	value	from	-255	to	4095				
					label				any	address	within	the	ROM	of	the	microcontroller
					SpecReg		APSR,IPSR,EPSR,IEPSR,IAPSR,EAPSR,PSR,MSP,PSP,
														PRIMASK,BASEPRI,BASEPRI_MAX,FAULTMASK,	or	CONTROL.
			Reglist	is	a	list	of	registers.	E.g.,	{R1,R3,R12}
					op2					the	value	generated	by	<op2>				
	
Examples	of	flexible	operand 	<op2> 	creating	the	32-bit	number.	E.g., 	Rd	=	Rn+op2
			ADD	Rd,	Rn,	Rm									;	op2	=	Rm											
			ADD	Rd,	Rn,	Rm,	LSL	#n	;	op2	=	Rm<<n	Rm	is	signed,	unsigned				
			ADD	Rd,	Rn,	Rm,	LSR	#n	;	op2	=	Rm>>n		Rm	is	unsigned							
			ADD	Rd,	Rn,	Rm,	ASR	#n	;	op2	=	Rm>>n		Rm	is	signed							
			ADD	Rd,	Rn,	#constant		;	op2	=	constant , where 	X 	and 	Y 	are	hexadecimal	digits:

produced	by	shifting	an	8-bit	unsigned	value	left	by	any	number	of	bits
in	the	form 0x00XY00XY
in	the	form 0xXY00XY00
in	the	form 0xXYXYXYXY

	

	
	
Parameter

PN2222
(IC=150mA)
PN2907
(IC=150mA)

2N2222
(IC=500mA)
2N2907
(IC=500mA)

TIP120
(IC=3A)
TIP125
(IC=3A)

hfe 100 40 1000
VBEsat 0.6 2 2.5	V
VCE	 at
saturation

0.3 1 2	V

Design	parameters	for	the	2N2222	and	TIP120.
	

	
Chip Current Comment
L293D 0.6	A Dual,	diodes
L293 1	A Dual
DRV8848 2	A Dual,	fault

status
TPIC0107 3	A Direction,	fault

status

L6203 5	A Dual
H-bridge	drivers

	

Family Example IOH IOL IIH IIL
Standard	TTL 7404 0.4	mA 16	mA 40	µA 1.6

mA
Low	Power
Schottky

74LS04 0.4	mA 4	mA 20	µA 0.4
mA

High	Speed
CMOS

74HC04 4	mA 4	mA 1	µA 1	µA

Adv	High	Speed
CMOS

74AHC04 4	mA 4	mA 1	µA 1	µA

MSP432	regular
drive

MSP432 6	mA 6	mA 20	nA 20	nA

MSP432	high
drive

MSP432 20	mA 20	mA 20	nA 20	nA

TM4C	2mA-
drive

TM4C123 2	mA 2	mA 2	µA 2	µA

TM4C	4mA-
drive

TM4C123 4	mA 4	mA 2	µA 2	µA

TM4C	8mA-
drive

TM4C123 8	mA 8	mA 2	µA 2	µA

TM4C	12mA-
drive

TM4C1294 12	mA 12	mA 2	µA 2	µA

The	input	and	output	currents	of	various	digital	logic	families	and	microcontrollers.

Voltage	thresholds	for	various	digital	logic	families.

	Preface to The Fourth Edition
	Preface to Volume 3
	Acknowledgements
	1. Computer Architecture
	1.1. Introduction to Real-Time Operating Systems
	1.1.1. Real-time operating systems
	1.1.2. Embedded Systems

	1.2. Computer Architecture
	1.2.1. Computers, processors, and microcontrollers
	1.2.2. Memory

	1.3. Cortex-M Processor Architecture
	1.3.1. Registers
	1.3.2. Stack
	1.3.3. Operating modes
	1.3.4. Reset
	1.3.5. Clock system

	1.4. Texas Instruments Cortex-M Microcontrollers
	1.4.1. Introduction to I/O
	1.4.2. Texas Instruments TM4C123 LaunchPad I/O pins
	1.4.3. Texas Instruments TM4C1294 Connected LaunchPad I/O pins
	1.4.4. Texas Instruments MSP432 LaunchPad I/O pins
	1.4.5. Interfacing to a LaunchPad

	1.5. ARM Cortex-M Assembly Language
	1.5.1. Syntax
	1.5.2. Addressing modes and operands
	1.5.3. List of twelve instructions
	1.5.4. Accessing memory
	1.5.5. Functions
	1.5.6. ARM Cortex Microcontroller Software Interface Standard
	1.5.7. Conditional execution
	1.5.8. Stack usage
	1.5.9. Floating-point math
	1.5.10. Keil assembler directives

	1.6. Pointers in C
	1.6.1. Pointers
	1.6.2. Arrays
	1.6.3. Linked lists

	1.7. Memory Management
	1.7.1. Use of the heap
	1.7.2. Simple fixed-size heap
	1.7.3. Memory manager: malloc and free

	1.8. Introduction to debugging
	1.9. Exercises

	2. Microcontroller Input/Output
	2.1. Parallel I/O
	2.1.1. TM4C I/O programming
	2.1.2. MSP432 I/O programming

	2.2. Interrupts
	2.2.1. NVIC
	2.2.2. SysTick periodic interrupts
	2.2.3. Periodic timer interrupts
	2.2.4. Critical sections
	2.2.5. Executing periodic tasks
	2.2.6. Software interrupts

	2.3. First in First Out (FIFO) Queues
	2.4. Edge-triggered Interrupts
	2.4.1. Edge-triggered interrupts on the TM4C123
	2.4.2. Edge-triggered Interrupts on the MSP432

	2.5. UART Interface
	2.5.1. Transmitting in asynchronous mode
	2.5.2. Receiving in asynchronous mode
	2.5.3. Interrupt-driven UART on the TM4C123
	2.5.4. Interrupt-driven UART on the MSP432

	2.6. Synchronous Transmission and Receiving using the SSI
	2.7. Input Capture or Input Edge Time Mode
	2.7.1. Basic principles
	2.7.2. Period measurement on the TM4C123
	2.7.3. Period measurement on the MSP432
	2.7.4. Pulse width measurement
	2.7.5. Ultrasonic distance measurement

	2.8. Pulse Width Modulation
	2.8.1. Pulse width modulation on the TM4C123
	2.8.2. Pulse width modulation on the MSP432

	2.9. Analog Output
	2.10. Analog Input
	2.10.1. ADC Parameters
	2.10.2. Internal ADC on TM4C
	2.10.3. Internal ADC on MSP432
	2.10.4. IR distance measurement

	2.11. OS Considerations for I/O Devices
	2.11.1 Board Support Package
	2.11.2 Path Expression

	2.12. Debugging
	2.12.1. Functional Debugging
	2.12.2. Performance Debugging (FFT analysis)
	2.12.3. Debugging heartbeat
	2.12.4. Profiling

	2.13. Exercises

	3. Thread Management
	3.1. Introduction to RTOS
	3.1.1. Motivation
	3.1.2. Parallel, distributed and concurrent programming
	3.1.3. Introduction to threads
	3.1.4. States of a main thread
	3.1.5. Real-time systems
	3.1.6. Producer/Consumer problem using a mailbox
	3.1.7. Scheduler

	3.2. Function pointers
	3.3. Thread Management
	3.3.1. Two types of threads
	3.3.2. Thread Control Block (TCB)
	3.3.3. Creation of threads
	3.3.4. Launching the OS
	3.3.5. Switching threads
	3.3.6. Profiling the OS
	3.3.7. Linking assembly to C
	3.3.8. Periodic tasks

	3.4. Semaphores
	3.5. Thread Synchronization
	3.5.1. Resource sharing, nonreentrant code or mutual exclusion
	3.5.2. Condition variable
	3.5.3. Thread communication between two threads using a mailbox

	3.6. Process Management
	3.7. Dynamic loading and linking
	3.8. Exercises

	4. Time Management
	4.1. Cooperation
	4.1.1. Spin-lock semaphore implementation with cooperation
	4.1.2. Cooperative Scheduler

	4.2. Blocking semaphores
	4.2.1. The need for blocking
	4.2.2. The blocked state
	4.2.3. Implementation
	4.2.4. Thread rendezvous

	4.3. First In First Out Queue
	4.3.1. Producer/Consumer problem using a FIFO
	4.3.2. Little’s Theorem
	4.3.3. FIFO implementation
	4.3.4. Three-semaphore FIFO implementation
	4.3.5. Two-semaphore FIFO implementation
	4.3.6. One-semaphore FIFO implementation
	4.3.7. Kahn Process Networks

	4.4. Thread sleeping
	4.5. Deadlocks
	4.6. Monitors
	4.7. Fixed Scheduling
	4.8. Exercises

	5. Real-time Systems
	5.1. Data Acquisition Systems
	5.1.1. Approach
	5.1.2. Performance Metrics
	5.1.3. Audio Input/Output

	5.2. Priority scheduler
	5.2.1. Implementation
	5.2.2. Multi-level Feedback Queue
	5.2.3. Starvation and aging
	5.2.4. Priority inversion and inheritance on Mars Pathfinder

	5.3. Debouncing a switch
	5.3.1. Approach to debouncing
	5.3.2. Debouncing a switch on TM4C123
	5.3.3. Debouncing a switch on MSP432

	5.4. Running event threads as high priority main threads
	5.5. Available RTOS
	5.5.1. Micrium uC/OS-II
	5.5.2. Texas Instruments RTOS
	5.5.3. ARM RTX Real-Time Operating System
	5.5.4. FreeRTOS
	5.5.5. Other Real Time Operating Systems

	5.6. Exercises

	6. Digital Signal Processing
	6.1. Basic Principles
	6.2. Multiple Access Circular Queue
	6.3. Using the Z-Transform to Derive Filter Response
	6.4. IIR Filter Design Using the Pole-Zero Plot
	6.5. Discrete Fourier Transform
	6.6. FIR Filter Design
	6.7. Direct-Form Implementations.
	6.8. Exercises

	7. High-Speed Interfacing
	7.1. The Need for Speed
	7.2. High-Speed I/O Applications
	7.3. General Approaches to High-Speed Interfaces
	7.3.1. Hardware FIFO
	7.3.2. Dual Port Memory
	7.3.3. Bank-Switched Memory

	7.4. Fundamental Approach to DMA
	7.4.1. DMA Cycles
	7.4.2. DMA Initiation
	7.4.3. Burst versus Single Cycle DMA
	7.4.4. Single Address versus Dual Address DMA
	7.4.5. DMA programming on the TM4C123

	7.6. Exercises

	8. File system management
	8.1. Performance Metrics
	8.1.1. Usage
	8.1.2. Specifications
	8.1.3. Fragmentation

	8.2. File System Allocation
	8.2.1. Contiguous allocation
	8.2.2. Linked allocation
	8.2.3. Indexed allocation
	8.2.4. File allocation table (FAT)

	8.3. Solid State Disk
	8.3.1. Flash memory
	8.3.2. Flash device driver
	8.3.3. eDisk device driver
	8.3.4. Secure digital card interface

	8.4. Simple File System
	8.4.1. Directory
	8.4.2. Allocation
	8.4.3. Free space management

	8.5. Write-once File System
	8.5.1. Usage
	8.5.2. Allocation
	8.5.3. Directory
	8.5.4. Append
	8.5.5. Free space management

	8.6. Readers-Writers Problem
	8.7. Exercises

	9. Communication Systems
	9.1. Fundamentals
	9.1.1. The network
	9.1.2. Physical Channel
	9.1.3. Wireless Communication
	9.1.4. Radio

	9.2. Controller Area Network (CAN)
	9.2.1. The Fundamentals of CAN
	9.2.2. Texas Instruments TM4C CAN

	9.3. Embedded Internet
	9.3.1. Abstraction
	9.3.2. Message Protocols
	9.3.3. Ethernet Physical Layer
	9.3.4. Ethernet on the TM4C1294

	9.4. Internet of Things
	9.4.1. Basic Concepts
	9.4.2. UDP and TCP Packets
	9.4.3. Web server
	9.4.4. UDP communication over WiFi
	9.4.5. Other CC3100 Applications

	9.4. Bluetooth Fundamentals
	9.4.1. Bluetooth Protocol Stack
	9.4.2. Client-server Paradigm

	9.5. CC2650 Solutions
	9.5.1. CC2650 Microcontroller
	9.5.2. Single Chip Solution, CC2650 LaunchPad

	9.6. Network Processor Interface (NPI)
	9.6.1. Overview
	9.6.2. Services and Characteristics
	9.6.3. Advertising
	9.6.4. Read and Write Indications

	9.7. Application Layer Protocols for Embedded Systems
	9.7.1. CoAP
	9.7.2 MQTT

	9.8. Exercises

	10. Robotic Systems
	10.1. Introduction to Digital Control Systems
	10.2. Binary Actuators
	10.2.1. Electrical Interface
	10.2.2. DC Motor Interface with PWM

	10.3. Sensors
	10.4. Odometry
	10.5. Simple Closed-Loop Control Systems.
	10.6. PID Controllers
	10.6.1. General Approach to a PID Controller
	10.6.2. Design Process for a PID Controller

	10.7. Fuzzy Logic Control
	10.8. Exercises

	Appendix 1. Glossary
	Appendix 2. Solutions to Checkpoints
	Reference Material

